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Abstract
Once deployed uniformly in the field, genetically controlled plant resistance is often 
quickly overcome by pathogens, resulting in dramatic losses. Several strategies have 
been proposed to constrain the evolutionary potential of pathogens and thus in-
crease resistance durability. These strategies can be classified into four categories, 
depending on whether resistance sources are varied across time (rotations) or com-
bined in space in the same cultivar (pyramiding), in different cultivars within a field 
(cultivar mixtures) or among fields (mosaics). Despite their potential to differentially 
affect both pathogen epidemiology and evolution, to date the four categories of de-
ployment strategies have never been directly compared together within a single 
theoretical or experimental framework, with regard to efficiency (ability to reduce 
disease impact) and durability (ability to limit pathogen evolution and delay resist-
ance breakdown). Here, we used a spatially explicit stochastic demogenetic model, 
implemented in the R package landsepi, to assess the epidemiological and evolution-
ary outcomes of these deployment strategies when two major resistance genes are 
present. We varied parameters related to pathogen evolutionary potential (mutation 
probability and associated fitness costs) and landscape organization (mostly the rela-
tive proportion of each cultivar in the landscape and levels of spatial or temporal 
aggregation). Our results, broadly focused on qualitative resistance to rust fungi of 
cereal crops, show that evolutionary and epidemiological control are not necessarily 
correlated and that no deployment strategy is universally optimal. Pyramiding two 
major genes offered the highest durability, but at high mutation probabilities, mosa-
ics, mixtures and rotations can perform better in delaying the establishment of a 
universally infective superpathogen. All strategies offered the same short-term epi-
demiological control, whereas rotations provided the best long-term option, after all 
sources of resistance had broken down. This study also highlights the significant im-
pact of landscape organization and pathogen evolutionary ability in considering the 
optimal design of a deployment strategy.
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1  | INTRODUC TION

In plants, genetically controlled qualitative (or “major gene”) resis-
tance against a given pathogen is often described as providing com-
plete (or at least strong) protection from infection (Parlevliet, 2002; 
Stuthman, Leonard, & Miller-Garvin, 2007). However, once deployed 
in the field, such resistance has often been quickly overcome, result-
ing in dramatic epidemics and the need to identify and develop new 
sources of genetic resistance (García-Arenal & McDonald, 2003; 
Johnson, 1984; Lecoq, Moury, Desbiez, Palloix, & Pitrat, 2004; 
McDonald & Linde, 2002; Parlevliet, 2002). Importantly, novel 
sources of resistance are not inexhaustible. Thus, several strate-
gies have been proposed to improve major gene resistance dura-
bility. These strategies rely on the introduction of spatiotemporal 
variation in resistance in cultivated agroecosystems (Zhan, Thrall, 
Papaïx, Xie, & Burdon, 2015) and can be classified into four main 
deployment categories: (a) crop rotations, for example recurring suc-
cession of different crop cultivars in the same field (Curl, 1963); (b) 
mosaics, that is different cultivars in different fields of a continuous 
landscape (Burdon, Barrett, Rebetzke, & Thrall, 2014; Zhan et al., 
2015); (c) mixtures, that is different cultivars combined in the same 
field (Mundt, 2002; Wolfe, 1985); and (d) pyramiding, that is differ-
ent resistance sources stacked in the same cultivar (Ellis, Lagudah, 
Spielmeyer, & Dodds, 2014; Fuchs, 2017). At landscape scales, in 
addition to the possibility of combining several of these categories 
into more complex strategies, there are a diversity of deployment 
options within a category (e.g., choice of resistance sources, rela-
tive proportion and location of different cultivars in the landscape). 
Furthermore, as genetic engineering and gene editing technologies 
become increasingly powerful (e.g., CRISPR/Cas9), some strategies 
are now becoming more feasible (e.g., resistance mixtures compos-
ing isogenic lines with uniform phenologies and yield characteristics) 
(Koller, Brunner, Herren, Hurni, & Keller, 2018; Wang et al., 2014).

Given this diversity of options, identifying an optimal deploy-
ment strategy in a given epidemiological context is a challenge. 
Moreover, the criteria used to determine an optimal strategy de-
pend on the objectives of a given stakeholder group (e.g., breed-
ers, growers, risk managers) (van den Bosch & Gilligan, 2003; 
Papaïx, Rimbaud, Burdon, Zhan, & Thrall, 2018), noting that re-
sistance durability (defined here as the ability to limit pathogen 
evolution and delay resistance breakdown, after which resistance 
is considered overcome) and epidemiological efficiency (defined 
as the ability to reduce disease impact or severity, as a result of 
a reduction in the proportion of diseased plants in a given region 
over a given period of time) are not necessarily correlated (Burdon, 
Zhan, Barrett, Papaïx, & Thrall, 2016; Burdon et al., 2014; Johnson, 
1984). Many empirical and modelling studies have demonstrated 
the epidemiological efficiency of some strategies to control plant 
disease, especially mixtures (Borlaug, 1953; Calonnec, Goyeau, & 
de Vallavieille-Pope, 1996; Garrett & Mundt, 2000; Huang, Sun, 
Wang, Luo, & Ma, 2012; Jensen, 1952; Mundt, Sackett, & Wallace, 
2011; Power, 1991; Zhu et al., 2000). There is also empirical evi-
dence that high fragmentation (Condeso & Meentemeyer, 2007; 

Fleming, Marsh, & Tuckwell, 1982) or high biodiversity (Haas, 
Hooten, Rizzo, & Meentemeyer, 2011) at the landscape scale can 
impede disease spread. Such findings suggest the potential utility 
of cropping mosaics.

In contrast, realistic assessment of the durability of a given strat-
egy at the landscape scale requires the deployment of major gene re-
sistance across large areas over multiple years, and is consequently 
much less experimentally tractable. We are aware of only one em-
pirical study designed to compare some of the main categories of 
deployment (Djian-Caporalino et al., 2014). This study evaluated the 
ability of mixtures, rotations and pyramiding of two different resis-
tance sources to control root-knot nematode of pepper, in both con-
trolled and field conditions. In this context, pyramiding was found 
to be the best strategy, followed by rotations, and finally mixtures. 
As a complement to experimentation, modelling is a useful tool to 
compare the durability and epidemiological efficiency of different 
strategies and to explore the wide range of spatiotemporal deploy-
ment options. To date, no such global comparison, using a single eco-
evolutionary framework and standardized assumptions, exists (REX 
Consortium 2013, 2016).

The objective of this study is to compare the four main catego-
ries of deployment strategies described above for situations where 
two major resistance genes with a complete efficiency (i.e., they 
confer immunity) are deployed, and address the following questions:

1.	 How do evolutionary and epidemiological outcomes vary across 
different categories of resistance deployment strategies?

2.	 What are the impacts of landscape organization (proportion of 
different cultivars planted, and their spatial or temporal aggrega-
tion) and pathogen evolutionary ability (mutation probability and 
associated fitness costs) on the performance of different 
strategies?

3.	 Under what conditions it is possible to achieve both evolutionary 
and epidemiological control of pathogens (i.e., resistance that is 
both durable and efficient)?

To motivate this work, we focus on crop resistance to rust patho-
gens (fungi of the genus Puccinia), although our general conclusions 
are likely to have broader implications. Many major resistance genes 
against rust pathogens have been described, but also quickly overcome 
after deployment in the field (Boyd, 2005; Park, 2008; Thompson & 
Burdon, 1992). We investigate the questions above using a generic 
spatially explicit stochastic model, which simulates the spread of ep-
idemics across an agricultural landscape and the evolution of a patho-
gen in response to the deployment of host resistance (Figure 1). This 
model, described in a previous study (Rimbaud, Papaïx, Rey, Barrett, 
& Thrall, 2018) and implemented in the R package landsepi, is flexible 
enough to vary resistance sources, deployment categories and epide-
miological, evolutionary and landscape parameters (see Supporting 
information Videos S1–S4 for examples). In particular, the model 
was parameterized to roughly represent rust diseases of cereal crops 
(Table 1, see also Supporting information Text S1 in Rimbaud, Papaïx, 
Rey, Barrett et al. (2018)).
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2  | METHODS

2.1 | Model description

We used a stochastic, spatially explicit demogenetic model fully 
described in a previous study (Rimbaud, Papaïx, Rey, Barrett 
et al., 2018). It simulates the clonal reproduction, spread and 
evolution of a pathogen in an agricultural landscape over multi-
ple cropping seasons. The model is based on a SEIR (“susceptible-
exposed-infectious-removed”) structure with a discrete time 
step. Demographic stochasticity is considered for each transition 
between compartments using specific probability distributions 
(Figure 1a): (a) Propagules contaminate healthy hosts depending 
on their local density and a binomial distribution; (b) contaminated 
hosts are infected according to an infection rate and a binomial 
distribution; (c) infected hosts become infectious after a latent 
period drawn from a gamma distribution; (d) infectious hosts 
produce propagules according to their reproduction rate and a 

Poisson distribution; (e) propagules may mutate to acquire infec-
tivity and disperse across the landscape, according to multinomial 
distributions; and (f) infectious hosts are removed after an infec-
tious period drawn from a gamma distribution. In this model, an 
“individual host” can be considered as a foliar site where a prop-
agule can land and potentially trigger the development of a local-
ized infection.

In this study, the model is parameterized to approximate 
biotrophic foliar fungal diseases as typified by rusts of cereal crops, 
caused by fungi of the genus Puccinia (see details on model cali-
bration in Supporting information Text S1 in Rimbaud, Papaïx, Rey, 
Barrett et al., 2018). Within these pathosystems, spores (i.e., prop-
agules) are produced by sporulating lesions, which develop on the 
leaves of infected hosts, and are dispersed by wind. The probability 
of pathogen dispersal from one field to another field of the land-
scape is computed by integrating a power-law function (Figure 1b) 
over all pairs of points belonging to the two considered fields, nor-
malized by the surface of the source field.

F IGURE  1 Model overview. (a) Model architecture. To avoid any confusion with the “susceptible” cultivar, the SEIR structure is labelled 
HLIR for “healthy-latent-infectious-removed.” Healthy hosts can be contaminated by propagules and may become infected. Following a 
latent period, infectious hosts produce new propagules, which may mutate and disperse across the landscape. At the end of the infectious 
period, infected hosts become epidemiologically inactive. Qualitative resistance prevents transition to the latent infected state (L). Green 
boxes indicate healthy hosts, which contribute to crop yield and host growth, in contrast to latent hosts (dark blue box) and diseased 
hosts (i.e., symptomatic, red boxes). Parameters associated with epidemiological processes are indicated in grey and detailed in Table 1. 
Distributions used to simulate stochasticity in model transitions are indicated in red; B: binomial, Γ: gamma, P: Poisson, M: multinomial. Host 
growth is deterministic. (b) Two-dimensional representation of the power-law dispersal kernel calibrated for rust pathogens (see equation 
in Table 1; μexp = 20 m; a = 40; b = 7). Top panel indicates the logarithm of the probability to disperse from the origin to any point of the 
landscape; bottom panel indicates the cumulative probability of dispersing over a given distance. (c,d) Example of simulation with two major 
resistance genes deployed as a mosaic: (c) dynamic of diseased hosts and (d) landscape (φ1 = 2/3; φ2 = 5/6; α1 = high; α2 = low). Blue vertical 
lines indicate the durability of the two resistant cultivars. These lines delineate the three periods used to compute epidemiological outputs 
from AUDPC: short-term (ST, green area), transitory period (TP, grey) and long-term (LT, red)
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It is considered that a cultivar carrying a major resistance gene is 
immune to disease, unless the pathogen has acquired an infectivity 
gene via mutation (corresponding to the “gene-for-gene” concept and 
described in many plant–pathogen interactions, especially cereal rusts; 
Leonard, 1977; Thompson & Burdon, 1992). For infectivity gene g, the 
mutation probability τg depends on many factors including the number 
of genetic mutations per generation per base pair (i.e., the classic “mu-
tation rate” of empirical studies), the number and nature of required 
genetic mutations, and the potential dependency between these mu-
tations. The acquisition of such infectivity leads to breakdown of the 
associated major resistance gene. However, such evolution may be 
penalized by a fitness cost on susceptible hosts (Brown, 2015; Laine & 
Barrès, 2013; Leach, Vera Cruz, Bai, & Leung, 2001; Thrall & Burdon, 
2003). Therefore, in our model, pathogens carrying infectivity genes 
may have reduced infectivity on susceptible hosts relative to patho-
gens that do not carry these genes (fitness cost denoted by θg).

Each cropping season consists of host planting, logistic growth 
and finally harvest, which imposes a potential bottleneck for the 
pathogen before the next cropping season. Two stochastic algo-
rithms are used to generate and replicate agricultural landscapes 
with specific features. Landscape structure is randomly generated 
using a T-tessellation algorithm (see Papaïx et al., 2014 for details) to 
control the number and shape of fields. Landscape composition (i.e., 
cultivar allocation) is randomly simulated using an algorithm based 
on latent Gaussian fields (see examples in Figure 1d and Supporting 
information Figure S1 and Rimbaud, Papaïx, Rey, Barrett et al., 2018 
for details). Some fields are cultivated with a susceptible cultivar 
(SC), which is initially infected by the pathogen. In the other fields 
(whose proportion and level of spatial aggregation are controlled by 
parameters φ1 and α1, respectively), two major resistance genes are 
deployed according to one of the following strategies:

(i)	 Mosaics: two resistant cultivars (RC1 and RC2, carrying the 
first and the second major resistance genes, respectively) are 
assigned to candidate fields with controlled relative proportion 
(φ2) and level of spatial aggregation (α2) (see Supporting infor-
mation Video S1 for an example simulation);

(ii)	 Mixtures: both RC1 and RC2 are allocated to all candidate fields 
with a controlled relative proportion (φ2) (see Supporting infor-
mation Video S2);

(iii)	 Rotations: RC1 and RC2 are alternatively cultivated in candidate 
fields, depending on the number of cropping seasons over which 
a given cultivar is grown before being rotated (here, α2 refers to 
temporal aggregation) (see Supporting information Video S3);

(iv)	 Pyramiding: all candidate fields are cultivated with RC12, a resis-
tant cultivar carrying both resistance sources (see Supporting 
information Video S4).

Note, in mixtures, the potential decreased growth due to disease in 
one of the components is not compensated for by increased growth in 
other components (i.e., all components are considered independent). 
This assumption may be simplistic but is more parsimonious than those 

TABLE  1 Summary of model parameters and values for rust 
pathogens

Notation Parameter Value

Simulation parameters

Y Number of simulated years 48 yearsa

T Number of time-steps in a 
cropping season

120 days/year

Initial conditions and seasonality

Cv

0 Plantation host density of 
cultivar v

0.1/m2b

Cmax

v
Maximal host density of 
cultivar v

2/m2b

δv Host growth rate of 
cultivar v

0.1/dayb

ϕ Initial probability of 
infection

5.10−4

λ Off-season survival 
probability

10−4

Pathogen aggressiveness components

emax Maximal expected 
infection rate

0.40/spore

γmin Minimal expected latent 
period duration

10 days

γvar Variance of the latent 
period duration

9 days

Υmax Maximal expected 
infectious period  
duration

24 days

Υvar Variance of the infectious 
period duration

105 days

rmax Maximal expected 
propagule production rate

3.125 spores/
day

Pathogen dispersal

g(.) Dispersal kernel Power-law 
functionc

a Scale parameter 40

b Width of the tail 7

π(.) Contamination function Sigmoid 
curved

κ Related to position of the 
inflexion point

5.33

σ Related to position of the 
inflexion point

3

Notes. See Supporting information Text S1 in (Rimbaud, Papaïx, Rey, 
Barrett et al., 2018) for calibration details. Epidemic processes associ-
ated with some of the parameters are illustrated in Figure 1.
aWhen resistance is deployed within crop rotations, 48 years correspond to 
24, 12 or 8 cycles for low, moderate and high value for α2, respective
ly.bSame value for all cultivars.cg

(
||z� −z||

)
=

(b−2)(b−1)

2πa2
⋅

(
1+

||z�−z||
a

)−b with 

||z� −z|| the Euclidian distance between locations z and z′ in fields i and i′, 
respectively; the mean dispersal distance is given by: 2a

(b−3)
 =20 m, but long-

distance dispersal may also occur.dπ(x)= 1−e−κx
σ

1−e−κ
 with x the proportion of 

healthy hosts in the host population. The position of the inflexion point of 
this sigmoid curve is given by the relation xo=

(
(σ−1)∕κσ

) 1

σ ≈0.5.
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required to simulate compensation processes for host growth in mix-
tures, especially if the relative proportions of the different compo-
nents are unbalanced.

Table 1 summarizes model parameters and their value for rust 
pathogens.

2.2 | Simulation plan and model outputs

2.2.1 | Simulation plan

The model was used to assess evolutionary and epidemiological 
outcomes for different deployment categories and a wide range 
of options to deploy two major resistance genes. In addition to 
the category of resistance deployment (mosaic, mixture, rotation, 
pyramiding), we varied the proportion of fields where resistance is 
deployed (φ1, five values) and their level of spatial aggregation (α1, 
three values). We also varied the relative proportion of RC2 (φ2, five 
values for mosaics and mixtures) or its level of spatial/temporal ag-
gregation (α2, three values for mosaics and rotations). To simulate 
different levels of pathogen evolutionary potential, we varied the 

mutation probability (τ, two values) and associated fitness cost (θ, 
five values) with the same characteristics for both major genes (i.e., 
τg = τ and θg = θ ∀ g ϵ{1;2}) and assuming independence between 
mutations. The values for the mutation probability were selected 
to simulate two contrasted situations. Trial simulations showed that 
when τ = 10−7, a cultivar carrying a single major gene is generally 
overcome in less than 48 years, but a cultivar carrying a pyramid of 
two major genes is never overcome. When τ = 10−4, a cultivar carry-
ing a single major gene is overcome in less than 1 year and a cultivar 
carrying a pyramid of two major genes is generally overcome in less 
than 48 years. Thus, these values should ensure breakdown of some 
resistance sources, while allowing the comparison of different strat-
egies with regard to their respective abilities to mitigate pathogen 
evolution in the long term.
For each deployment category, the parameters mentioned above 
were explored using a complete factorial design (Table 2). Simulations 
were performed using five different landscape structures (about 150 
fields, total area: 2 × 2 km2, see Supporting information Figure S1 
in Rimbaud, Papaïx, Rey, Barrett et al., 2018) and 10 replicates per 
landscape structure, resulting in 50 stochastic replicates overall, 

Notation Parameter Values

Landscape structure

J Number of fields in the landscape 155; 154; 152; 
153; 156a

Landscape organizationb

φ1 Cropping ratio of fields where resistance is 
deployed: �1=

RC1+RC2

SC+RC1+RC2

1/6; 2/6; 3/6; 4/6; 
5/6

α1 Level of spatial aggregation of fields where 
resistance is deployed (RC1 and RC2)

Low; moderate; 
high

 φ2 Relative cropping ratio of RC2: �2=
RC2

RC1+RC2

1/6; 2/6; 3/6; 4/6; 
5/6c

α2 Relative level of spatial/temporal aggregation 
of RC2

Low; moderate; 
highd

Pathogen evolutionary ability

τg Mutation probability for infectivity gene ge 10−7; 10−4

θg Fitness cost of infectivity gene g 0.00; 0.25; 0.50; 
0.75; 1.00f

Notes. A susceptible (SC), a resistant cultivar (RC1) and possibly a second resistant cultivar (RC2) are 
assigned to fields according to one of the four deployment categories (mosaic, mixture, rotation and 
pyramids). For each deployment category, parameters related to landscape organization and patho-
gen evolutionary ability are varied according to a complete factorial design. Every simulation is rep-
licated 10 times × 5 landscape structures to account for stochasticity, resulting in a total of 180,000 
simulations.
aSee Supporting information Figure S1 in Rimbaud, Papaïx, Rey, Barrett et al. (2018) for illustrations 
of landscape structures generated using a T-tessellation algorithm, and see Papaïx et al. (2014) for 
details on the algorithm.bCrop cultivars are allocated using an algorithm based on latent Gaussian 
fields to control proportion and level of spatial aggregation of each cultivar; see Supporting informa-
tion Figure S1 of the present article for illustrations, and see Rimbaud, Papaïx, Rey, Barrett et al. 
(2018) for details on the algorithm.cFor mosaics and mixtures, only.dFor mosaics and rotations, only. 
In crop rotations, cultivars are rotated every year (α2 = low), every 2 years (α2 = moderate) or every 
3 years (α2 = high).

eProbability for a propagule to change its infectivity on a resistant cultivar carry-
ing major gene g.fSame value for all infectivity genes. θg = 0 means absence of cost of infectivity, and 
θg = 1 means the complete loss of infectivity of adapted pathogens on the susceptible cultivar.

TABLE  2 Simulation plan
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and a total of 180,000 simulations. Every simulation was run for 48 
seasons of 120 days each. Trial simulations indicated that this time 
period was long enough to allow us to differentiate among deploy-
ment strategies with regard to their evolutionary and epidemiolog-
ical performance.

2.2.2 | Model outputs

At the end of a simulation run, the results were evaluated using a set 
of evolutionary and epidemiological outputs (listed in Table 3 and 
detailed in Rimbaud, Papaïx, Rey, Barrett et al., 2018). Evolutionary 
outputs characterize three steps required to overcome major gene 
resistance: (a) first appearance of mutants, (b) initial migration to 
resistant hosts and infection and (c) broader establishment in the 
resistant host population (i.e., the first time when the number of 
infections of resistant hosts exceeds a threshold above which ex-
tinction in a steady environment becomes unlikely). Epidemiological 
outputs were evaluated using the area under the disease progress 
curve (AUDPC) to measure disease severity (on a specific cultivar or 
on the whole landscape) across the whole simulation run or across 
characteristic periods of pathogen adaptation to resistance: (a) the 
initial short-term period when all major resistance genes were still 
effective; (b) when appropriate, a transitory period during which 
one major gene has been overcome but not the second one (i.e., the 
deployment strategy was only partially effective); and (c) a longer-
term period when all major resistance genes have been overcome. 
Figure 1c provides an example of a simulation run and delimitation 
of these periods.

2.3 | Statistical analyses

2.3.1 | Polynomial regressions

For every deployment category and mutation probability, the num-
ber of time-steps until mutants carrying the first, the second or 
both infectivity genes became established in resistant host popula-
tion were fitted by generalized linear models. We used a Poisson 
regression with logarithm as the link function, and third-degree 
Legendre polynomials including interactions up to second order, 
and restricted to polynomial terms of up to degree 3. The explaining 
variables were the cropping ratio (φ1), the level of spatial aggrega-
tion (α1), the cost of infectivity (θ), and, when appropriate, the rela-
tive cropping ratio (φ2) and the relative level of aggregation (α2). In 
these analyses, α1 and α2 were considered as quantitative variables 
(low = 1, intermediate = 2, high = 3), and all explaining variables were 
rescaled between −1 and 1 (definition domain of Legendre polyno-
mials). In the same way, AUDPC values corresponding to epidemio-
logical outputs (when available, short-term control, control during 
the transitory period, long-term and overall control) were normal-
ized by the average AUDPC obtained in a fully susceptible landscape 
(AUDPC0 = 0.38) and fitted by linear models with Legendre polyno-
mial regressions. Because these polynomials are orthogonal, they 
could be used to compute sensitivity indices of model parameters 

and their interactions (polynomial chaos expansion, Sudret, 2008). 
The main (or “first-order”) sensitivity index of an input parameter 
measures its main relative contribution to the variance of the output 
variable, whereas the total sensitivity index includes its interactions 
with other parameters. Furthermore, the polynomial regressions 
were also used to predict each model output from different values 
of model parameters. Supporting information Table S1 gives metrics 
of goodness of fit for every regression.

2.3.2 | Principal component analyses

A principal component analysis (PCA) was performed on model 
outputs showing nonmissing values. Because some epidemiologi-
cal metrics could not be computed in many simulations (AUDPCST, 
AUDPCTP and AUDPCLT), global disease severity for the different 
cultivars (AUDPCSC, AUDPCRC1 and AUDPCRC2) across the whole 
simulation period was used instead.

The model is written using the C and R languages and is available 
in the R package landsepi (Rimbaud, Papaïx, & Rey, 2018). Within 
the R (v3.4.0, R Core Team 2012) software, package ade4 (v1.7-6, 
Dray & Dufour, 2007) was used to compute the PCA, and package 
orthopolynom (v1.0-5, Novomestky, 2013) to compute the Legendre 
polynomials. One simulation run takes approximately 60 s on a stan-
dard desktop computer (Intel® Core™ i5-5300U).

3  | RESULTS

Using a factorial design (see Table 2 and Methods for details), we 
varied model parameters associated with the deployment category 
(mosaic, mixture, rotation or pyramiding), pathogen evolutionary 
potential (mutation probabilities and associated fitness costs) and 
landscape organization (proportion of resistant fields, relative pro-
portion of each major gene present and levels of aggregation and 
relative aggregation; see Supporting information Figure S1 for ex-
amples of simulated landscapes). Here, the durability of major resist-
ance genes was measured by the time to establishment of adapted 
(mutant) pathogens in the resistant host population (i.e., the point at 
which extinction in a steady environment becomes unlikely) and also 
referred to as “time to breakdown.” Epidemiological outcomes were 
evaluated using the area under the disease progress curve (AUDPC) 
to measure disease severity across characteristic periods of patho-
gen adaptation to resistance (see Table 3 for details). Previous work 
showed that landscape structure (spatial structure of local field 
boundaries, not to be confused with landscape organization) had 
no effect on model outputs (see Supporting information Figure S2). 
Thus, each of the 3,600 different combinations of input parameters 
was replicated 10 times × 5 landscape structures to account for 
model stochasticity, resulting in a total of 180,000 simulations.

In a typical manner, a simulation was initiated with the allocation 
of a susceptible cultivar and two cultivars carrying two major resis-
tance genes (or one cultivar carrying both genes for the pyramiding 
strategy). Figure 1d provides an example of landscape organization 



     |  1797RIMBAUD et al.

in a mosaic strategy. For this study, we assumed that the initial 
pathogen population was only adapted to susceptible hosts and that 
the major resistance genes conferred complete immunity to resis-
tant hosts. However, through mutation, the pathogen can acquire 
infectivity genes able to overcome the associated major resistance 
genes. In this work, “infectivity” is defined as in previous studies 
(Burdon et al., 2014, 2016; Susi, Thrall, Barrett, & Burdon, 2017) as 
the qualitative ability to infect a resistant host (i.e., it is synonymous 
with the term ‘virulence’ in plant pathology; however, we prefer to 
use infectivity, as virulence has different meanings in the plant pa-
thology, parasitology and evolutionary biology literature). Epidemics 
were simulated using a demogenetic model with SEIR structure 
(Figure 1a and Methods). The dispersal of mutant pathogens to 
fields planted with resistant cultivars (see the power-law dispersal 
kernel in Figure 1b) may allow infection of resistant hosts and sub-
sequent establishment of infective pathogens in the resistant host 
population (see an example of disease dynamics in Figure 1c). After 
48 years (cropping cycles) of simulation, evolutionary and epidemio-
logical outcomes were characterized by a set of model outputs (see 
the complete list of output variables in Table 3).

Of the 180,000 simulations, 109 resulted in pathogen extinction 
before the end of the simulation. In the other simulations, mutant 
pathogens appeared on average after 0.27 year (min–max: 0.01–
1.60) and infected resistant hosts after an average of 5.55 years 
(0.01–48.00). The mean durability of resistance genes was approx-
imately 12.55 years (0.50–48.00). The epidemiological outputs, all 
based on the computation of the AUDPC, varied from 0% (i.e., no 
disease) to 97% (i.e., severe epidemics) of the maximum obtainable 
in the absence of resistant hosts. Below, we focus on specific factors 
that drive variability in performance among different resistance de-
ployment strategies.

3.1 | Evolutionary outcomes

Every simulation resulted in one of four evolutionary outcomes, 
depending on whether (a) major gene breakdown did not occur, (b) 
only one gene was overcome, (c) both major genes were overcome 
by different pathotypes or (d) the two major genes suffered break-
down and, in addition, a superpathogen (able to overcome both 
major resistance genes) emerged and established in the resistant 
host population.

3.1.1 | Durability of major resistance genes

At high mutation probabilities (τ = 10−4), almost 100% of the simu-
lations associated with mosaics, mixtures and rotations resulted 
in the breakdown of both major genes in less than one cropping 
season, possibly along with the establishment of a superpathogen 
(Figure 2). In contrast, complete durability was maintained in 30% 
of the simulations performed with a pyramiding strategy, and in 
most of the remaining simulations, more than one cropping season 
was necessary to overcome the pyramid. At low mutation prob-
abilities (τ = 10−7), the pyramiding strategy was always completely 

TABLE  3 List of model outputs computed at the end of a 
simulation run

Notation Output

Evolutionary outputs (related to resistance durability)a,b

Mut1 First appearance of a mutant carrying 
infectivity gene 1

Mut2 First appearance of a mutant carrying 
infectivity gene 2

Mut12 First appearance of the superpathogenc

Inf1 First infection of a resistant host by a 
mutant carrying infectivity gene 1

Inf2 First infection of a resistant host by a 
mutant carrying infectivity gene 2

Inf12 First infection of a resistant host by the 
superpathogenc

Dur1 Broader establishment of a mutant 
carrying infectivity gene 1 in the 
resistant host population

Dur2 Broader establishment of a mutant 
carrying infectivity gene 2 in the 
resistant host population

Dur12 Broader establishment of the super-
pathogenc in the resistant host 
population

Epidemiological outputs computed from AUDPC (related to 
epidemiological efficiency)d

AUDPCSC Disease severity on the susceptible 
cultivar

AUDPCRC1 Disease severity on resistant cultivar 1, 
carrying major resistance gene 1

AUDPCRC2 Disease severity on resistant cultivar 2, 
carrying major resistance gene 2

AUDPCST Short-term control, computed on the 
susceptible cultivar from the beginning 
of the simulation until one of the major 
resistance gene is overcomee

AUDPCTP Control during the transitory period 
when only one major resistance gene is 
overcome, computed on the suscepti-
ble cultivarf

AUDPCLT Long-term control, computed on the 
whole landscape from the time both 
major resistance genes are overcome 
until the end of the simulation rung

AUDPCtot Global control, computed on the whole 
landscape across the whole simulation 
run

Notes. aWhen a duration exceeds the simulation run (48 years, i.e., 5,760 
time-steps), it is set at 48 years + 1 day.bIn the pyramiding strategy, the 
resistant cultivar carries both major resistant genes 1 and 2, thus 
Inf1 = Inf2 = Inf12 and dur1 = dur2 = dur12.cThe superpathogen carries 
both infectivity genes 1 and 2 and is able to overcome both major resis-
tance genes 1 and 2.dIn the pyramiding strategy, AUDPCRC1 = AUDPCRC2 
and AUDPCTP cannot be computed.

eCannot be computed if a major gene 
is overcome before the end of the first cropping season.fCannot be com-
puted if the second major gene is overcome less than 2 years after the 
first major gene.gCannot be computed if all major genes have not been 
overcome by the end of the simulation.
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durable, whereas mosaics, mixtures and rotations displayed all 
possible evolutionary outcomes. The two major genes were more 
often completely durable under both low and high cropping ratios 
(proportion of fields cultivated with resistant hosts, Figure 2a), 
with increasing levels of spatial aggregation of the resistant fields 
(Figure 2b) and with increasing fitness costs associated with path-
ogen mutation towards greater infectivity (Figure 2e). In mosaics 
and especially mixtures, one of the major genes more often re-
mained effective when its relative proportion in resistant fields 
(relative cropping ratio within resistant fields) was low, to the det-
riment of the other major gene (Figure 2c). Varying the relative 
spatial aggregation of the major genes among resistant fields in 
mosaics did not impact the proportion of simulations where they 
were overcome, whereas increasing the temporal aggregation in 
rotations (i.e., time until a cultivar is rotated) led to smaller propor-
tion of simulations where both genes remained completely dura-
ble (Figure 2d).

This qualitative assessment of major resistance gene durability 
was complemented by a quantitative analysis using polynomial re-
gression (see Supporting information Table S1 for goodness-of-fit 
metrics). This analysis showed that the durability of a given gene was 
mostly influenced by its relative proportion in mosaics and mixtures, 
by the proportion of resistant fields in the landscape and their level 
of spatial aggregation in rotations and by these two last parameters 
as well as the cost of infectivity in pyramids (see the sensitivity anal-
yses in Supporting information Figures S3 and S4).

Model predictions of the durability of the two major genes cor-
roborated the qualitative analysis with regard to the U-shaped effect 
of cropping ratio (Figure 3a and Supporting information Figure S5A), 
the positive effect of the level of spatial aggregation of resistant 
fields and the cost of infectivity (Figure 3b,e and Supporting infor-
mation Figure S5B,E), the small effect of the relative aggregation 
(Figure 3d and Supporting information Figure S5D), as well as the 
increased durability of the minority component in mosaic and mix-
ture strategies (Figure 3c and Supporting information Figure S5C). 
Overall, our results found that pyramiding the two major resistance 
genes offered the best durability, followed by mixtures, and finally 
mosaics and rotations. It should be noted that rotations appeared 
to perform better than mosaics with respect to the durability of 
the first major resistance gene (Figure 3) but not with regard to the 
second gene (see Supporting information Figure S5), although both 
genes were assumed identical. This was actually an artefact of the 
model, owing to the initial conditions: Rotations were simulated by 
starting with the second resistant cultivar (RC2), so the first resis-
tant cultivar (RC1, carrying the first major resistance gene) was not 
deployed before Year 2, 3 or 4 (depending on the level of temporal 

aggregation). Thus, the durability of the first major gene (computed 
from the beginning of the simulation) was slightly overestimated in 
rotations.

3.1.2 | Time to emergence of a superpathogen

At high mutation probabilities, the cost of infectivity had by far 
the greatest impact on the time to establishment of a superpath-
ogen in the resistant host population (see sensitivity analysis in 
Supporting information Figure S6A). In the absence of infectiv-
ity costs, a superpathogen emerged in almost all simulations. In 
contrast, when costs were high (i.e., infection rates on suscepti-
ble hosts were reduced by 75%), superpathogens emerged in only 
11%, 9%, 41% and 49% of the simulations performed with mo-
saics, mixtures, rotations and pyramids, respectively (Figure 2e). 
It is interesting to note that, at this level of infectivity cost, mo-
saics, mixtures and rotations impeded superpathogen establish-
ment more efficiently than pyramids (see Supporting information 
Figure S6B for model predictions using polynomial regression). At 
low mutation probabilities, the superpathogen never emerged in 
pyramids, as previously noted. In the other deployment categories, 
the superpathogen became established more often with increas-
ing cropping ratios in mosaics and mixtures (Figure 2a), decreas-
ing level of spatial aggregation between susceptible and resistant 
hosts in rotations (Figure 2b) and especially decreasing costs of in-
fectivity (Figure 2e). The time to establishment was mainly driven 
by the interaction between the cost of infectivity and other pa-
rameters: cropping ratio for all three strategies, relative cropping 
ratio for mixtures and level of spatial aggregation for rotations (see 
Supporting information Figure S6A). Increasing costs of infectivity 
mitigated (towards completely annulling) the effect of the other 
parameters (see model predictions in Supporting information 
Figure S6C–G).

3.2 | Epidemiological outcomes

In a fully susceptible landscape, the average disease severity (repre-
sented by the area under disease progress curve, AUDPC0) was for-
merly estimated at 0.38 (Rimbaud, Papaïx, Rey, Barrett et al., 2018), 
meaning that diseased host (states I and R in Figure 1a) represented 
an average proportion of 38% of the carrying capacity. In the cur-
rent study, all computations of AUDPC (see list of model outputs 
in Table 3 and details in Rimbaud, Papaïx, Rey, Barrett et al., 2018) 
were expressed relative to AUDPC0; hence, they might vary from 
0% (i.e., no disease) to 100% (i.e., same disease severity as in a fully 
susceptible landscape).

F IGURE  2 Evolutionary outcomes. Proportion of simulations associated with each of the possible evolutionary outcomes, at high 
(τ = 10−4) and low (τ = 10−7) mutation probabilities. Panels show the effect of the proportion of fields where resistance is deployed (a), their 
level of spatial aggregation (b), the relative proportion of the second major gene (c), its relative level of spatial (for mosaics) or temporal 
(for rotations) aggregation (d) and the fitness cost associated with pathogen infectivity (e). SC, susceptible cultivar; RC, resistant cultivars, 
including the first (RC1) and the second (RC2) resistance gene. Darker shaded colours refer to situations where resistance breakdown was 
rapid (<1 year), while faded colours refer to those where resistance breakdown was slower (>1 year)



1800  |     RIMBAUD et al.



     |  1801RIMBAUD et al.

3.2.1 | Short-term disease control and control 
during the transitory period

Short-term control was defined here as the epidemiological pro-
tection provided to susceptible hosts by resistant cultivars when 
the deployment strategy was completely effective and denoted by 
AUDPCST (green area in Figure 1c, computed in simulations rep-
resented in faded colours in Figure 2, i.e., where resistance du-
rability was greater than 1 year). The epidemiological protection 
provided by a partially effective deployment strategy (i.e., when 
only one major resistance gene was overcome) was also computed 
and denoted by AUDPCTP (grey area in Figure 1c). At high muta-
tion probabilities, these criteria could not be assessed for strate-
gies other than pyramiding, as in these scenarios both major genes 
were overcome during the first year of simulation in almost all 
simulations. For low mutation probabilities, sensitivity analyses 
based on polynomial regressions indicate that only the proportion 
of fields where resistance was deployed (cropping ratio) had an 
impact on short-term control (see Supporting information Figure 
S7). For the transitory period, the results were very similar, ex-
cept that the cost of infectivity had a slightly greater influence, 
with stronger costs amplifying the effect of the cropping ratio (see 
Supporting information Figure S8). The polynomial regressions 
show that the different deployment categories performed equally 
well in the short-term and the transitory periods, with better con-
trol for higher cropping ratios (Figure 4a and Supporting informa-
tion Figure S8B).

3.2.2 | Long-term disease control

The long-term control, denoted by AUDPCLT, characterized dis-
ease severity of the whole landscape once all resistances had 
been overcome (red area in Figure 1c, computed in simulations 
represented in blue and orange in Figure 2, i.e., where all resist-
ances have been overcome). For both high and low mutation prob-
abilities, the sensitivity analyses highlight the key role of cropping 
ratio, the cost of infectivity and their interaction (see Supporting 
information Figure S9). As shown by the polynomial regressions, 
the higher the cropping ratio and the cost of infectivity, the better 
the epidemiological control in the long term. In contrast to previ-
ous metrics of epidemiological control, the rotation of two major 
genes performed significantly better than the other strategies in 
this context (Figure 4b,c).

3.2.3 | Global control

The overall efficiency of a deployment strategy was assessed using 
the AUDPC of the whole landscape, averaged across the entire 
simulation run (AUDPCTOT). The sensitivity analyses highlight the 
same key parameters as for long-term control, except that the cost 
of infectivity was less influential when the mutation probability was 
low (see Supporting information Figure S10). Better global epide-
miological control was obtained with higher cropping ratios, and, to 
a lesser extent, with higher costs of infectivity (excepting pyramid-
ing at low mutation probabilities). Globally, the polynomial regres-
sions indicate that pyramids of two major genes resulted in better 
overall control than rotations, followed by mixtures and mosaics 
(Figure 4d,e).

3.3 | Trade-offs between evolutionary and 
epidemiological disease control

Principal component analysis (PCA) was performed on the simulation 
results to investigate the relationships between the various model 
outputs. It should be noted, however, that only model outputs show-
ing nonmissing values could be included in this analysis; hence, global 
disease severity for the susceptible (AUDPCSC) and resistant cultivars 
(AUDPCRC1 and AUDPCRC2) across the whole simulation period was 
used instead of short-term control (AUDPCST), control during the 
transitory period (AUDPCTP) or long-term control (AUDPCLT) of the 
disease.

3.3.1 | Evolutionary and epidemiological axes

The projection of model outputs on the two main axes explained 
64% of the total variance (see Supporting information Figure S11, 
inset). Factors mainly contributing to the horizontal axis included 
time to first appearance, first infection and broader establishment 
of mutants carrying the first, the second or both (i.e., the super-
pathogen) infectivity genes in the resistant host population (see 
Supporting information Figure S11). Disease severity on the two re-
sistant cultivars also contributed to this axis and was negatively cor-
related with the latter outputs related to resistance durability (i.e., 
the time period during which the resistant cultivars were immune 
to disease). In contrast, the vertical axis was mainly determined by 
disease severity on the susceptible cultivar. These results suggest 
that outputs related to resistance durability and epidemiological 

F IGURE  3 Resistance gene durability. Durability (in years) of the first major resistance gene (Dur1) at high (τ = 10−4) and low 
(τ = 10−7) mutation probabilities. Panels show the effect of the proportion of fields where resistance is deployed (a), their level of spatial 
aggregation (b), the relative proportion of the second major gene (c), its relative level of spatial (for mosaics) or temporal (for rotations) 
aggregation (d) and the fitness cost associated with pathogen infectivity (e). Curves represent median predictions using third-degree 
Legendre polynomials including interactions up to second order within a Poisson generalized linear model; shaded envelopes are 
delimited by the first and third quartiles. SC, susceptible cultivar; RC, resistant cultivars, including the first (RC1) and the second (RC2) 
resistance gene. The second major resistance gene is associated with similar results (see Supporting information Figure S5). Note that 
when a major resistance gene remains effective during the whole simulation run, its durability is set at 48 years, and also that in pyramids 
Dur1 = Dur2 = Dur12
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protection of the susceptible cultivar were not necessarily cor-
related. Thus, the two main axes can be referred to as the evolu-
tionary and the epidemiological axes. Global control (AUDPCTot) 
contributed to both axes.

3.3.2 | Effect of different deployment strategies

Pyramiding offered the best durability at low mutation probabilities, 
but other deployment strategies provided better epidemiological 

F IGURE  4 Epidemiological outcomes. Predictions from polynomial regressions, using third-degree Legendre polynomials including 
interactions up to second order, of the effect of the proportion of fields where resistance is deployed (a,b,d) or the fitness cost associated 
with pathogen infectivity (c,e) on different epidemiological outputs at high (τ = 10−4) or low (τ = 10−7) mutation probability: AUDPC on the 
susceptible cultivar in the short-term period when resistant cultivars are still immune to disease (AUDPCST, a); and AUDPC on the whole 
landscape computed in the long-term period when all resistances have been overcome (AUDPCLT, b,c) or in the whole simulation (AUDPCTOT, 
d,e). Curves represent the median and envelopes are delimited by the first and third quartiles. SC, susceptible cultivar; RC, resistant cultivars, 
including the first (RC1) and the second (RC2) resistance gene. Note in (a) that at high mutation probabilities, mosaics, mixtures and rotations 
were almost always overcome in less than 1 year; thus, AUDPCST could not be properly computed

FIGURE  5 Principal component analysis of model outputs. Projection of the simulation results on the two main axes (total explained 
variance: 64%), with colour codes reflecting: (a) the proportion of fields where resistance was deployed; (b) their level of spatial aggregation; (c) 
the fitness cost associated with pathogen infectivity; and (d) the category of the deployment strategy. For legibility, only dots associated with 
low mutation probabilities (τ = 10−7) are represented (see Supporting information Figure S12 for dots associated with high mutation probabilities)
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protection of the susceptible cultivar across the whole simulated 
period (Figure 5d and Supporting information Figure S12D). Both re-
sistance durability and epidemiological protection of the susceptible 
cultivar were improved with a greater proportion of resistant fields 
(Figure 5a and Supporting information Figure S12A) and, to a lesser 
extent, stronger costs of infectivity (mostly at high mutation prob-
abilities, Figure 5c and Supporting information Figure S12C). Finally 
the effect of spatial aggregation of resistant fields showed a larger 
contrast between evolutionary and epidemiological outcomes: 
Higher degree of aggregation led to better durability, but weaker 
disease control on the susceptible cultivar (Figure 5b and Supporting 
information Figure S12B).

4  | DISCUSSION

Here, we investigated a suite of strategies that have the potential 
to constrain the evolutionary potential of pathogens to overcome 
plant disease resistance. It is interesting that some of these strat-
egies have counterparts in the application of pesticides or drugs 
treatments (van den Bosch & Gilligan, 2008; Gilligan, 2008). Indeed, 
mosaics of different cultivars are equivalent to treatments of dif-
ferent fields or animals (including humans), crop rotations refer 
to the periodic application of molecules and pyramiding matches 
with the combination of molecules in a single treatment. Previous 
empirical and modelling studies have variously evaluated the per-
formance of all these strategies in controlling pathogens, but few 
of these allowed direct comparisons between all possible catego-
ries of strategies (REX Consortium 2013, 2016). Recently, a global 
approach has been proposed to compare periodic applications, 
treatment of different patients and combination strategies for an-
tibiotic treatment in hospitals (Tepekule, Uecker, Derungs, Frenoy, 
& Bonhoeffer, 2017). In this approach, the combination therapy 
outperformed the other strategies in most cases. Nevertheless, 
in the context of plant disease, different results may be expected 
owing to the spatial structuration of plant epidemics. In the plant 
pathology literature, some studies compared two categories of 
resistance deployment strategies (Djidjou-Demasse, Moury, & 
Fabre, 2017; Kiyosawa, 1972; Koller et al., 2018; Sapoukhina, 
Durel, & Le Cam, 2009; Skelsey, Rossing, Kessel, & van der Werf, 
2010), and very few have compared three categories of strategies 
(Djian-Caporalino et al., 2014; Lof, de Vallavieille-Pope, & van der 
Werf, 2017). Moreover, the durability of resistance and the epide-
miological control it provides have rarely been considered jointly, 
although these are not necessarily correlated (van den Bosch & 
Gilligan, 2003; Burdon et al., 2014; Fabre, Rousseau, Mailleret, & 
Moury, 2015; Papaïx et al., 2018). Here, we used a previously de-
veloped spatiotemporal simulation model (Rimbaud, Papaïx, Rey, 
Barrett et al., 2018), to examine both evolutionary and epidemio-
logical outcomes for four major categories of deployment strate-
gies: mosaics, mixtures, rotations and pyramids. For each strategy, 
a range of deployment options was explored with regard to the 
proportion and level of aggregation of the different cultivars. For 

the pathogen, mutation probability and the cost of infectivity were 
also varied to provide some consideration of these important bio-
logical features. It is important to note that we arbitrarily selected 
two values for the mutation probability to investigate the deploy-
ment strategies in two contrasted situations and that our intent 
was to compare different deployment strategies rather than pro-
vide an absolute prediction of the durability and efficiency of a 
particular strategy.

The model was parameterized to broadly represent rust diseases 
of cereal crops with a focus on strategies involving the deployment 
of two major resistance genes in areas where the pathogen was 
already present (although not initially adapted to host resistance). 
We recognize that our focus on major gene resistance conferring 
immunity to infection by nonadapted pathogens means that we are 
assessing only a subset of the types of major resistance genes ef-
fective against stem, leaf and stripe rust of cereal crops (McIntosh, 
Wellings, & Park, 1995). Other major resistance genes (either 
“weak” major genes coding for NLR proteins or genes involved in 
adult plant resistance) may provide incomplete protection allowing 
some pathogen reproduction (Burdon et al., 2014). The possible 
consequences of the simultaneous use of major resistance genes 
with different expression profiles (with the potential for contrasting 
and fluctuating selection on the pathogen) will be the focus of a 
subsequent study.

4.1 | No deployment strategy is universally optimal

4.1.1 | High durability of pyramids

Our results are consistent with previous empirical and modelling 
studies suggesting that, in absence of preadapted pathogens, pyra-
mids of resistance genes (or, similarly, combination of molecules in 
the context of pesticide applications) outcompete other deployment 
strategies with regard to durability (Djian-Caporalino et al., 2014; 
REX Consortium 2013). In real-world pathosystems, pyramids of re-
sistance genes are expected to show good durability because of the 
low probability that the pathogen will simultaneously acquire all of 
the mutations required to overcome multiple major genes and the 
potential accumulation of fitness costs associated with these muta-
tions (Leach et al., 2001). Both factors contributed to the durability 
of our simulated pyramids. At low mutation probabilities, mutants 
with single infectivity appeared within 1 year, whereas mutants 
with double infectivities (i.e., superpathogens) never appeared (see 
Supporting information Figure S13A,C). At high mutation probabili-
ties, superpathogens appeared quickly (on average after 0.5 year), 
but establishment within the population took much longer. In par-
ticular, superpathogens took an average of 14 years to be transmit-
ted to resistant hosts and did not become established on average 
before 24 years (Supporting information Figure S13B and Figure 3). 
The delays between appearance, infection of resistant hosts and 
subsequent establishment are because mutant pathogens must sur-
vive the end of season bottleneck and also because they first ap-
pear in susceptible fields, where they may suffer a cost of infectivity 
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compared to noninfective pathogens, before dispersal to resistant 
fields.

It is important to note that the scenario we simulated favoured 
pyramiding durability (Stam & McDonald, 2018). We assumed no 
prior adaptation of the pathogen to the deployed resistances, so in-
fective pathogens could only appear through mutation. In the real 
world, complex pyramids are often developed via the incremental 
addition of major genes to ones that have already been deployed 
elsewhere (Burdon et al., 2016). In this context, infectivity towards 
some of the major genes in the pyramid may already be present in a 
pathogen population. As shown in recent modelling studies, the ini-
tial presence of preadapted pathogens can have a dramatic impact on 
the durability of the pyramid compared to other strategies (Djidjou-
Demasse et al., 2017; Lof et al., 2017). Moreover, mutations towards 
multi-infectivity were considered independent, and our model does 
not currently include pathogen sexual reproduction. Synergistic mu-
tations and sexual reproduction may facilitate acquisition and reas-
sortment of infectivity genes in pathogen populations and further 
accelerate the breakdown of pyramids (McDonald & Linde, 2002). 
Sexual reproduction is uncommon in cereal rust pathogens at least 
in some parts of the world (Park, 2008), but it should be accounted 
for where there is a real possibility that it contributes to diversity (Ali 
et al., 2014; Groth & Roelfs, 1982).

4.1.2 | Mosaics, mixtures and rotations can mitigate 
superpathogen emergence

Pathogen adaptation to a pyramid results in the breakdown of all 
of the component resistance genes. In contrast, when resistance 
sources are deployed in different cultivars, there are intermediate 
evolutionary outcomes between the complete durability of all culti-
vars and establishment of a superpathogen able to infect all hosts. 
Our results indicate that, at high mutation probabilities, when the 
cost of infectivity is also high, rotations, and particularly mosaics and 
mixtures, were better able to prevent or at least delay the establish-
ment of a superpathogen than pyramids (Figure 2e and Supporting 
information Figure S6B). This can be explained by the fact that the 
superpathogen accumulates fitness costs (due to the accumulation 
of mutations). The higher these costs, the less the superpathogen 
is adapted to cultivars carrying single resistance genes, and thus 
the more it relies on the presence of the cultivar carrying multigene 
resistance (absent in the mosaics, mixtures and rotations we simu-
lated). This disruptive selection, based on host genetic diversity, ex-
ploits these fitness differences to favour local host specialization of 
the pathogen and constrain the emergence of generalists (Barrett, 
Kniskern, Bodenhausen, Zhang, & Bergelson, 2009). For example, in 
China, a traditional century-old rice agrosystem, based on mosaics 
of rice cultivars carrying various resistance sources and cultivated 
using appropriate cropping ratios, induced a high level of specializa-
tion of Magnaporthe oryzae on locally grown rice cultivars (Liao et al., 
2016). This specialization, due to the fitness costs associated with 
local adaptation of the pathogen, is likely the main contributor to the 
successful control of rice blast in this agrosystem.

4.1.3 | All strategies offer the same short- and mid-
term epidemiological protection

When all resistances were still effective, all resistant cultivars were 
considered immune to the disease. In this context, it was not sur-
prising to observe similar short-term epidemiological outcomes from 
different deployment strategies, all of them being equivalent to a 
mosaic of a susceptible and a resistant cultivar (Figure 4a). Therefore, 
short-term epidemiological control depended more on the propor-
tion of fields where resistance was deployed (see also below). We 
obtained similar results with partially effective strategies (i.e., only 
one major gene was overcome, Supporting information Figure S8B). 
All these results show that for a given organization of an agricultural 
landscape (i.e., particular cropping ratio and level of aggregation), 
disease dynamics on the susceptible cultivar (as represented by av-
eraged AUDPC values) were largely unaffected by the way the major 
genes were deployed in the other fields.

4.1.4 | Rotations decrease losses once all 
resistances have been overcome

In a recent article, Djidjou-Demasse et al. (2017) compared mosa-
ics and pyramiding strategies in a scenario where all pathotypes (in-
cluding infective ones) were initially present in pathogen population 
(although not with the same frequency). They found that mosaics 
were at least as good as pyramids with regard to an AUDPC-based 
criterion which may, to some extent, be compared to our long-term 
epidemiological control, once all major resistance genes had been 
overcome (AUDPCLT). With respect to this criterion, our mosaics 
and pyramids of two major resistance genes performed similarly, and 
mixtures were slightly better (Figure 4b,c). These differences may be 
attributed to the fact that in the first study (Djidjou-Demasse et al., 
2017), mosaics outperformed pyramids mostly when three or more 
major resistance genes were deployed, and when there was high in-
terfield pathogen transmission. It could be interesting to assess the 
impact of the dispersal kernel (parameterized here to rust diseases, 
although with some uncertainty on the likelihood of long-dispersal 
events, see Supporting information Text S1 in Rimbaud, Papaïx, Rey, 
Barrett et al., 2018) on our findings. Our results also show that rota-
tions performed significantly better than the other strategies. Once 
all resistances are overcome, the system becomes equivalent to a 
set of genetically diverse susceptible cultivars and diverse pathogen 
populations. However, with crop rotations, a well-adapted special-
ist pathogen can lose its associated host at the end of a cropping 
season. This pathogen then becomes maladapted to its new envi-
ronment, which imposes severe bottlenecks and increases the likeli-
hood of extinction events.

To disentangle the effects of spatial and temporal diversity, in 
our simulations the two resistant cultivars were never present at 
the same time in rotations (one replaced the other). Real agricul-
tural landscapes are more complex, where neighbouring fields are 
sown with rotating cultivars in such a way that the whole system 
consists of a temporally dynamic mosaic which essentially combines 
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our definitions of mosaics and rotations. In such systems, all culti-
vars may be present simultaneously in the landscape (although their 
locations may change from year to year). In this situation, in con-
trast to our simulation framework, even if rotations remove a host in 
space, specialist pathogens may disperse to fields where the cultivar 
is newly grown. The extent to which this reduces the performance 
of rotations (as compared to our results) would at least partly de-
pend on pathogen dispersal and survival abilities, two key life history 
features (Barrett, Thrall, Burdon, & Linde, 2008; Buoro & Carlson, 
2014). This further suggests that the efficacy of rotations may well 
vary for different kinds of pathogens.

4.1.5 | Pyramids and rotations had the best global 
efficiencies

This result can be explained by the fact that the global control pro-
vided by each category of resistance deployment was computed for 
the entire landscape over the whole simulation run. As all strategies 
had the same epidemiological performance during the short-term 
and the transitory periods, global control was mostly correlated 
with the durability of resistance (during which resistant cultivars did 
not contribute to the global AUDPC) and long-term epidemiological 
control. Therefore, promising deployment strategies would consist 
of rotating different pyramids of resistance genes, provided these 
genes have not been already overcome somewhere.

4.2 | Landscape organization impacts both 
durability and epidemiological efficiency

4.2.1 | Impact of cropping ratio and spatial 
aggregation

This study emphasizes the impact of landscape organization on the 
epidemiological and evolutionary performance of different resist-
ance deployment strategies. In mosaics, high proportions of fields 
cultivated with a resistant cultivar (Fabre et al., 2015; Papaïx et al., 
2014, 2018) or a nonhost species (Skelsey et al., 2010) with weak 
levels of aggregation (or strong connectivity between susceptible 
and resistant fields) have been shown to favour good epidemiologi-
cal control. The same conclusions emerged for mixtures (Suzuki & 
Sasaki, 2011; Xu & Ridout, 2000). The present study is consistent 
with these conclusions and extends them to rotation and pyramid-
ing strategies (Figures 4 and 5c,d). When the proportion of resist-
ant fields increases, the proportion of hosts suitable for pathogen 
infection decreases and disease spread is reduced via a dilution 
effect (Keesing et al., 2010). This effect is amplified in well-mixed 
landscapes.

With respect to the durability of major resistance genes, the 
proportion of resistant fields had a U-shaped effect in all deploy-
ment strategies (Figures 2a and 3a). This effect has already been 
described with mosaic strategies for the deployment of plant re-
sistance (van den Bosch & Gilligan, 2003; Papaïx et al., 2018) or 
the application of pesticides (Bourget, Chaumont, & Sapoukhina, 

2013). The higher durability at high cropping ratios is attributed 
to the large reduction in pathogen population size, resulting in a 
low probability of appearance of mutants (see the positive effect 
of cropping ratio on the time to first appearance of mutants in 
Supporting information Figure S13A). At small cropping ratios, 
high durability can be explained by the low probability that a mu-
tant pathogen will successfully disperse to a resistant field (see the 
negative effect of cropping ratios, when below 50%, on the time 
to the first infection of a resistant host in Supporting information 
Figure S13B).

In contrast to its effect on epidemiological efficiency, spatial ag-
gregation had a positive effect on resistance durability (Figures 2b 
and 5d). This is attributed to how different levels of aggregation alter 
the interface between resistant and susceptible components in an 
agricultural landscape (Papaïx et al., 2018). When this interface is 
small (i.e., there is a high level of aggregation), resistant cultivars are 
less exposed to potential mutant pathogens emerging from suscepti-
ble fields. On the contrary, disease spread in susceptible fields is less 
efficiently mitigated. It is noteworthy that we based our simulations 
on a landscape completely cultivated with host crops, an initial con-
tamination of every susceptible field and an isotropic dispersal of the 
pathogen. Alternative scenarios should be more conducive to patho-
gen extinctions and would likely lead to an even greater influence of 
spatial aggregation.

4.2.2 | Impact of relative cropping ratios and 
relative aggregation

Within the different deployment options, we simulated different 
relative proportions and relative spatial/temporal aggregation 
of the resistance types. In many of our simulations, mosaics and 
especially mixtures resulted in the breakdown of only one major 
gene (Figure 2c) when resistant cultivars were deployed in unbal-
anced proportions (Figure 3c). More precisely, when two major 
resistance genes were deployed in uneven proportions, the dura-
bility of the gene in minority was increased to the detriment of the 
one in majority. Protection of the resistant cultivar in minority was 
likely due to specialization of the pathogen on the major cultivar. 
This conclusion, analogous to using refuge zones to influence pest 
evolutionary trajectories (Alstad & Andow, 1995), has interesting 
implications for agricultural systems where high-value cultivars 
may be grown at a small scale in the neighbourhood of broadly 
grown standard cultivars.

In rotations, the length of the rotation had only a small impact 
on model outputs. As rust pathogens are biotrophs (i.e., they cannot 
survive in the absence of the host), and alternate hosts are absent in 
most of the large grain production areas, we simulated severe bot-
tlenecks between seasons and considered that the end of a cropping 
season influenced the beginning of the next season only. However, 
as mentioned before, different results could be obtained with patho-
gens showing different life histories, such as those whose survival on 
stubbles or alternate hosts allows secondary infections for several 
years.
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4.3 | Pathogen mutation probability and infectivity 
costs have major effects on resistance durability

In an investigation of the durability of pyramided genes, Fabre, 
Bruchou, Palloix, and Moury (2009) found a strong effect of genetic 
mutation rate, the number of required genetic mutations, their na-
ture (transition or transversion) and the associated fitness costs. In 
our study, we focused on phenotypic changes and integrated the 
first three of these variables into a mutation probability. This muta-
tion probability and the associated cost of infectivity (which have been 
poorly characterized quantitatively and may be highly variable; Laine 
& Barrès, 2013) had a large influence on evolutionary outcomes for 
the simulated deployment strategies (Figure 2). It is not surprising that 
resistance durability was higher when the mutation probability was 
low and the cost of infectivity was high. These effects are especially 
strong with respect to the time to appearance and establishment of a 
superpathogen (Supporting information Figure S6), which corresponds 
to the durability of a pyramiding strategy. Pyramids of major resistance 
genes may therefore not be the best strategy when the target patho-
gen has a high probability of mutating towards infectivity (especially 
when there are only weak associated fitness costs).

In addition, our simulations highlight the synergistic interaction 
between the cost of infectivity and cropping ratios on the time to 
establishment of a superpathogen (Supporting information Figure 
S6) and the mid- and long-term control of the disease (Supporting in-
formation Figures S8 and S9). This corroborates the results obtained 
by Fabre, Rousseau, Mailleret, and Moury (2012), suggesting that 
the optimal cropping ratio increases with increasing fitness costs. 
Overall, these results indicate that the harder it is for a pathogen to 
overcome a resistance gene, the more this resistance source can be 
cultivated in the landscape.

4.4 | Conclusions and next challenges

In this study, we compared the main categories of resistance de-
ployment: mosaics, mixtures, rotations, pyramiding and a variety of 
options, using a single ecoevolutionary framework. In line with the 
principles of integrated pest management and the illusory “one-size-
fits-all” pest control method (Barzman et al., 2015), none of the strat-
egies we considered could be considered as a ‘‘universal optimum.” 
Indeed, as previously demonstrated for mosaics (van den Bosch & 
Gilligan, 2003; Papaïx et al., 2018), the optimal strategy depends on 
the objective of a given stakeholder group (e.g., breeders, growers, risk 
managers). Extended cultivar durability, prevention of superpathogen 
emergence, protection of susceptible crops or minimization of disease 
levels during growing seasons are all possible management targets that 
may not always be compatible and may require different strategies. 
Nevertheless, in the context of cereal resistance to rust fungi, given 
our model assumptions, we conclude that pyramiding is the strategy 
less likely to breakdown, but should that occur, the consequences may 
be drastic. On the contrary, although more likely to be overcome, al-
ternative strategies better mitigate epidemic losses in the event of the 
breakdown of some or all sources of resistance.

Our results emphasize the impact of landscape organization on 
both epidemiological and evolutionary outcomes, but also show how 
the effectiveness of different strategies can be further modified by 
factors related to pathogen evolutionary ability. It is interesting that 
these factors (pathogen mutation probability and fitness cost of ad-
aptation) may be influenced by the choice of the resistance source, 
as suggested by empirical evidence that major resistance genes act-
ing with distinct mechanisms are associated with different rates of 
pathogen adaptation (Djian-Caporalino et al., 2014; Mundt, 2018). 
Based on our results, and not surprisingly, resistance genes associ-
ated with small rates of pathogen adaptation (requiring several and 
costly genetic mutations to be overcome) must be favoured for de-
ployment in the field.

Our conclusions may hold for a wide range of wind-dispersed, 
biotrophic foliar pathogens, such as rusts of cereal crops, but could 
considerably differ with pathosystems showing contrasted life his-
tories. Therefore, our next challenge will be to apply this model-
ling framework to other pathosystems associated with different 
dispersal and postharvest survival abilities and mode of reproduc-
tion. Different outcomes may be found, as parameters contributing 
to epidemic spread have been found to significantly impact both 
the resistance durability (Bourget et al., 2013) and epidemiological 
efficiency (Djidjou-Demasse et al., 2017; Ohtsuki & Sasaki, 2006; 
Suzuki & Sasaki, 2011) of different deployment strategies. It will 
also be of interest to explore more complex strategies that com-
bine several types of deployment and both spatial and temporal ge-
netic host diversity. As shown by previous studies, we expect some 
combinations to favour resistance durability, such as rotations and 
mosaics (Fabre et al., 2015; Lof et al., 2017), or, as suggested be-
fore, rotations and pyramids. On the other hand, cultivating pyra-
mids together with cultivars carrying only single resistance genes 
has the opposite effect (Bourget et al., 2013; Lof et al., 2017). We 
hope that the modelling ecoevolutionary framework presented 
here will provide a solid foundation for such future and interesting 
investigations.
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