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Abstract: The aim of this paper is to investigate the interactions between polysaccharides with
different electrical charges (anionic and neutral starches) and proteins and fats in food ingredients.
Another objective is to understand the mechanisms of these systems and the interdependence
between their properties and intermolecular interactions. At present, there are not many studies on
ternary blends composed of natural food polymers: polysaccharides of different electrical charge
(anionic and neutral starches), proteins and lipids. Additionally, there are no reports concerning
what type of interactions between polysaccharide, proteins and lipids exist simultaneously when
the components are mixed in different orders. This paper intends to fill this gap. It also presents the
application of natural biopolymers in the food and non-food industries.

Keywords: polysaccharides; proteins; fats; blends; complexes

1. Introduction

In terms of political (e.g., raw material dictates), economic and ecological (e.g., envi-
ronmental pollution, particularly during chemical coal processing) factors, and considering
the depletion of petrochemical and carbochemical raw materials, increasing attention has
been paid to natural renewable raw materials, e.g., polysaccharides, proteins and lipids.
Biodegradable materials, such as wood, animal skin and intestines, have been utilised
since ancient times. Reed and straw, wool and cotton and, in the very earliest times,
papyrus, parchment and paper, were all in common use. The natural rubber (which has
been known of since the late Middle Ages) boom began after the development of sulphur
treatment by Goodyear (vulcanization). Goodyear developed rubber that was appropriate
for, among other things, tires and inner tubes. Rubber, heavily treated with sulphur, was
known as ebonite. However, the biodegradability of these products was low. At the turn
of the century, Henry Ford boasted of manufacturing a suit made of fibre obtained via
formaldehyde treatment of a protein. In terms of biodegradable plastics, galalith (obtained
from acid casein) [1] and other products of weakly nitrated cellulose—cellophane and
celluloid—became widely popular.

The usability of biodegradable plastics is determined from their physical properties
such as mechanical and thermal resistance, barrier properties, their adequate decomposition
time in the environment and resulting decomposition products. None of the above listed
plastics were characterized by properties that would be satisfactory from this point of view,
and their viability does not even take their production costs into account.

In the 1980s, attempts were made to introduce single-use products, such as starch mould-
ings and extrudates, which were used for the production of, for instance, crockery, moulds
and packaging [2–7]. However, their mechanical resistance and durability were too low;
therefore, a proportion of natural fibres [8] and synthetic polymers [9] were added to the
starch. The combination of starch with synthetic, though biodegradable, polymers, such
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as polyesters, resulted in slowly decomposing type Mater-Bi polymers [10,11]. Consider-
able popularity was gained by biodegradable polymers obtained without the use of starch.
These included poly[lactic] acid and polylactides [12–17] and other poly[hydroxyalcanoic
acids] [18,19], as well as their copolymers with low and high molecular molecules [20–23].
Biodegradable synthetic plastics include polyester (poly[caprolactone]) [24,25] and polyamide
(poly[caprolactame]), also known as nylon 6 [26].

At the same time, so-called green plastics were starting to be used, such as complexes
produced from starch (up to 40%) moulded into vinyl polymers, for instance, polyethylene.
However, such plastics were better geared to the requirements of aesthetics rather than ecology.
Starch decomposes into CO2 and water reasonably quickly, leaving in the environment a
synthetic polymer that is undecomposed, yet dispersed and invisible to the naked eye [27,28].

Synthetic plastics that decompose entirely to CO2 and H2O and are made of polymer-
ized vinyl monomers, containing appropriate catalysers (d2w plastics) are known, but,
due to their origin, they do not fulfil the EU directive on the use of renewable materials.
Moreover, their production requires the use of an excessive amount of energy [29]. How-
ever, such requirements can be met by complexes produced from polysaccharides, proteins
and lipids.

Macronutrients are chemical compounds responsible for providing the human body
with energy; macronutrients are grouped as saccharides, lipids and proteins. These com-
pounds are consumed in large amounts in comparison to vitamins or minerals, and also
occur together in many food systems. Food processing may modify the properties and
interactions of macronutrients, for instance, in terms of flavour, taste, texture, shelf life
or nutritional value [30,31]. The interactions are very complex, especially for binary and
ternary systems; understanding their occurrence during food processing may be use-
ful in optimized the production and development of new food products with designed
microstructures and functionality [32,33].

Polysaccharides: starch, carboxymethylcellulose, pectins, synthetic phosphorylated
starch, carrageenans, hyaluronic acid, xanthan gum.

Lipids: esters of stearic, oleic acid.
Proteins: albumin, lysozyme.
The binary systems from natural biopolymers (polysaccharides, lipids or proteins)

have been extensively studied, and the binary interaction effects of their properties have
been characterized. The formation of starch-lipid complexes exhibits the reduced swelling
and solubility of starch, as well as there being retarded gelatinization and retrogradation,
and the enzymic digestion rate is slowed down [34–37]. There are differing possibilities
for the formation of binary and ternary complexes due to changes in the mixing order of
compounds [32].

Binary complexes have been the subject of intensive research for 50 years; however,
the ternary complexes between starch-lipid-proteins have become a new field of investiga-
tion with an increasing number of discoveries and applications. This review introduces
information concerning ternary complexes, interactions, preparation methods, analytical
techniques and applications in the food industry.

2. Starch-Lipid Interactions

Polysaccharides form helical complexes with lipids [38] (Figure 1). Formation of a
helix is possible thanks to the suitable orientation of the polysaccharide chain in relation to
the hydrophobic lipid thread. Due to this, the external portion of the complex becomes
hydrophilic. Such ordering of the structure is most commonly used for the implementation
of the appropriate texture and thixotropic properties of foodstuffs (doughs, creams, sauces)
and cosmetics.

The main driving force to form a complex between starch and lipids is by inclusion
complexation naturally in native starch or during heating-cooling protocols. Inclusion
complexation involves a series of non-covalent interaction: hydrogens bonds, hydrophobic
attractions, van der Waals forces [39,40].



Polymers 2021, 13, 2925 3 of 16

Polymers 2021, 13, x FOR PEER REVIEW 3 of 17 
 

 

The main driving force to form a complex between starch and lipids is by inclusion 
complexation naturally in native starch or during heating-cooling protocols. Inclusion 
complexation involves a series of non-covalent interaction: hydrogens bonds, hydropho-
bic attractions, van der Waals forces [39,40]. 

 
Figure 1. Proposed structure of saccharide-stearic acid. 

The outer surface contains the hydrophilic hydroxyl groups of α-1,4 glucan helices; 
additionally, methylene groups and glycosidic bonds line the inner core and form a hy-
drophobic cavity with an ability to accommodate proper ligands. The glucan sites with 
the presence of lipids are composed of six glucosyl residues per turn; however, there are 
seven or eight glucosyl units per turn that have other ligand types. The amylose-lipid 
complexes can form partially ordered structure known as a V-type crystalline form, which 
can be grouped as anhydrous Va and hydrated Vh forms [34,41,42]. Structural research has 
indicated the insertion of lipids into the cavity of the amylose helix. The carboxyl group 
of fatty acids (FAs) or the glyceride moiety are influenced by steric hindrance and electro-
static repulsions; thus, the hydrophylic group is directed to the outside of the helix. Fur-
ther self-assembling forms crystalline lamelae for the lipid containing helices, where the 
helices are oriented perpendicularly to the plane of the lamelle. There is a theory concern-
ing micron-sized spherulites, which are formed by the crystalline lamelle and the inter-
spacing amorphous regions. On the other hand, the lipids have weaker binding with 
highly branched amylopectin in comparison to amylose. Furthermore, several studies ex-
ist that evidence the interaction of amylopectin-lipids, but few studies indicate an ability 
to order crystalline complexes [43,44]. 

3. Starch-Protein Interactions 
In the literature, one can find articles [45–66] on the synthesis of binary polysaccha-

ride-protein complexes. The polysaccharide-protein complexes were obtained either via 
electrosynthesis or precipitation at the isoelectric point. Some of these complexes are char-
acterized by the resistance of styrene-butadiene copolymers (Figure 2). 

 Starch–protein interactions involve forces such as hydrogen bonds and electrostatic 
and van der Waals forces. The hydrogen bond’s ability is due to a high level of donor and 
acceptor-like hydroxyl groups in starch and nitrogen and oxygen atoms in protein. Elec-
trostatic interactions are formed between oxygen/hydroxyl groups and mostly ionized 
carboxylate, the ammonia groups of side chains and amide bonds [67,68]. Due to weak 
ionization of oxygen in starch, the electrostatic force is not always the main driving force. 

Figure 1. Proposed structure of saccharide-stearic acid.

The outer surface contains the hydrophilic hydroxyl groups of α-1,4 glucan helices;
additionally, methylene groups and glycosidic bonds line the inner core and form a hy-
drophobic cavity with an ability to accommodate proper ligands. The glucan sites with
the presence of lipids are composed of six glucosyl residues per turn; however, there are
seven or eight glucosyl units per turn that have other ligand types. The amylose-lipid
complexes can form partially ordered structure known as a V-type crystalline form, which
can be grouped as anhydrous Va and hydrated Vh forms [34,41,42]. Structural research
has indicated the insertion of lipids into the cavity of the amylose helix. The carboxyl
group of fatty acids (FAs) or the glyceride moiety are influenced by steric hindrance and
electrostatic repulsions; thus, the hydrophylic group is directed to the outside of the helix.
Further self-assembling forms crystalline lamelae for the lipid containing helices, where
the helices are oriented perpendicularly to the plane of the lamelle. There is a theory
concerning micron-sized spherulites, which are formed by the crystalline lamelle and the
interspacing amorphous regions. On the other hand, the lipids have weaker binding with
highly branched amylopectin in comparison to amylose. Furthermore, several studies exist
that evidence the interaction of amylopectin-lipids, but few studies indicate an ability to
order crystalline complexes [43,44].

3. Starch-Protein Interactions

In the literature, one can find articles [45–66] on the synthesis of binary polysaccharide-
protein complexes. The polysaccharide-protein complexes were obtained either via elec-
trosynthesis or precipitation at the isoelectric point. Some of these complexes are character-
ized by the resistance of styrene-butadiene copolymers (Figure 2).

Figure 2. Proposed structure of saccharide-protein.

Starch–protein interactions involve forces such as hydrogen bonds and electrostatic
and van der Waals forces. The hydrogen bond’s ability is due to a high level of donor
and acceptor-like hydroxyl groups in starch and nitrogen and oxygen atoms in protein.
Electrostatic interactions are formed between oxygen/hydroxyl groups and mostly ionized
carboxylate, the ammonia groups of side chains and amide bonds [67,68]. Due to weak
ionization of oxygen in starch, the electrostatic force is not always the main driving force.
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For instance, potato starch contains additional phosphate groups which interact
strongly with wheat protein positive charges and adsorb wheat protein and convert it
to starch. The additional protein in starchy products with different pH allows them to
modulate the water binding capacity and reduce the viscosity of products. The binary
complex increases gel strength due to increased protein density [69]. For starch–gluten
systems, a surface interaction between granuls and the gluten molecules can be observed.
An increase of storage modulus during the addition of gluten to wheat and rye starches
indicates the possibility to facilitate the granule–granule contact and to enhance formation
of a transient network [70]. Other studies relating to starch–sodium caseinate have shown
behaviour as a power-law fluid with shear thinning and increased viscosity. The increased
viscosity may have an influence on the swelling volume; furthermore, swollen granules
collapse due to pasting and diffusion of starch from the gelatinized granule to the bulk
solution. This means the system may be limited by the protein continuous phase; thus,
the net effect is responsible for increasing the volume by limiting disintegration [71]. The
starchy products have different gel properties with different media pH. The water binding
capacity increases with increased pH for lower protein solubility, which is the same as its
relation with viscosity. However, an inverted relation is present for starch–albumin gels
with media pH. The gel microstructure is depended on the pH, but the microstructure
differences does not provide hardness changes [72,73].

4. Lipid-Protein Interactions

Lipid-protein complexes (lipoproteins) are interesting, primarily because of their
physiological importance (Figure 3). Research has focused on the interaction of cellular
membrane proteins with lipids [74–78], which is linked to the functioning of these mem-
branes, as well as intracellular and extracellular lipid behaviour. Such types of interaction
create opportunities to recreate cell membranes [79]. Due to their elevated affinity to lipids,
lipoproteins are responsible for the transport of lipid and lipid-like substances within
organisms [80]. The structure of cell membranes has been used for the construction of
osmotic and dialysis membranes [81].

Polymers 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 3. Proposed structure of stearic acid-protein. 

There appears to be protection of the long aliphatic chain of FA via its hydrophobic 
affinity inside macromolecules. The protein can complex FAs in different stoichiometries, 
such as human α-lactalbumin (α-LA). The FA-α-LA complex is characterized by a slight 
reduction of secondary structure and total loss of tertiary structure due to a fluctuating 
structure with strongly reduced stability [84]. Another example of conformational 
changes is for the FA-human serum albumin, which loses tertiary structure in the same 
manner as the previous system. The conformational changes were only observed in the 
crystal structure, but there is no evidence for identical conformation in solution [85]. 

5. Starch-Lipid-Protein Interactions 
The standard procedure of the ternary complex leads to inclusion of lipids into starch 

and then the adherence of protein onto the starch surface. The lipid forms inclusion with 
the alkyl chain, and then the carboxyl group of FA and hydroxyl of starch interact with 
protein [34]. For instance, β-lactoglobulin and whey protein possess an isoelectric point 
under a pH value of 6; these proteins can be used as model biomolecules in ternary com-
plexes. Under the isoelectric point of protein, carboxyl groups of FA and positively 
charged proteins show electrostatic interaction. The main problem is with the pH of 
starchy foods, which have almost neutral pH and may form anion–anion interactions with 
proteins and FA [86]. Another protein, type-A gelatin, is acidly-hydrolyzed from collagen, 
and the isoelectric point value found is 8.0–9.0. Thus, A-type gelatin should be positively 
charged at a neutral medium, and anion–anion interactions do not collide [87]. On the 
other hand, shorter alkyl chains and a lower degree of unsaturation favour ternary com-
plexes, but are less thermally stable [88]. Ternary complexes may exhibit a V-type XRD 
pattern, which is present in starch–FA complexes. Ternary systems are characterized by a 
greater amount of long- and short-range structural order compared to the binary systems 
[89]. 

6. Preparation Methods of Binary and Ternary Complexes 
There are several different methods for obtaining ternary complexes of starch-lipid-

protein, which may differ with stoichiometry, order of added compound or type of ingre-
dients [34,90]. Despite a lack of enzymatic methods, there are some known standard pro-
cedures: 
a. Classical method. The starch solution is heated in a boiling water bath and is then 

cooled overnight at room temperature. A water solution of protein and FA are added 
to the aqueous starch solution, which is then heated in a boiling water bath, kept 
overnight at room temperature and is finally centrifuged. The supernatant consists 

Figure 3. Proposed structure of stearic acid-protein.

Lipid-protein binary complexes are formed via the hydrophobic affinity of long-chain
FAs to the binding pockets, which contain mostly alkyl and aromatic aminoacids. The
binding pockets are obtained from the folding of protein chains due to secondary, tertiary
and quaternary structural factors. The conformational factors are driven by van der Waals
forces, which favour aggregation, but the carboxylic group as a polar moiety is found to
be on the outer part of biomolecules. The carboxylic group is always found around the
non-anionic group due to conflicts of electrostatic interactions; the polar group may freely
interact with water molecules [82,83].
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There appears to be protection of the long aliphatic chain of FA via its hydrophobic
affinity inside macromolecules. The protein can complex FAs in different stoichiometries,
such as human α-lactalbumin (α-LA). The FA-α-LA complex is characterized by a slight
reduction of secondary structure and total loss of tertiary structure due to a fluctuating
structure with strongly reduced stability [84]. Another example of conformational changes
is for the FA-human serum albumin, which loses tertiary structure in the same manner
as the previous system. The conformational changes were only observed in the crystal
structure, but there is no evidence for identical conformation in solution [85].

5. Starch-Lipid-Protein Interactions

The standard procedure of the ternary complex leads to inclusion of lipids into starch
and then the adherence of protein onto the starch surface. The lipid forms inclusion
with the alkyl chain, and then the carboxyl group of FA and hydroxyl of starch interact
with protein [34]. For instance, β-lactoglobulin and whey protein possess an isoelectric
point under a pH value of 6; these proteins can be used as model biomolecules in ternary
complexes. Under the isoelectric point of protein, carboxyl groups of FA and positively
charged proteins show electrostatic interaction. The main problem is with the pH of starchy
foods, which have almost neutral pH and may form anion–anion interactions with proteins
and FA [86]. Another protein, type-A gelatin, is acidly-hydrolyzed from collagen, and the
isoelectric point value found is 8.0–9.0. Thus, A-type gelatin should be positively charged
at a neutral medium, and anion–anion interactions do not collide [87]. On the other hand,
shorter alkyl chains and a lower degree of unsaturation favour ternary complexes, but are
less thermally stable [88]. Ternary complexes may exhibit a V-type XRD pattern, which is
present in starch–FA complexes. Ternary systems are characterized by a greater amount of
long- and short-range structural order compared to the binary systems [89].

6. Preparation Methods of Binary and Ternary Complexes

There are several different methods for obtaining ternary complexes of starch-lipid-
protein, which may differ with stoichiometry, order of added compound or type of in-
gredients [34,90]. Despite a lack of enzymatic methods, there are some known stan-
dard procedures:

a. Classical method. The starch solution is heated in a boiling water bath and is then
cooled overnight at room temperature. A water solution of protein and FA are added
to the aqueous starch solution, which is then heated in a boiling water bath, kept
overnight at room temperature and is finally centrifuged. The supernatant consists of
starch–lipid–protein complexes. The method is based on a standard protocol based
mostly on the preparation of binary complexes [91].

b. Thermomechanical method. The ternary complex is produced in a Rapid Visco
Analyzer (RVA) by adding starch, protein, lipids and water. The obtained complex is
then frozen in liquid nitrogen, freeze-dried and then ground. The obtained powders
consist of starch–lipid–protein complexes [92] (Figure 4).

c. Enzymatical method. Ternary complex may be obtained via two strategies. The first
method is fully enzymatic and focuses on polymerization of the primer to branched
biopolymers. The second method is based on enzymatic hydrolysis of the branched
biopolymer into smaller parts, which can then interact with other biopolymers. It
can then be formed into binary complexes [91,92].

Figure 4. Thermomechanical method for preparation of ternary complex in a Rapid Visco Ana-
lyzer (RVA).
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7. Edible Biodegradable Films

A ternary complex can be formed from biopolymers, which are natural polymers with
biodegradability. Furthermore, the biopolymers can be the edible compounds of food.
Nowadays, biopolymers are used to form films for food coating, but there is still a necessity
for edible types. The edible films are mostly formed from one or two compounds; neverthe-
less, three-component systems have become promising film systems. Based on structure,
compounds and preparation, the ternary complexes exhibit different bioproperties [93,94].

Most typical biopolymers and properties in food coating (Figure 5):

a. Edible films from starch are formed mostly by high-amylose starches (containing at
least 70% amylose). The starch films are characterized by good elasticity and oxygen
impermeability, as well as oil/fat resistance or solubility in hot/cold water. Moreover,
the starch packaging exhibits an ability to bind water molecules from products
and then decrease the activity of water in food with the reduced development of
pathogenic microorganisms. Thus, the starch films make good coatings for bakery
products and can increase the freshness of meats or other foods such as fruits and
vegetables after freezing [95–98].

b. The most popular type of proteins applied in food coatings are collagen, gelatin,
casein, soy protein, gluten or albumin protein. Collagen coatings are mostly used
in meat packaging and are characterized by insolubility and reduced loss of meat
juice during heating, and they also blend well with meat. The next protein, gelatin, is
mostly applied in the microencapsulation of food flavours. Furthermore, the gelatin’s
coating allows the limitation of water evaporation from meat and the development
of bacterial microflora, and can migrate fatty substances. Casein, as a dairy protein,
is characterized by good mechanical properties, good solubility in water and the
improved nutritional value of food. Dairy proteins’ films are used to cover fruits,
vegetables, dairy products and even meat products [98–102].

c. Films made only from lipids are extra brittle and thicker due to hydrophobicity. On
the other hand, films based on the addition of lipids are one of the most mechanically
stable, and they have barrier residences and prevent moisture migration. Thus, the
binary or ternary complexes with lipids are the best solutions, rather than simple
lipid films. From lipid binary or ternary blends, there are found a wide range of
products such as essential oils, waxes, paraffin, acetyloglycerides and shellac. Those
coatings are preferable for covering meats and sometimes citrus vegetables [103–105].

Figure 5. Most popular biopolymers in food coating.
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8. Applications of Renewable Raw Materials
8.1. Food Industry

Over 40% of the total demand for plastics comes from the food industry. Although con-
ventional packaging has many advantages, one disadvantage—the lack of biodegradability—
means that they pose a high risk to the natural environment and, consequently, to human
health [106]. One alternative to plastics are natural, biodegradable polymer complexes,
which are successfully used in the food industry, mainly as an element of packaging—a
tool that allows one to maintain high quality and the safety of food products. La Man-
tia et al. proved that biodegradable systems can successfully compete with traditional,
non-biodegradable polyethylene-based blends [107]. The results showed that PLA/PBAT
(poly(butylene-adipate-co-terephthalate) and poly(lactic acid)), as well as MaterBi, i.e.,
an extrusion grade with proprietary composition, based on biodegradable aliphatic an-
daliphatic/aromatic polyesters, showed good potential as a biodegradable polymer sys-
tems for agricultural product packaging, especially for the production of nets for the
packaging of fruits and vegetables.

8.1.1. Nanomaterials

The common packaging polymers used in the food industry are starch, chitosan,
cellulose and alginates [108,109]. Starch films show poor mechanical and low barrier
properties; hence, starch has been complexed with other polymers, thereby improving the
physical and mechanical properties of such films. For example, Krystyjan et al. reinforced
starch-based films with psyllium mucilage in order to obtain natural, edible and biodegrad-
able films with improved mechanical and functional properties [110]. Kasmuri and Zait
used eggshell and chitosan as fillers in potato starch to overcome the inherent drawbacks
of bio-plastic [111]. Unfortunately, despite this, natural polymers still have many short-
comings. Low thermal stability, high moisture absorption and poor mechanical strength
are all particularly problematic [106]. Introducing an added component in the form of a
nanomaterial can strengthen the structure of the entire complex and thus allow new, still
biodegradable materials with greater efficiency to be obtaining. Nanocomposites consist
of a polymer matrix as a continuous phase and nanomaterials as a discontinuous phase,
with dimensions in the range of 1–100 nm [112]. Lee et al. proposed active nanocomposite
films with antimicrobial activity. They incorporated silver nanoparticles (AgNPs) into
pectin/pullulan complexes. According to obtained data, silver nanoparticles improved the
mechanical properties of pullulan/AgNPs and pullulan/AgNPs/pectin composites and
showed high antimicrobial activity against food borne pathogens: Salmonella Typhimurium,
Escherichia coli and Listeria monocytogenes. One of the most commonly used nanomaterials
are carbon-based materials. Graphene and other graphene family nanomaterials play one of
the leading roles in the development of nanotechnology due to their unique properties [113].
Krystyjan et al. describes a green synthesis preparation of bionanocomposites consisting
of starch/chitosan/graphene oxide (GO). The authors claimed that the tensile strength of
composites with GO nanoparticles were comparable with commodity plastic films such
as HDPE (High Density Polyethylene) and LDPE (Low Density Polyethylene). Additionally,
cell-based analyses showed no toxic effect of the composites on HaCat keratinocytes and
HepG2 hepatoma cells [110]. Jamróz et al. developed films based on furcellaran (FUR)
and nanofillers (graphene oxide (GO), multi-walled carbon nanotubes (MWCNTs) and
silver nanoparticles (AgNPs)) via a solution casting method. Nanocomposite films with
AgNPs showed antimicrobial activity against pathogenic bacteria and fungi (Pseudomonas
aeruginosa, Enterococcus faecalis and Staphylococcus aureus) [114].

8.1.2. Antimicrobial Materials

As a result of changes in the food preferences of consumers and trends in industrial
production, new food packaging technologies are developing. These extend the shelf
life, maintain the safety and control the quality of food [115]. One of the many ways to
extend the shelf life of food is to use packaging polymers with biological properties, e.g.,
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antibacterial and antifungal activity. Antimicrobial properties of packaging result from
the type of polymer material, which contain bound or leaching antimicrobials. They may
also exhibit varied mechanisms: passive or active action [116]. Examples of polymers with
such an effect are chitosan [110], lysozyme [117] and bacteriocins [118]. Additionally, the
antimicrobial properties of the polymer complexes are enhanced by introducing metals,
e.g., silver [119], essential oils [120] or organic acids with a preservative effect [121] into
their structure. Wu et al. developed a green process of anchoring nisin onto oxidized
cellulose through a simple Schiff-based reaction [118]. As a result, antimicrobial active
food packaging with an oxygen barrier property, water resistance and transmittance was
obtained. Seydim et al. showed that whey protein foils enriched with oregano oil can be
successfully used in the fight against E. coli [122]. Moreover, whey protein films with the
addition of nisin and natamycin have been confirmed to exhibit high inhibition rates for
the yeast and mould occurring naturally in Kasar cheese. In turn, bergamot and lemon oils
were effective against S. aureus and E. coli [120].

8.1.3. Active and Intelligent Packaging

Natural polymers used in packaging can perform various functions, depending on
their physical and chemical properties. New generations of active and intelligent packag-
ing are the future of the food packaging industry [123]. An important function of active
packaging is to absorb moisture, which is the main cause of food spoilage. There are
many compounds on the market that exhibit hygroscopic properties that include natural
polymers such as sorbitol, xylitol, fructose and polyvinyl alcohol [124]. Cellulose and its
derivatives also show good hygroscopic properties, which has been confirmed in many
scientific studies [125]. In turn, Farooq et al., by utilizing a variety of different lignin mor-
phologies, obtained cellulose nanofibril nanocomposite [126]. The obtained film exhibited
complementary UV shielding and radical scavenging capability. Indumathi et al. proved
that the combination of chitosan/cellulose acetate phthalate (CAP), incorporated with ZnO
nanoparticles, allows one to obtain a structurally stable food packaging film appropriate for
extending the shelf life of fresh black grapes in comparison with a commercial polyethylene
cover. The water vapour transmission rate and oxygen transmission rate of such films were
significantly lower in comparison with commercial polymeric films [127].

8.1.4. Biosensors

Natural polymers are widely used as biosensors, substances that respond to an impulse
from the external environment, in the form of a chemical or physical stimulus that causes a
specific change in the properties of the material [128]. The way biosensors work is manifold
due to their broad properties [129]. Used in food packaging, they monitor the food quality
along the food chain, such as composition, storage conditions and bacterial growth [130].
An example would be anthocyanins extracted from natural fruits and vegetables as the
source of pH-sensitive dyes. They produce different colour changes under acid and alkali
environment so are largely used as colorimetric indicators in many foods’ intelligent
packaging [118].

8.2. Non-Food Industry

Natural polymers such as rubbers and sluices are increasingly replacing synthetic
materials due to their biocompatibility, low production cost, availability and non-toxicity.
Due to their properties, they are products that are considered as alternative sources of raw
materials for industrial applications [131].

In the face of restrictions on food production imposed on Poland by the European
Union, the use of arable crops for environmental engineering may be beneficial for domestic
agriculture and industries cooperating with agriculture. The current state-of-the-art and
known technologies make it possible to obtain, from plants and plant materials, saccharides
and a series of polysaccharides as basic materials for the chemical industry [132] (Figure 6).
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The diagram shows the possibilities of non-food use of polysaccharides, where a valuable
raw material can also be found, e.g., cellulose and hemicellulose.

Figure 6. Fabrication of polysaccharides for non-food industry.

Domestic polysaccharide resources can be used without deep processing, adapting
them to different purposes through physical, physicochemical, chemical and enzymatic
modification. Examples of such applications may be adhesives; microcapsules; absorbents;
and additives for the production of pulp, paper, biodegradable materials and plasticizers,
which are important in the new generation of ceramics [133–137].

Starches, irrespective of their botanical origin and their constituents, i.e., amylose and
amylopectin, readily form Werner-type complexes when their gels are mixed with aqueous
solutions of transition metal salts. This gives the possibility of its use as sorbents in the
separation of metal ions and wastewater treatment [138].

Studies on the thermal degradation of starch grains and grains coordinated with metal
ions have shown that the coordination of polysaccharides contained therein with the metal
can control the yield of the resulting char and volatile products. Carbonizates are potential
starting materials for the production of second-generation biofuels [139]. It was also found
that thermal decomposition at a temperature much lower than that of a polysaccharide not
coordinated with metal ions is possible [140–143].

Research is being conducted on the use of starch of various botanical origins (potato,
corn, waxy maize, tapioca and amaranth) and cereals (barley, oats, wheat, triticale and
rye) as soil stabilizers, drilling muds, metal ion collectors and a source of biofuels through
degradation to synthetic gas and char [132].

Activated carbons derived from grains and cereal straw are widely used in environ-
mental fields such as groundwater [144], volatile organic compound (VOC) control [145]
and wastewater treatment [146]. Zhen Li et al. described many industrial residues and
agricultural and forestry products, as well as other cheap resources that can be used to
prepare char/carbon [147,148].

Farm straw is also a promising raw material for active carbon production, mainly due
to its ability to avoid environmental pollution through combustion. Activated carbons
based on rice [149], wheat [150], sesame [151] and maize straw [152] were obtained.

Coal from different sources shows different adsorption properties. This allows for
versatile applications. The content of lignin, cellulose and inorganic substances are all raw
materials from which active carbon is produced. The choice of pyrolysis temperature, car-
bonization temperature and the addition of chemicals affect the formation of pores [153,154]
and properties such as polarization, hydrophobicity, acidity and the adsorption capacity of
active carbon [135,136,155].

The method of obtaining activated carbons has a large impact on the adsorption of
heavy metals. Many authors have shown that activated carbons can be used to remove
organic dyes and antibiotics from wastewater [156–158].
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Native polysaccharides containing proteins and fats can also be used to obtain biochar
from them. Produced from crops (straw and seeds), biochar is an excellent system for the
sorption of, not only metal ions, but also for the sorption of pharmaceuticals (beta-blockers,
anti-inflammatory drugs, sulfonamides, caffeine). The tested crop-derived biochar has
great potential for soil improvement and wastewater treatment. The biochar derived from
cereals is a useful material for application in environmental protection purposes [135,136].

An important factor for consumers in determining the quality of a product is colour,
which is one of the most important factors influencing the appearance of a product. New
ways to use natural dyes as replacements for these synthetic dyes are being explored.
Some of them are very sensitive. A good method of increasing the use of sensitive natural
dyes is to encapsulate these dyes in colloidal particles by natural polymers, which may
be carbohydrates, lipids or proteins. In recent years, encapsulation has been increasingly
used for various purposes, including in non-food products. This technique improves the
stability of sensitive natural dyes and offers the possibility of entrapping water-insoluble
dyes for better application in an aqueous system [159].

The systems presented in this study can be directly applicable, not only as starting
materials for the production of biofuels, but also in various fields of engineering and
environmental protection. Systems have properties that enable the capture of relatively
large volumes of water, creating a “clathrates”. These properties allow them to be used,
inter alia, as collector metal ion binding substances, able to separate heavy metals from
soil, as stabilizing substances (organic fertilizer) on embankments and on the waterfront of
rivers, and as components of drilling fluids, causing, in addition to the lifting of excavated
material, the improvement of lubrication holes and drill levelling disorders [137,138].

Biopolymer materials are gaining more and more significance in medicine and biotech-
nology. Due to the increase in the number of microorganisms resistant to antibiotics
and other antimicrobial agents, new and cost-effective solutions are sought to overcome
drug resistance. Khachatryan et al., through the green synthesis of silver nanoparticles
using hyaluronan as a stabilizing matrix, obtained composites with bacteriostatic activity
against E. coli, Staphylococcus spp. and Bacillus spp. [160]. Souza et al. also discussed
polysaccharide-based materials resulting from physical processes and their biomedical use.
These structures are created by combining charged polyelectrolytes in aqueous solutions
without the use of toxic chemicals (cross-linkers). They examined main polysaccharides
(glycosaminoglycans, marine polysaccharides and derivatives) containing ionizing groups
in their structure as well as cellulose (neutral polysaccharide). They reviewed strategies
including coacervation, ionotropic gelling, electrospinning, layer-by-layer coating, gelling
of polymer mixtures, solvent evaporation and freeze-thaw methods. They focused on
materials used to deliver growth factor (GF), scaffolds, antimicrobial coatings and wound
dressings [161,162].

8.3. Future Prospective

The use of biodegradable natural polymers in the food and non-food industry is wide,
and it is impossible to list all examples of their application here. The detailed knowledge of
their properties broadens the possibilities of their use, which makes them more and more
competitive in relation to plastics. It is undeniable that the subject of biodegradable mate-
rials obtained from renewable sources with specific properties is intensively researched.
The research conducted in this area will have a huge impact on our future life. Their main
goal is to reduce environmental pollution and stop the degradation of soil, air and water,
consequently, improving the quality and safety of human life.

9. Conclusions

The gathered experience clearly demonstrates that the polysaccharide component of
ternary complexes must possess an anionic character.

Ternary complexes create the foundations for a new generation of biodegradable
engineering plastics (e.g., disposable tableware, packaging) and food (edible casings and
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packaging, microcapsules) plastics. Due to good mechanical properties, these novel plastics
may fulfil many requirements of humanity as stable materials for everyday use. The
composition of complexes and novel compounds may determine more ecological solutions.
Other applications may be found, such as safe and edible toys for small children. The edible
toys may be a solution, and prevent the swallowing of non-edible plastics by children. In
addition, is important for future generations to replace many non-degradable plastics with
ternary complexes from biopolymers.
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101. Regalado, C.; Pérez- Pérez, C.; Lara-Cortés, E.; García-Almendarez, B. Whey Protein Based Edible Food Packaging Films and Coatings;

Research Signpost: Thiruvananthapuram, India, 2006; pp. 237–262.
102. Vu, K.D.; Hollingsworth, R.G.; Salmieri, S.; Takala, P.N.; Lacroix, M. Development of bioactive coatings based on γ-irradiated

proteins to preserve strawberries. Radiat. Phys. Chem. 2012, 81, 1211–1214. [CrossRef]
103. Debeaufort, F.; Voilley, A. Edible Films and Coatings to Improve Food Quality; Springer: New York, NY, USA, 2009; pp. 135–168.
104. Valencia-Chamorro, S.A.; Palou, L.; Del Río María, M.A.; Pérez-Gago, B. Antimicrobial Edible Films and Coatings for Fresh and

Minimally Processed Fruits and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2011, 51, 872–900. [CrossRef]
105. Bravin, B.; Peressini, D.; Sensidoni, A. Influence of Emulsifier Type and Content on Functional Properties of Polysaccharide

Lipid-Based Edible Films. J. Agric. Food Chem. 2004, 52, 6448–6455. [CrossRef] [PubMed]
106. Andini, R.; Sulaiman, M.I.; Martunis, A.; Umam, A.H.; Olivia, M.; Endres, H.J. Biopolymer nanocomposites: Their mechanical,

thermal, and gas barrier properties for food packaging. IOP Conf. Ser. Earth Environ. Sci. 2021, 667, 012067. [CrossRef]
107. la Mantia, F.P.; Ceraulo, M.; Testa, P.; Morreale, M. Biodegradable Polymers for the Production of Nets for Agricultural Product

Packaging. Materials 2021, 14, 323. [CrossRef] [PubMed]
108. Luo, B.; Chi, M.; Zhang, Q.; Li, M.; Chen, C.; Wang, X.; Wang, S.; Min, D. Fabrication of Lignin-Based Nano Carbon Film-Copper

Foil Composite with Enhanced Thermal Conductivity. Nanomaterials 2019, 9, 1681. [CrossRef]
109. Nechita, P.; Roman, M. Review on Polysaccharides Used in Coatings for Food Packaging Papers. Coatings 2020, 10, 566. [CrossRef]
110. Krystyjan, M.; Khachatryan, G.; Grabacka, M.; Krzan, M.; Witczak, M.; Grzyb, J.; Woszczak, L. Physicochemical, Bacteriostatic, and

Biological Properties of Starch/Chitosan Polymer Composites Modified by Graphene Oxide, Designed as New Bionanomaterials.
Polymers 2021, 13, 2327. [CrossRef] [PubMed]

111. Kasmuri, N.; Zait, S.M.A. Enhancement of Bio-plastic using Eggshells and Chitosan on Potato Starch Based. Int. J. Eng. Sci.
Technol. 2018, 7, 110. [CrossRef]

112. Kanmani, P.; Rhim, J. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing
AgNPs and nanoclay. Food Hydrocoll. 2014, 35, 644–652. [CrossRef]

113. Lee, J.H.; Jeong, D.; Kanmani, P. Study on physical and mechanical properties of the biopolymer/silver based active nanocompos-
ite films with antimicrobial activity. Carbohydr. Polym. 2019, 224, 115159. [CrossRef]

http://doi.org/10.1023/A:1020502624234
http://www.ncbi.nlm.nih.gov/pubmed/12479567
http://doi.org/10.1111/febs.12204
http://doi.org/10.1016/j.plipres.2003.09.002
http://www.ncbi.nlm.nih.gov/pubmed/15003394
http://doi.org/10.1016/j.carbpol.2020.117301
http://www.ncbi.nlm.nih.gov/pubmed/33278955
http://doi.org/10.1016/j.lwt.2020.110175
http://doi.org/10.1021/acs.jafc.7b04779
http://doi.org/10.1021/acs.jafc.6b05772
http://doi.org/10.1016/j.carbpol.2008.08.015
http://doi.org/10.1016/j.ijbiomac.2017.11.097
http://www.ncbi.nlm.nih.gov/pubmed/29155200
http://doi.org/10.1016/j.carbpol.2020.116178
http://doi.org/10.1006/fstl.2002.0929
http://doi.org/10.1111/j.1745-4530.2009.00520.x
http://doi.org/10.1016/j.postharvbio.2006.11.015
http://doi.org/10.5455/vetworld.2009.79-82
http://doi.org/10.1006/fstl.1996.0202
http://doi.org/10.1016/j.radphyschem.2011.11.071
http://doi.org/10.1080/10408398.2010.485705
http://doi.org/10.1021/jf040065b
http://www.ncbi.nlm.nih.gov/pubmed/15479005
http://doi.org/10.1088/1755-1315/667/1/012067
http://doi.org/10.3390/ma14020323
http://www.ncbi.nlm.nih.gov/pubmed/33435465
http://doi.org/10.3390/nano9121681
http://doi.org/10.3390/coatings10060566
http://doi.org/10.3390/polym13142327
http://www.ncbi.nlm.nih.gov/pubmed/34301083
http://doi.org/10.14419/ijet.v7i3.32.18408
http://doi.org/10.1016/j.foodhyd.2013.08.011
http://doi.org/10.1016/j.carbpol.2019.115159


Polymers 2021, 13, 2925 15 of 16

114. Jamróz, E.; Khachatryan, G.; Kopel, P.; Juszczak, L.; Kawecka, A.; Kucharek, M.K.; Bębenek, Z.; Zimowska, M. Furcellaran
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