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Abstract
Once	deployed	uniformly	in	the	field,	genetically	controlled	plant	resistance	is	often	
quickly	overcome	by	pathogens,	resulting	in	dramatic	losses.	Several	strategies	have	
been	 proposed	 to	 constrain	 the	 evolutionary	 potential	 of	 pathogens	 and	 thus	 in-
crease	resistance	durability.	These	strategies	can	be	classified	into	four	categories,	
depending	on	whether	resistance	sources	are	varied	across	time	(rotations)	or	com-
bined	in	space	in	the	same	cultivar	(pyramiding),	in	different	cultivars	within	a	field	
(cultivar	mixtures)	or	among	fields	(mosaics).	Despite	their	potential	to	differentially	
affect	both	pathogen	epidemiology	and	evolution,	to	date	the	four	categories	of	de-
ployment	 strategies	 have	 never	 been	 directly	 compared	 together	 within	 a	 single	
theoretical	or	experimental	framework,	with	regard	to	efficiency	(ability	to	reduce	
disease	 impact)	and	durability	 (ability	 to	 limit	pathogen	evolution	and	delay	resist-
ance	breakdown).	Here,	we	used	a	spatially	explicit	stochastic	demogenetic	model,	
implemented	in	the	R	package	landsepi,	to	assess	the	epidemiological	and	evolution-
ary	outcomes	of	these	deployment	strategies	when	two	major	resistance	genes	are	
present.	We	varied	parameters	related	to	pathogen	evolutionary	potential	(mutation	
probability	and	associated	fitness	costs)	and	landscape	organization	(mostly	the	rela-
tive	proportion	of	each	cultivar	 in	 the	 landscape	and	 levels	of	 spatial	or	 temporal	
aggregation).	Our	results,	broadly	focused	on	qualitative	resistance	to	rust	fungi	of	
cereal	crops,	show	that	evolutionary	and	epidemiological	control	are	not	necessarily	
correlated	and	that	no	deployment	strategy	is	universally	optimal.	Pyramiding	two	
major	genes	offered	the	highest	durability,	but	at	high	mutation	probabilities,	mosa-
ics,	mixtures	 and	 rotations	 can	 perform	better	 in	 delaying	 the	 establishment	 of	 a	
universally	infective	superpathogen.	All	strategies	offered	the	same	short-	term	epi-
demiological	control,	whereas	rotations	provided	the	best	long-	term	option,	after	all	
sources	of	resistance	had	broken	down.	This	study	also	highlights	the	significant	im-
pact	of	landscape	organization	and	pathogen	evolutionary	ability	in	considering	the	
optimal	design	of	a	deployment	strategy.
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1  | INTRODUC TION

In	plants,	 genetically	 controlled	qualitative	 (or	 “major	 gene”)	 resis-
tance	against	a	given	pathogen	is	often	described	as	providing	com-
plete	(or	at	least	strong)	protection	from	infection	(Parlevliet,	2002;	
Stuthman,	Leonard,	&	Miller-	Garvin,	2007).	However,	once	deployed	
in	the	field,	such	resistance	has	often	been	quickly	overcome,	result-
ing	in	dramatic	epidemics	and	the	need	to	identify	and	develop	new	
sources	 of	 genetic	 resistance	 (García-	Arenal	 &	 McDonald,	 2003;	
Johnson,	 1984;	 Lecoq,	 Moury,	 Desbiez,	 Palloix,	 &	 Pitrat,	 2004;	
McDonald	 &	 Linde,	 2002;	 Parlevliet,	 2002).	 Importantly,	 novel	
sources	 of	 resistance	 are	 not	 inexhaustible.	 Thus,	 several	 strate-
gies	 have	 been	 proposed	 to	 improve	major	 gene	 resistance	 dura-
bility.	 These	 strategies	 rely	 on	 the	 introduction	 of	 spatiotemporal	
variation	 in	 resistance	 in	 cultivated	 agroecosystems	 (Zhan,	 Thrall,	
Papaïx,	Xie,	&	Burdon,	 2015)	 and	 can	be	 classified	 into	 four	main	
deployment	categories:	(a)	crop	rotations,	for	example	recurring	suc-
cession	of	different	crop	cultivars	in	the	same	field	(Curl,	1963);	(b)	
mosaics,	that	is	different	cultivars	in	different	fields	of	a	continuous	
landscape	 (Burdon,	 Barrett,	 Rebetzke,	 &	 Thrall,	 2014;	 Zhan	 et	al.,	
2015);	(c)	mixtures,	that	is	different	cultivars	combined	in	the	same	
field	(Mundt,	2002;	Wolfe,	1985);	and	(d)	pyramiding,	that	is	differ-
ent	resistance	sources	stacked	in	the	same	cultivar	 (Ellis,	Lagudah,	
Spielmeyer,	 &	Dodds,	 2014;	 Fuchs,	 2017).	 At	 landscape	 scales,	 in	
addition	to	the	possibility	of	combining	several	of	these	categories	
into	more	complex	 strategies,	 there	are	a	diversity	of	deployment	
options	within	 a	 category	 (e.g.,	 choice	 of	 resistance	 sources,	 rela-
tive	proportion	and	location	of	different	cultivars	in	the	landscape).	
Furthermore,	as	genetic	engineering	and	gene	editing	technologies	
become	increasingly	powerful	(e.g.,	CRISPR/Cas9),	some	strategies	
are	now	becoming	more	feasible	(e.g.,	resistance	mixtures	compos-
ing	isogenic	lines	with	uniform	phenologies	and	yield	characteristics)	
(Koller,	Brunner,	Herren,	Hurni,	&	Keller,	2018;	Wang	et	al.,	2014).

Given	this	diversity	of	options,	identifying	an	optimal	deploy-
ment	 strategy	 in	 a	 given	 epidemiological	 context	 is	 a	 challenge.	
Moreover,	the	criteria	used	to	determine	an	optimal	strategy	de-
pend	on	the	objectives	of	a	given	stakeholder	group	(e.g.,	breed-
ers,	 growers,	 risk	 managers)	 (van	 den	 Bosch	 &	 Gilligan,	 2003;	
Papaïx,	 Rimbaud,	 Burdon,	 Zhan,	 &	 Thrall,	 2018),	 noting	 that	 re-
sistance	 durability	 (defined	 here	 as	 the	 ability	 to	 limit	 pathogen	
evolution	and	delay	resistance	breakdown,	after	which	resistance	
is	 considered	 overcome)	 and	 epidemiological	 efficiency	 (defined	
as	 the	ability	 to	 reduce	disease	 impact	or	severity,	as	a	 result	of	
a	reduction	in	the	proportion	of	diseased	plants	in	a	given	region	
over	a	given	period	of	time)	are	not	necessarily	correlated	(Burdon,	
Zhan,	Barrett,	Papaïx,	&	Thrall,	2016;	Burdon	et	al.,	2014;	Johnson,	
1984).	Many	empirical	and	modelling	studies	have	demonstrated	
the	epidemiological	efficiency	of	some	strategies	to	control	plant	
disease,	especially	mixtures	(Borlaug,	1953;	Calonnec,	Goyeau,	&	
de	Vallavieille-	Pope,	1996;	Garrett	&	Mundt,	2000;	Huang,	 Sun,	
Wang,	Luo,	&	Ma,	2012;	Jensen,	1952;	Mundt,	Sackett,	&	Wallace,	
2011;	Power,	1991;	Zhu	et	al.,	2000).	There	is	also	empirical	evi-
dence	 that	 high	 fragmentation	 (Condeso	&	Meentemeyer,	 2007;	

Fleming,	 Marsh,	 &	 Tuckwell,	 1982)	 or	 high	 biodiversity	 (Haas,	
Hooten,	Rizzo,	&	Meentemeyer,	2011)	at	the	landscape	scale	can	
impede	disease	spread.	Such	findings	suggest	the	potential	utility	
of	cropping	mosaics.

In	contrast,	realistic	assessment	of	the	durability	of	a	given	strat-
egy	at	the	landscape	scale	requires	the	deployment	of	major	gene	re-
sistance	across	large	areas	over	multiple	years,	and	is	consequently	
much	less	experimentally	tractable.	We	are	aware	of	only	one	em-
pirical	 study	designed	 to	compare	 some	of	 the	main	categories	of	
deployment	(Djian-	Caporalino	et	al.,	2014).	This	study	evaluated	the	
ability	of	mixtures,	rotations	and	pyramiding	of	two	different	resis-
tance	sources	to	control	root-	knot	nematode	of	pepper,	in	both	con-
trolled	and	 field	conditions.	 In	 this	context,	pyramiding	was	 found	
to	be	the	best	strategy,	followed	by	rotations,	and	finally	mixtures.	
As	a	complement	to	experimentation,	modelling	 is	a	useful	 tool	to	
compare	 the	durability	 and	epidemiological	 efficiency	of	 different	
strategies	and	to	explore	the	wide	range	of	spatiotemporal	deploy-
ment	options.	To	date,	no	such	global	comparison,	using	a	single	eco-	
evolutionary	framework	and	standardized	assumptions,	exists	(REX	
Consortium	2013,	2016).

The	objective	of	this	study	is	to	compare	the	four	main	catego-
ries	of	deployment	strategies	described	above	for	situations	where	
two	 major	 resistance	 genes	 with	 a	 complete	 efficiency	 (i.e.,	 they	
confer	immunity)	are	deployed,	and	address	the	following	questions:

1. How	do	evolutionary	and	epidemiological	outcomes	vary	across	
different	 categories	 of	 resistance	 deployment	 strategies?

2. What	 are	 the	 impacts	 of	 landscape	 organization	 (proportion	 of	
different	cultivars	planted,	and	their	spatial	or	temporal	aggrega-
tion)	and	pathogen	evolutionary	ability	(mutation	probability	and	
associated	 fitness	 costs)	 on	 the	 performance	 of	 different	
strategies?

3. Under	what	conditions	it	is	possible	to	achieve	both	evolutionary	
and	epidemiological	control	of	pathogens	 (i.e.,	 resistance	that	 is	
both	durable	and	efficient)?

To	motivate	this	work,	we	focus	on	crop	resistance	to	rust	patho-
gens	 (fungi	 of	 the	genus	Puccinia),	 although	our	 general	 conclusions	
are	likely	to	have	broader	implications.	Many	major	resistance	genes	
against	rust	pathogens	have	been	described,	but	also	quickly	overcome	
after	deployment	 in	the	field	 (Boyd,	2005;	Park,	2008;	Thompson	&	
Burdon,	 1992).	We	 investigate	 the	 questions	 above	 using	 a	 generic	
spatially	explicit	stochastic	model,	which	simulates	the	spread	of	ep-
idemics	across	an	agricultural	landscape	and	the	evolution	of	a	patho-
gen	in	response	to	the	deployment	of	host	resistance	(Figure	1).	This	
model,	described	in	a	previous	study	(Rimbaud,	Papaïx,	Rey,	Barrett,	
&	Thrall,	2018)	and	implemented	in	the	R	package	landsepi,	is	flexible	
enough	to	vary	resistance	sources,	deployment	categories	and	epide-
miological,	 evolutionary	 and	 landscape	 parameters	 (see	 Supporting	
information	 Videos	 S1–S4	 for	 examples).	 In	 particular,	 the	 model	
was	parameterized	to	roughly	represent	rust	diseases	of	cereal	crops	
(Table	1,	see	also	Supporting	information	Text	S1	in	Rimbaud,	Papaïx,	
Rey,	Barrett	et	al.	(2018)).
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2  | METHODS

2.1 | Model description

We	used	a	stochastic,	 spatially	explicit	demogenetic	model	 fully	
described	 in	 a	 previous	 study	 (Rimbaud,	 Papaïx,	 Rey,	 Barrett	
et	al.,	 2018).	 It	 simulates	 the	 clonal	 reproduction,	 spread	 and	
evolution	of	 a	pathogen	 in	 an	agricultural	 landscape	over	multi-
ple	cropping	seasons.	The	model	is	based	on	a	SEIR	(“susceptible-	
exposed-	infectious-	removed”)	 structure	 with	 a	 discrete	 time	
step.	Demographic	stochasticity	is	considered	for	each	transition	
between	 compartments	 using	 specific	 probability	 distributions	
(Figure	1a):	 (a)	Propagules	 contaminate	healthy	hosts	depending	
on	their	local	density	and	a	binomial	distribution;	(b)	contaminated	
hosts	are	 infected	according	 to	an	 infection	 rate	and	a	binomial	
distribution;	 (c)	 infected	 hosts	 become	 infectious	 after	 a	 latent	
period	 drawn	 from	 a	 gamma	 distribution;	 (d)	 infectious	 hosts	
produce	 propagules	 according	 to	 their	 reproduction	 rate	 and	 a	

Poisson	distribution;	(e)	propagules	may	mutate	to	acquire	infec-
tivity	and	disperse	across	the	landscape,	according	to	multinomial	
distributions;	and	(f)	infectious	hosts	are	removed	after	an	infec-
tious	period	drawn	from	a	gamma	distribution.	 In	this	model,	an	
“individual	host”	can	be	considered	as	a	foliar	site	where	a	prop-
agule	can	land	and	potentially	trigger	the	development	of	a	local-
ized	infection.

In	 this	 study,	 the	 model	 is	 parameterized	 to	 approximate	
biotrophic	foliar	fungal	diseases	as	typified	by	rusts	of	cereal	crops,	
caused	 by	 fungi	 of	 the	 genus	 Puccinia	 (see	 details	 on	model	 cali-
bration	in	Supporting	information	Text	S1	in	Rimbaud,	Papaïx,	Rey,	
Barrett	et	al.,	2018).	Within	these	pathosystems,	spores	(i.e.,	prop-
agules)	are	produced	by	sporulating	 lesions,	which	develop	on	the	
leaves	of	infected	hosts,	and	are	dispersed	by	wind.	The	probability	
of	 pathogen	dispersal	 from	one	 field	 to	 another	 field	 of	 the	 land-
scape	 is	computed	by	 integrating	a	power-	law	function	 (Figure	1b)	
over	all	pairs	of	points	belonging	to	the	two	considered	fields,	nor-
malized	by	the	surface	of	the	source	field.

F IGURE  1 Model	overview.	(a)	Model	architecture.	To	avoid	any	confusion	with	the	“susceptible”	cultivar,	the	SEIR	structure	is	labelled	
HLIR	for	“healthy-	latent-	infectious-	removed.”	Healthy	hosts	can	be	contaminated	by	propagules	and	may	become	infected.	Following	a	
latent	period,	infectious	hosts	produce	new	propagules,	which	may	mutate	and	disperse	across	the	landscape.	At	the	end	of	the	infectious	
period,	infected	hosts	become	epidemiologically	inactive.	Qualitative	resistance	prevents	transition	to	the	latent	infected	state	(L).	Green	
boxes	indicate	healthy	hosts,	which	contribute	to	crop	yield	and	host	growth,	in	contrast	to	latent	hosts	(dark	blue	box)	and	diseased	
hosts	(i.e.,	symptomatic,	red	boxes).	Parameters	associated	with	epidemiological	processes	are	indicated	in	grey	and	detailed	in	Table	1.	
Distributions	used	to	simulate	stochasticity	in	model	transitions	are	indicated	in	red;	B:	binomial,	Γ:	gamma,	P:	Poisson,	M:	multinomial.	Host	
growth	is	deterministic.	(b)	Two-	dimensional	representation	of	the	power-	law	dispersal	kernel	calibrated	for	rust	pathogens	(see	equation	
in Table 1; μexp = 20 m; a = 40;	b = 7).	Top	panel	indicates	the	logarithm	of	the	probability	to	disperse	from	the	origin	to	any	point	of	the	
landscape;	bottom	panel	indicates	the	cumulative	probability	of	dispersing	over	a	given	distance.	(c,d)	Example	of	simulation	with	two	major	
resistance	genes	deployed	as	a	mosaic:	(c)	dynamic	of	diseased	hosts	and	(d)	landscape	(φ1	=	2/3;	φ2	=	5/6;	α1	=	high;	α2	=	low).	Blue	vertical	
lines	indicate	the	durability	of	the	two	resistant	cultivars.	These	lines	delineate	the	three	periods	used	to	compute	epidemiological	outputs	
from	AUDPC:	short-	term	(ST,	green	area),	transitory	period	(TP,	grey)	and	long-	term	(LT,	red)
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It	is	considered	that	a	cultivar	carrying	a	major	resistance	gene	is	
immune	 to	disease,	 unless	 the	pathogen	has	 acquired	 an	 infectivity	
gene	via	mutation	(corresponding	to	the	“gene-	for-	gene”	concept	and	
described	in	many	plant–pathogen	interactions,	especially	cereal	rusts;	
Leonard,	1977;	Thompson	&	Burdon,	1992).	For	infectivity	gene	g,	the	
mutation	probability	τg	depends	on	many	factors	including	the	number	
of	genetic	mutations	per	generation	per	base	pair	(i.e.,	the	classic	“mu-
tation	rate”	of	empirical	studies),	the	number	and	nature	of	required	
genetic	mutations,	and	the	potential	dependency	between	these	mu-
tations.	The	acquisition	of	such	infectivity	leads	to	breakdown	of	the	
associated	major	 resistance	 gene.	 However,	 such	 evolution	may	 be	
penalized	by	a	fitness	cost	on	susceptible	hosts	(Brown,	2015;	Laine	&	
Barrès,	2013;	Leach,	Vera	Cruz,	Bai,	&	Leung,	2001;	Thrall	&	Burdon,	
2003).	Therefore,	 in	our	model,	pathogens	carrying	 infectivity	genes	
may	have	reduced	 infectivity	on	susceptible	hosts	relative	to	patho-
gens	that	do	not	carry	these	genes	(fitness	cost	denoted	by	θg).

Each	cropping	season	consists	of	host	planting,	 logistic	growth	
and	 finally	 harvest,	 which	 imposes	 a	 potential	 bottleneck	 for	 the	
pathogen	 before	 the	 next	 cropping	 season.	 Two	 stochastic	 algo-
rithms	 are	 used	 to	 generate	 and	 replicate	 agricultural	 landscapes	
with	specific	 features.	Landscape	structure	 is	 randomly	generated	
using	a	T-	tessellation	algorithm	(see	Papaïx	et	al.,	2014	for	details)	to	
control	the	number	and	shape	of	fields.	Landscape	composition	(i.e.,	
cultivar	allocation)	 is	randomly	simulated	using	an	algorithm	based	
on	latent	Gaussian	fields	(see	examples	in	Figure	1d	and	Supporting	
information	Figure	S1	and	Rimbaud,	Papaïx,	Rey,	Barrett	et	al.,	2018	
for	 details).	 Some	 fields	 are	 cultivated	 with	 a	 susceptible	 cultivar	
(SC),	which	 is	 initially	 infected	by	the	pathogen.	 In	the	other	fields	
(whose	proportion	and	level	of	spatial	aggregation	are	controlled	by	
parameters	φ1 and α1,	respectively),	two	major	resistance	genes	are	
deployed	according	to	one	of	the	following	strategies:

(i)	 Mosaics:	 two	 resistant	 cultivars	 (RC1	 and	 RC2,	 carrying	 the	
first	 and	 the	 second	major	 resistance	genes,	 respectively)	 are	
assigned	to	candidate	fields	with	controlled	relative	proportion	
(φ2)	and	 level	of	spatial	aggregation	(α2)	 (see	Supporting	 infor-
mation	Video	S1	for	an	example	simulation);

(ii)	 Mixtures:	both	RC1	and	RC2	are	allocated	to	all	candidate	fields	
with	a	controlled	relative	proportion	(φ2)	(see	Supporting	infor-
mation	Video	S2);

(iii)	 Rotations:	RC1	and	RC2	are	alternatively	cultivated	in	candidate	
fields,	depending	on	the	number	of	cropping	seasons	over	which	
a	given	cultivar	is	grown	before	being	rotated	(here,	α2	refers	to	
temporal	aggregation)	(see	Supporting	information	Video	S3);

(iv)	 Pyramiding:	all	candidate	fields	are	cultivated	with	RC12,	a	resis-
tant	 cultivar	 carrying	both	 resistance	 sources	 (see	Supporting	
information	Video	S4).

Note,	in	mixtures,	the	potential	decreased	growth	due	to	disease	in	
one	of	the	components	is	not	compensated	for	by	increased	growth	in	
other	components	(i.e.,	all	components	are	considered	independent).	
This	assumption	may	be	simplistic	but	is	more	parsimonious	than	those	

TABLE  1 Summary	of	model	parameters	and	values	for	rust	
pathogens

Notation Parameter Value

Simulation	parameters

Y Number	of	simulated	years 48	yearsa

T Number	of	time-	steps	in	a	
cropping	season

120	days/year

Initial	conditions	and	seasonality

Cv

0 Plantation	host	density	of	
cultivar	v

0.1/m2b

Cmax

v
Maximal	host	density	of	
cultivar	v

2/m2b

δv Host	growth	rate	of	
cultivar	v

0.1/dayb

ϕ Initial	probability	of	
infection

5.10−4

λ Off-	season	survival	
probability

10−4

Pathogen	aggressiveness	components

emax Maximal	expected	
infection	rate

0.40/spore

γmin Minimal	expected	latent	
period	duration

10	days

γvar Variance	of	the	latent	
period	duration

9	days

Υmax Maximal	expected	
infectious	period	 
duration

24	days

Υvar Variance	of	the	infectious	
period	duration

105	days

rmax Maximal	expected	
propagule	production	rate

3.125	spores/
day

Pathogen	dispersal

g(.) Dispersal	kernel Power-	law	
functionc

a Scale	parameter 40

b Width	of	the	tail 7

π(.) Contamination	function Sigmoid	
curved

κ Related	to	position	of	the	
inflexion	point

5.33

σ Related	to	position	of	the	
inflexion	point

3

Notes.	 See	 Supporting	 information	 Text	 S1	 in	 (Rimbaud,	 Papaïx,	 Rey,	
Barrett	 et	al.,	 2018)	 for	 calibration	 details.	 Epidemic	 processes	 associ-
ated	with	some	of	the	parameters	are	illustrated	in	Figure	1.
aWhen	resistance	is	deployed	within	crop	rotations,	48	years	correspond	to	
24,	 12	 or	 8	 cycles	 for	 low,	moderate	 and	 high	 value	 for	α2,	 respective-
ly.bSame	value	 for	all	 cultivars.cg

(
||z� −z||

)
=

(b−2)(b−1)

2πa2
⋅

(
1+

||z�−z||
a

)−b	with	

||z� −z||	the	Euclidian	distance	between	locations	z	and	z′	in	fields	i	and	i′,	
respectively;	the	mean	dispersal	distance	is	given	by:	 2a

(b−3)
	=20	m,	but	long-	

distance	 dispersal	may	 also	 occur.dπ(x)= 1−e−κx
σ

1−e−κ
	with	 x	 the	 proportion	 of	

healthy	hosts	in	the	host	population.	The	position	of	the	inflexion	point	of	
this	sigmoid	curve	is	given	by	the	relation	xo=

(
(σ−1)∕κσ

) 1

σ ≈0.5.
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required	to	simulate	compensation	processes	for	host	growth	in	mix-
tures,	 especially	 if	 the	 relative	 proportions	 of	 the	 different	 compo-
nents	are	unbalanced.

Table	1	 summarizes	model	 parameters	 and	 their	 value	 for	 rust	
pathogens.

2.2 | Simulation plan and model outputs

2.2.1 | Simulation plan

The	 model	 was	 used	 to	 assess	 evolutionary	 and	 epidemiological	
outcomes	 for	 different	 deployment	 categories	 and	 a	 wide	 range	
of	 options	 to	 deploy	 two	 major	 resistance	 genes.	 In	 addition	 to	
the	 category	 of	 resistance	 deployment	 (mosaic,	mixture,	 rotation,	
pyramiding),	we	varied	the	proportion	of	fields	where	resistance	is	
deployed	(φ1,	 five	values)	and	their	 level	of	spatial	aggregation	(α1,	
three	values).	We	also	varied	the	relative	proportion	of	RC2	(φ2,	five	
values	for	mosaics	and	mixtures)	or	its	level	of	spatial/temporal	ag-
gregation	 (α2,	 three	values	 for	mosaics	 and	 rotations).	To	 simulate	
different	 levels	 of	 pathogen	 evolutionary	 potential,	we	 varied	 the	

mutation	probability	 (τ,	 two	values)	 and	 associated	 fitness	 cost	 (θ,	
five	values)	with	the	same	characteristics	for	both	major	genes	(i.e.,	
τg = τ and θg = θ ∀	 g	 ϵ{1;2})	 and	 assuming	 independence	 between	
mutations.	 The	 values	 for	 the	mutation	 probability	were	 selected	
to	simulate	two	contrasted	situations.	Trial	simulations	showed	that	
when τ = 10−7,	 a	 cultivar	 carrying	 a	 single	major	 gene	 is	 generally	
overcome	in	less	than	48	years,	but	a	cultivar	carrying	a	pyramid	of	
two	major	genes	is	never	overcome.	When	τ = 10−4,	a	cultivar	carry-
ing	a	single	major	gene	is	overcome	in	less	than	1	year	and	a	cultivar	
carrying	a	pyramid	of	two	major	genes	is	generally	overcome	in	less	
than	48	years.	Thus,	these	values	should	ensure	breakdown	of	some	
resistance	sources,	while	allowing	the	comparison	of	different	strat-
egies	with	regard	to	their	 respective	abilities	to	mitigate	pathogen	
evolution	in	the	long	term.
For	 each	 deployment	 category,	 the	 parameters	 mentioned	 above	
were	explored	using	a	complete	factorial	design	(Table	2).	Simulations	
were	performed	using	five	different	landscape	structures	(about	150	
fields,	 total	 area:	 2	×	2	km2,	 see	 Supporting	 information	 Figure	 S1	
in	Rimbaud,	Papaïx,	Rey,	Barrett	et	al.,	2018)	and	10	replicates	per	
landscape	 structure,	 resulting	 in	 50	 stochastic	 replicates	 overall,	

Notation Parameter Values

Landscape	structure

J Number	of	fields	in	the	landscape 155;	154;	152;	
153;	156a

Landscape	organizationb

φ1 Cropping	ratio	of	fields	where	resistance	is	
deployed:	�1=

RC1+RC2

SC+RC1+RC2

1/6;	2/6;	3/6;	4/6;	
5/6

α1 Level	of	spatial	aggregation	of	fields	where	
resistance	is	deployed	(RC1	and	RC2)

Low;	moderate;	
high

 φ2 Relative	cropping	ratio	of	RC2: �2=
RC2

RC1+RC2

1/6;	2/6;	3/6;	4/6;	
5/6c

α2 Relative	level	of	spatial/temporal	aggregation	
of	RC2

Low;	moderate;	
highd

Pathogen	evolutionary	ability

τg Mutation	probability	for	infectivity	gene	ge 10−7; 10−4

θg Fitness	cost	of	infectivity	gene	g 0.00; 0.25; 0.50; 
0.75; 1.00f

Notes.	A	susceptible	(SC),	a	resistant	cultivar	(RC1)	and	possibly	a	second	resistant	cultivar	(RC2)	are	
assigned	to	fields	according	to	one	of	the	four	deployment	categories	(mosaic,	mixture,	rotation	and	
pyramids).	For	each	deployment	category,	parameters	related	to	landscape	organization	and	patho-
gen	evolutionary	ability	are	varied	according	to	a	complete	factorial	design.	Every	simulation	is	rep-
licated	10	times	×	5	landscape	structures	to	account	for	stochasticity,	resulting	in	a	total	of	180,000	
simulations.
aSee	Supporting	information	Figure	S1	in	Rimbaud,	Papaïx,	Rey,	Barrett	et	al.	(2018)	for	illustrations	
of	landscape	structures	generated	using	a	T-	tessellation	algorithm,	and	see	Papaïx	et	al.	(2014)	for	
details	on	the	algorithm.bCrop	cultivars	are	allocated	using	an	algorithm	based	on	latent	Gaussian	
fields	to	control	proportion	and	level	of	spatial	aggregation	of	each	cultivar;	see	Supporting	informa-
tion	Figure	S1	of	 the	present	article	 for	 illustrations,	and	see	Rimbaud,	Papaïx,	Rey,	Barrett	et	al.	
(2018)	for	details	on	the	algorithm.cFor	mosaics	and	mixtures,	only.dFor	mosaics	and	rotations,	only.	
In	crop	rotations,	cultivars	are	rotated	every	year	(α2	=	low),	every	2	years	(α2	=	moderate)	or	every	
3	years	(α2	=	high).

eProbability	for	a	propagule	to	change	its	infectivity	on	a	resistant	cultivar	carry-
ing	major	gene	g.fSame	value	for	all	infectivity	genes.	θg	=	0	means	absence	of	cost	of	infectivity,	and	
θg	=	1	means	the	complete	loss	of	infectivity	of	adapted	pathogens	on	the	susceptible	cultivar.

TABLE  2 Simulation	plan
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and	a	total	of	180,000	simulations.	Every	simulation	was	run	for	48	
seasons	of	120	days	each.	Trial	simulations	indicated	that	this	time	
period	was	long	enough	to	allow	us	to	differentiate	among	deploy-
ment	strategies	with	regard	to	their	evolutionary	and	epidemiolog-
ical	performance.

2.2.2 | Model outputs

At	the	end	of	a	simulation	run,	the	results	were	evaluated	using	a	set	
of	 evolutionary	 and	 epidemiological	 outputs	 (listed	 in	 Table	3	 and	
detailed	in	Rimbaud,	Papaïx,	Rey,	Barrett	et	al.,	2018).	Evolutionary	
outputs	characterize	three	steps	required	to	overcome	major	gene	
resistance:	 (a)	 first	 appearance	 of	 mutants,	 (b)	 initial	 migration	 to	
resistant	 hosts	 and	 infection	 and	 (c)	 broader	 establishment	 in	 the	
resistant	 host	 population	 (i.e.,	 the	 first	 time	when	 the	 number	 of	
infections	of	 resistant	 hosts	 exceeds	 a	 threshold	 above	which	ex-
tinction	in	a	steady	environment	becomes	unlikely).	Epidemiological	
outputs	were	evaluated	using	the	area	under	the	disease	progress	
curve	(AUDPC)	to	measure	disease	severity	(on	a	specific	cultivar	or	
on	the	whole	landscape)	across	the	whole	simulation	run	or	across	
characteristic	periods	of	pathogen	adaptation	to	resistance:	(a)	the	
initial	short-	term	period	when	all	major	resistance	genes	were	still	
effective;	 (b)	 when	 appropriate,	 a	 transitory	 period	 during	 which	
one	major	gene	has	been	overcome	but	not	the	second	one	(i.e.,	the	
deployment	strategy	was	only	partially	effective);	and	(c)	a	 longer-	
term	period	when	all	major	resistance	genes	have	been	overcome.	
Figure	1c	provides	an	example	of	a	simulation	run	and	delimitation	
of	these	periods.

2.3 | Statistical analyses

2.3.1 | Polynomial regressions

For	every	deployment	category	and	mutation	probability,	the	num-
ber	 of	 time-	steps	 until	 mutants	 carrying	 the	 first,	 the	 second	 or	
both	infectivity	genes	became	established	in	resistant	host	popula-
tion	were	 fitted	 by	 generalized	 linear	models.	We	 used	 a	 Poisson	
regression	 with	 logarithm	 as	 the	 link	 function,	 and	 third-degree	
Legendre	 polynomials	 including	 interactions	 up	 to	 second	 order,	
and	restricted	to	polynomial	terms	of	up	to	degree	3.	The	explaining	
variables	were	the	cropping	ratio	 (φ1),	 the	 level	of	spatial	aggrega-
tion	(α1),	the	cost	of	infectivity	(θ),	and,	when	appropriate,	the	rela-
tive	cropping	ratio	(φ2)	and	the	relative	level	of	aggregation	(α2).	In	
these	analyses,	α1 and α2	were	considered	as	quantitative	variables	
(low	=	1,	intermediate	=	2,	high	=	3),	and	all	explaining	variables	were	
rescaled	between	−1	and	1	(definition	domain	of	Legendre	polyno-
mials).	In	the	same	way,	AUDPC	values	corresponding	to	epidemio-
logical	 outputs	 (when	 available,	 short-	term	 control,	 control	 during	
the	 transitory	period,	 long-	term	and	overall	 control)	were	normal-
ized	by	the	average	AUDPC	obtained	in	a	fully	susceptible	landscape	
(AUDPC0	=	0.38)	and	fitted	by	linear	models	with	Legendre	polyno-
mial	 regressions.	 Because	 these	 polynomials	 are	 orthogonal,	 they	
could	be	used	 to	compute	sensitivity	 indices	of	model	parameters	

and	their	 interactions	 (polynomial	chaos	expansion,	Sudret,	2008).	
The	main	 (or	 “first-	order”)	 sensitivity	 index	 of	 an	 input	 parameter	
measures	its	main	relative	contribution	to	the	variance	of	the	output	
variable,	whereas	the	total	sensitivity	index	includes	its	interactions	
with	 other	 parameters.	 Furthermore,	 the	 polynomial	 regressions	
were	also	used	to	predict	each	model	output	from	different	values	
of	model	parameters.	Supporting	information	Table	S1	gives	metrics	
of	goodness	of	fit	for	every	regression.

2.3.2 | Principal component analyses

A	 principal	 component	 analysis	 (PCA)	 was	 performed	 on	 model	
outputs	 showing	 nonmissing	 values.	 Because	 some	 epidemiologi-
cal	metrics	could	not	be	computed	in	many	simulations	(AUDPCST,	
AUDPCTP	 and	AUDPCLT),	 global	 disease	 severity	 for	 the	 different	
cultivars	 (AUDPCSC,	 AUDPCRC1	 and	 AUDPCRC2)	 across	 the	whole	
simulation	period	was	used	instead.

The	model	is	written	using	the	C	and	R	languages	and	is	available	
in	 the	 R	 package	 landsepi	 (Rimbaud,	 Papaïx,	 &	 Rey,	 2018).	Within	
the	R	 (v3.4.0,	R	Core	Team	2012)	 software,	package	ade4	 (v1.7-	6,	
Dray	&	Dufour,	2007)	was	used	to	compute	the	PCA,	and	package	
orthopolynom	(v1.0-	5,	Novomestky,	2013)	to	compute	the	Legendre	
polynomials.	One	simulation	run	takes	approximately	60	s	on	a	stan-
dard	desktop	computer	(Intel®	Core™	i5-	5300U).

3  | RESULTS

Using	 a	 factorial	 design	 (see	Table	2	 and	Methods	 for	 details),	we	
varied	model	parameters	associated	with	the	deployment	category	
(mosaic,	 mixture,	 rotation	 or	 pyramiding),	 pathogen	 evolutionary	
potential	 (mutation	 probabilities	 and	 associated	 fitness	 costs)	 and	
landscape	organization	(proportion	of	resistant	fields,	relative	pro-
portion	of	each	major	gene	present	 and	 levels	of	 aggregation	and	
relative	aggregation;	 see	Supporting	 information	Figure	S1	 for	ex-
amples	of	simulated	landscapes).	Here,	the	durability	of	major	resist-
ance	genes	was	measured	by	the	time	to	establishment	of	adapted	
(mutant)	pathogens	in	the	resistant	host	population	(i.e.,	the	point	at	
which	extinction	in	a	steady	environment	becomes	unlikely)	and	also	
referred	to	as	“time	to	breakdown.”	Epidemiological	outcomes	were	
evaluated	using	the	area	under	the	disease	progress	curve	(AUDPC)	
to	measure	disease	severity	across	characteristic	periods	of	patho-
gen	adaptation	to	resistance	(see	Table	3	for	details).	Previous	work	
showed	 that	 landscape	 structure	 (spatial	 structure	 of	 local	 field	
boundaries,	 not	 to	 be	 confused	 with	 landscape	 organization)	 had	
no	effect	on	model	outputs	(see	Supporting	information	Figure	S2).	
Thus,	each	of	the	3,600	different	combinations	of	input	parameters	
was	 replicated	 10	 times	 ×	 5	 landscape	 structures	 to	 account	 for	
model	stochasticity,	resulting	in	a	total	of	180,000	simulations.

In	a	typical	manner,	a	simulation	was	initiated	with	the	allocation	
of	a	susceptible	cultivar	and	two	cultivars	carrying	two	major	resis-
tance	genes	(or	one	cultivar	carrying	both	genes	for	the	pyramiding	
strategy).	Figure	1d	provides	an	example	of	landscape	organization	
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in	 a	 mosaic	 strategy.	 For	 this	 study,	 we	 assumed	 that	 the	 initial	
pathogen	population	was	only	adapted	to	susceptible	hosts	and	that	
the	major	 resistance	genes	conferred	complete	 immunity	 to	 resis-
tant	hosts.	However,	 through	mutation,	 the	pathogen	 can	acquire	
infectivity	genes	able	to	overcome	the	associated	major	resistance	
genes.	 In	 this	 work,	 “infectivity”	 is	 defined	 as	 in	 previous	 studies	
(Burdon	et	al.,	2014,	2016;	Susi,	Thrall,	Barrett,	&	Burdon,	2017)	as	
the	qualitative	ability	to	infect	a	resistant	host	(i.e.,	it	is	synonymous	
with	the	term	‘virulence’	in	plant	pathology;	however,	we	prefer	to	
use	infectivity,	as	virulence	has	different	meanings	in	the	plant	pa-
thology,	parasitology	and	evolutionary	biology	literature).	Epidemics	
were	 simulated	 using	 a	 demogenetic	 model	 with	 SEIR	 structure	
(Figure	1a	 and	 Methods).	 The	 dispersal	 of	 mutant	 pathogens	 to	
fields	planted	with	 resistant	cultivars	 (see	 the	power-	law	dispersal	
kernel	in	Figure	1b)	may	allow	infection	of	resistant	hosts	and	sub-
sequent	establishment	of	 infective	pathogens	 in	the	resistant	host	
population	(see	an	example	of	disease	dynamics	in	Figure	1c).	After	
48	years	(cropping	cycles)	of	simulation,	evolutionary	and	epidemio-
logical	outcomes	were	characterized	by	a	set	of	model	outputs	(see	
the	complete	list	of	output	variables	in	Table	3).

Of	the	180,000	simulations,	109	resulted	in	pathogen	extinction	
before	 the	end	of	 the	simulation.	 In	 the	other	simulations,	mutant	
pathogens	 appeared	 on	 average	 after	 0.27	year	 (min–max:	 0.01–
1.60)	 and	 infected	 resistant	 hosts	 after	 an	 average	 of	 5.55	years	
(0.01–48.00).	The	mean	durability	of	resistance	genes	was	approx-
imately	12.55	years	 (0.50–48.00).	The	epidemiological	outputs,	 all	
based	on	the	computation	of	 the	AUDPC,	varied	from	0%	(i.e.,	no	
disease)	to	97%	(i.e.,	severe	epidemics)	of	the	maximum	obtainable	
in	the	absence	of	resistant	hosts.	Below,	we	focus	on	specific	factors	
that	drive	variability	in	performance	among	different	resistance	de-
ployment	strategies.

3.1 | Evolutionary outcomes

Every	 simulation	 resulted	 in	 one	 of	 four	 evolutionary	 outcomes,	
depending	on	whether	(a)	major	gene	breakdown	did	not	occur,	(b)	
only	one	gene	was	overcome,	(c)	both	major	genes	were	overcome	
by	different	pathotypes	or	(d)	the	two	major	genes	suffered	break-
down	 and,	 in	 addition,	 a	 superpathogen	 (able	 to	 overcome	 both	
major	 resistance	 genes)	 emerged	 and	 established	 in	 the	 resistant	
host	population.

3.1.1 | Durability of major resistance genes

At	high	mutation	probabilities	(τ = 10−4),	almost	100%	of	the	simu-
lations	 associated	with	mosaics,	mixtures	 and	 rotations	 resulted	
in	 the	breakdown	of	both	major	genes	 in	 less	 than	one	cropping	
season,	possibly	along	with	the	establishment	of	a	superpathogen	
(Figure	2).	In	contrast,	complete	durability	was	maintained	in	30%	
of	 the	 simulations	performed	with	 a	pyramiding	 strategy,	 and	 in	
most	of	the	remaining	simulations,	more	than	one	cropping	season	
was	necessary	 to	overcome	 the	pyramid.	At	 low	mutation	prob-
abilities	(τ = 10−7),	the	pyramiding	strategy	was	always	completely	

TABLE  3 List	of	model	outputs	computed	at	the	end	of	a	
simulation	run

Notation Output

Evolutionary	outputs	(related	to	resistance	durability)a,b

Mut1 First	appearance	of	a	mutant	carrying	
infectivity	gene	1

Mut2 First	appearance	of	a	mutant	carrying	
infectivity	gene	2

Mut12 First	appearance	of	the	superpathogenc

Inf1 First	infection	of	a	resistant	host	by	a	
mutant	carrying	infectivity	gene	1

Inf2 First	infection	of	a	resistant	host	by	a	
mutant	carrying	infectivity	gene	2

Inf12 First	infection	of	a	resistant	host	by	the	
superpathogenc

Dur1 Broader	establishment	of	a	mutant	
carrying	infectivity	gene	1	in	the	
resistant	host	population

Dur2 Broader	establishment	of	a	mutant	
carrying	infectivity	gene	2	in	the	
resistant	host	population

Dur12 Broader	establishment	of	the	super-
pathogenc	in	the	resistant	host	
population

Epidemiological	outputs	computed	from	AUDPC	(related	to	
epidemiological	efficiency)d

AUDPCSC Disease	severity	on	the	susceptible	
cultivar

AUDPCRC1 Disease	severity	on	resistant	cultivar	1,	
carrying	major	resistance	gene	1

AUDPCRC2 Disease	severity	on	resistant	cultivar	2,	
carrying	major	resistance	gene	2

AUDPCST Short-	term	control,	computed	on	the	
susceptible	cultivar	from	the	beginning	
of	the	simulation	until	one	of	the	major	
resistance	gene	is	overcomee

AUDPCTP Control	during	the	transitory	period	
when	only	one	major	resistance	gene	is	
overcome,	computed	on	the	suscepti-
ble	cultivarf

AUDPCLT Long-	term	control,	computed	on	the	
whole	landscape	from	the	time	both	
major	resistance	genes	are	overcome	
until	the	end	of	the	simulation	rung

AUDPCtot Global	control,	computed	on	the	whole	
landscape	across	the	whole	simulation	
run

Notes. aWhen	a	duration	exceeds	the	simulation	run	(48	years,	i.e.,	5,760	
time-	steps),	it	is	set	at	48	years	+	1	day.bIn	the	pyramiding	strategy,	the	
resistant	 cultivar	 carries	 both	 major	 resistant	 genes	 1	 and	 2,	 thus	
Inf1	=	Inf2	=	Inf12 and dur1 = dur2 = dur12.cThe	 superpathogen	 carries	
both	infectivity	genes	1	and	2	and	is	able	to	overcome	both	major	resis-
tance	genes	1	and	2.dIn	the	pyramiding	strategy,	AUDPCRC1	=	AUDPCRC2 
and	AUDPCTP	cannot	be	computed.

eCannot	be	computed	if	a	major	gene	
is	overcome	before	the	end	of	the	first	cropping	season.fCannot	be	com-
puted	if	the	second	major	gene	is	overcome	less	than	2	years	after	the	
first	major	gene.gCannot	be	computed	if	all	major	genes	have	not	been	
overcome	by	the	end	of	the	simulation.
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durable,	 whereas	 mosaics,	 mixtures	 and	 rotations	 displayed	 all	
possible	evolutionary	outcomes.	The	two	major	genes	were	more	
often	completely	durable	under	both	low	and	high	cropping	ratios	
(proportion	 of	 fields	 cultivated	 with	 resistant	 hosts,	 Figure	2a),	
with	increasing	levels	of	spatial	aggregation	of	the	resistant	fields	
(Figure	2b)	and	with	increasing	fitness	costs	associated	with	path-
ogen	mutation	towards	greater	 infectivity	 (Figure	2e).	 In	mosaics	
and	 especially	mixtures,	 one	 of	 the	major	 genes	more	 often	 re-
mained	 effective	when	 its	 relative	 proportion	 in	 resistant	 fields	
(relative	cropping	ratio	within	resistant	fields)	was	low,	to	the	det-
riment	 of	 the	 other	major	 gene	 (Figure	2c).	 Varying	 the	 relative	
spatial	 aggregation	 of	 the	major	 genes	 among	 resistant	 fields	 in	
mosaics	did	not	impact	the	proportion	of	simulations	where	they	
were	overcome,	whereas	 increasing	 the	 temporal	 aggregation	 in	
rotations	(i.e.,	time	until	a	cultivar	is	rotated)	led	to	smaller	propor-
tion	of	simulations	where	both	genes	remained	completely	dura-
ble	(Figure	2d).

This	qualitative	assessment	of	major	 resistance	gene	durability	
was	complemented	by	a	quantitative	analysis	using	polynomial	 re-
gression	 (see	 Supporting	 information	 Table	 S1	 for	 goodness-	of-	fit	
metrics).	This	analysis	showed	that	the	durability	of	a	given	gene	was	
mostly	influenced	by	its	relative	proportion	in	mosaics	and	mixtures,	
by	the	proportion	of	resistant	fields	in	the	landscape	and	their	level	
of	spatial	aggregation	in	rotations	and	by	these	two	last	parameters	
as	well	as	the	cost	of	infectivity	in	pyramids	(see	the	sensitivity	anal-
yses	in	Supporting	information	Figures	S3	and	S4).

Model	predictions	of	the	durability	of	the	two	major	genes	cor-
roborated	the	qualitative	analysis	with	regard	to	the	U-	shaped	effect	
of	cropping	ratio	(Figure	3a	and	Supporting	information	Figure	S5A),	
the	 positive	 effect	 of	 the	 level	 of	 spatial	 aggregation	 of	 resistant	
fields	and	the	cost	of	 infectivity	(Figure	3b,e	and	Supporting	infor-
mation	 Figure	 S5B,E),	 the	 small	 effect	 of	 the	 relative	 aggregation	
(Figure	3d	 and	 Supporting	 information	Figure	 S5D),	 as	well	 as	 the	
increased	durability	of	the	minority	component	in	mosaic	and	mix-
ture	 strategies	 (Figure	3c	and	Supporting	 information	Figure	S5C).	
Overall,	our	results	found	that	pyramiding	the	two	major	resistance	
genes	offered	the	best	durability,	followed	by	mixtures,	and	finally	
mosaics	and	 rotations.	 It	 should	be	noted	 that	 rotations	appeared	
to	 perform	 better	 than	 mosaics	 with	 respect	 to	 the	 durability	 of	
the	first	major	resistance	gene	(Figure	3)	but	not	with	regard	to	the	
second	gene	(see	Supporting	information	Figure	S5),	although	both	
genes	were	assumed	identical.	This	was	actually	an	artefact	of	the	
model,	owing	to	the	initial	conditions:	Rotations	were	simulated	by	
starting	with	 the	second	 resistant	cultivar	 (RC2),	 so	 the	 first	 resis-
tant	cultivar	(RC1,	carrying	the	first	major	resistance	gene)	was	not	
deployed	before	Year	2,	3	or	4	(depending	on	the	level	of	temporal	

aggregation).	Thus,	the	durability	of	the	first	major	gene	(computed	
from	the	beginning	of	the	simulation)	was	slightly	overestimated	in	
rotations.

3.1.2 | Time to emergence of a superpathogen

At	high	mutation	probabilities,	 the	 cost	 of	 infectivity	 had	by	 far	
the	greatest	impact	on	the	time	to	establishment	of	a	superpath-
ogen	 in	 the	 resistant	 host	 population	 (see	 sensitivity	 analysis	 in	
Supporting	 information	 Figure	 S6A).	 In	 the	 absence	 of	 infectiv-
ity	 costs,	 a	 superpathogen	 emerged	 in	 almost	 all	 simulations.	 In	
contrast,	when	costs	were	high	 (i.e.,	 infection	 rates	on	suscepti-
ble	hosts	were	reduced	by	75%),	superpathogens	emerged	in	only	
11%,	 9%,	 41%	 and	 49%	 of	 the	 simulations	 performed	with	mo-
saics,	mixtures,	 rotations	 and	 pyramids,	 respectively	 (Figure	2e).	
It	 is	 interesting	to	note	that,	at	 this	 level	of	 infectivity	cost,	mo-
saics,	mixtures	 and	 rotations	 impeded	 superpathogen	 establish-
ment	more	efficiently	than	pyramids	(see	Supporting	information	
Figure	S6B	for	model	predictions	using	polynomial	regression).	At	
low	mutation	probabilities,	 the	superpathogen	never	emerged	 in	
pyramids,	as	previously	noted.	In	the	other	deployment	categories,	
the	superpathogen	became	established	more	often	with	 increas-
ing	cropping	 ratios	 in	mosaics	and	mixtures	 (Figure	2a),	decreas-
ing	level	of	spatial	aggregation	between	susceptible	and	resistant	
hosts	in	rotations	(Figure	2b)	and	especially	decreasing	costs	of	in-
fectivity	(Figure	2e).	The	time	to	establishment	was	mainly	driven	
by	 the	 interaction	between	 the	cost	of	 infectivity	and	other	pa-
rameters:	cropping	ratio	for	all	three	strategies,	relative	cropping	
ratio	for	mixtures	and	level	of	spatial	aggregation	for	rotations	(see	
Supporting	information	Figure	S6A).	Increasing	costs	of	infectivity	
mitigated	 (towards	 completely	 annulling)	 the	 effect	 of	 the	other	
parameters	 (see	 model	 predictions	 in	 Supporting	 information	
Figure	S6C–G).

3.2 | Epidemiological outcomes

In	a	fully	susceptible	landscape,	the	average	disease	severity	(repre-
sented	by	the	area	under	disease	progress	curve,	AUDPC0)	was	for-
merly	estimated	at	0.38	(Rimbaud,	Papaïx,	Rey,	Barrett	et	al.,	2018),	
meaning	that	diseased	host	(states	I	and	R	in	Figure	1a)	represented	
an	average	proportion	of	38%	of	the	carrying	capacity.	 In	the	cur-
rent	 study,	 all	 computations	 of	AUDPC	 (see	 list	 of	model	 outputs	
in	Table	3	and	details	 in	Rimbaud,	Papaïx,	Rey,	Barrett	et	al.,	2018)	
were	expressed	 relative	 to	AUDPC0;	 hence,	 they	might	 vary	 from	
0%	(i.e.,	no	disease)	to	100%	(i.e.,	same	disease	severity	as	in	a	fully	
susceptible	landscape).

F IGURE  2 Evolutionary	outcomes.	Proportion	of	simulations	associated	with	each	of	the	possible	evolutionary	outcomes,	at	high	
(τ = 10−4)	and	low	(τ = 10−7)	mutation	probabilities.	Panels	show	the	effect	of	the	proportion	of	fields	where	resistance	is	deployed	(a),	their	
level	of	spatial	aggregation	(b),	the	relative	proportion	of	the	second	major	gene	(c),	its	relative	level	of	spatial	(for	mosaics)	or	temporal	
(for	rotations)	aggregation	(d)	and	the	fitness	cost	associated	with	pathogen	infectivity	(e).	SC,	susceptible	cultivar;	RC,	resistant	cultivars,	
including	the	first	(RC1)	and	the	second	(RC2)	resistance	gene.	Darker	shaded	colours	refer	to	situations	where	resistance	breakdown	was	
rapid	(<1	year),	while	faded	colours	refer	to	those	where	resistance	breakdown	was	slower	(>1	year)
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3.2.1 | Short- term disease control and control 
during the transitory period

Short-	term	control	was	defined	here	as	 the	epidemiological	pro-
tection	provided	to	susceptible	hosts	by	resistant	cultivars	when	
the	deployment	strategy	was	completely	effective	and	denoted	by	
AUDPCST	 (green	area	 in	Figure	1c,	 computed	 in	 simulations	 rep-
resented	 in	 faded	 colours	 in	 Figure	2,	 i.e.,	 where	 resistance	 du-
rability	was	greater	 than	1	year).	The	epidemiological	protection	
provided	by	a	partially	effective	deployment	strategy	 (i.e.,	when	
only	one	major	resistance	gene	was	overcome)	was	also	computed	
and	denoted	by	AUDPCTP	 (grey	area	 in	Figure	1c).	At	high	muta-
tion	probabilities,	these	criteria	could	not	be	assessed	for	strate-
gies	other	than	pyramiding,	as	in	these	scenarios	both	major	genes	
were	 overcome	 during	 the	 first	 year	 of	 simulation	 in	 almost	 all	
simulations.	 For	 low	 mutation	 probabilities,	 sensitivity	 analyses	
based	on	polynomial	regressions	indicate	that	only	the	proportion	
of	 fields	where	 resistance	was	 deployed	 (cropping	 ratio)	 had	 an	
impact	on	short-	term	control	 (see	Supporting	 information	Figure	
S7).	 For	 the	 transitory	 period,	 the	 results	were	 very	 similar,	 ex-
cept	 that	 the	 cost	 of	 infectivity	 had	 a	 slightly	 greater	 influence,	
with	stronger	costs	amplifying	the	effect	of	the	cropping	ratio	(see	
Supporting	 information	 Figure	 S8).	 The	 polynomial	 regressions	
show	that	the	different	deployment	categories	performed	equally	
well	in	the	short-	term	and	the	transitory	periods,	with	better	con-
trol	for	higher	cropping	ratios	(Figure	4a	and	Supporting	informa-
tion	Figure	S8B).

3.2.2 | Long- term disease control

The	 long-	term	 control,	 denoted	 by	 AUDPCLT,	 characterized	 dis-
ease	 severity	 of	 the	 whole	 landscape	 once	 all	 resistances	 had	
been	 overcome	 (red	 area	 in	 Figure	1c,	 computed	 in	 simulations	
represented	 in	blue	and	orange	 in	Figure	2,	 i.e.,	where	all	 resist-
ances	have	been	overcome).	For	both	high	and	low	mutation	prob-
abilities,	the	sensitivity	analyses	highlight	the	key	role	of	cropping	
ratio,	the	cost	of	infectivity	and	their	interaction	(see	Supporting	
information	Figure	S9).	As	shown	by	 the	polynomial	 regressions,	
the	higher	the	cropping	ratio	and	the	cost	of	infectivity,	the	better	
the	epidemiological	control	in	the	long	term.	In	contrast	to	previ-
ous	metrics	of	epidemiological	control,	the	rotation	of	two	major	
genes	performed	significantly	better	than	the	other	strategies	 in	
this	context	(Figure	4b,c).

3.2.3 | Global control

The	overall	efficiency	of	a	deployment	strategy	was	assessed	using	
the	 AUDPC	 of	 the	 whole	 landscape,	 averaged	 across	 the	 entire	
simulation	 run	 (AUDPCTOT).	 The	 sensitivity	 analyses	highlight	 the	
same	key	parameters	as	for	long-	term	control,	except	that	the	cost	
of	infectivity	was	less	influential	when	the	mutation	probability	was	
low	 (see	Supporting	 information	Figure	S10).	Better	global	epide-
miological	control	was	obtained	with	higher	cropping	ratios,	and,	to	
a	lesser	extent,	with	higher	costs	of	infectivity	(excepting	pyramid-
ing	at	low	mutation	probabilities).	Globally,	the	polynomial	regres-
sions	indicate	that	pyramids	of	two	major	genes	resulted	in	better	
overall	 control	 than	 rotations,	 followed	 by	mixtures	 and	mosaics	
(Figure	4d,e).

3.3 | Trade- offs between evolutionary and 
epidemiological disease control

Principal	component	analysis	(PCA)	was	performed	on	the	simulation	
results	 to	 investigate	 the	 relationships	 between	 the	 various	 model	
outputs.	It	should	be	noted,	however,	that	only	model	outputs	show-
ing	nonmissing	values	could	be	included	in	this	analysis;	hence,	global	
disease	severity	for	the	susceptible	(AUDPCSC)	and	resistant	cultivars	
(AUDPCRC1	and	AUDPCRC2)	across	 the	whole	simulation	period	was	
used	 instead	 of	 short-	term	 control	 (AUDPCST),	 control	 during	 the	
transitory	 period	 (AUDPCTP)	 or	 long-	term	 control	 (AUDPCLT)	 of	 the	
disease.

3.3.1 | Evolutionary and epidemiological axes

The	projection	of	model	outputs	on	 the	 two	main	axes	explained	
64%	of	the	total	variance	(see	Supporting	information	Figure	S11,	
inset).	 Factors	mainly	 contributing	 to	 the	horizontal	 axis	 included	
time	to	first	appearance,	first	infection	and	broader	establishment	
of	mutants	 carrying	 the	 first,	 the	 second	or	 both	 (i.e.,	 the	 super-
pathogen)	 infectivity	 genes	 in	 the	 resistant	 host	 population	 (see	
Supporting	information	Figure	S11).	Disease	severity	on	the	two	re-
sistant	cultivars	also	contributed	to	this	axis	and	was	negatively	cor-
related	with	the	latter	outputs	related	to	resistance	durability	(i.e.,	
the	time	period	during	which	the	resistant	cultivars	were	immune	
to	disease).	In	contrast,	the	vertical	axis	was	mainly	determined	by	
disease	severity	on	the	susceptible	cultivar.	These	results	suggest	
that	 outputs	 related	 to	 resistance	 durability	 and	 epidemiological	

F IGURE  3 Resistance	gene	durability.	Durability	(in	years)	of	the	first	major	resistance	gene	(Dur1)	at	high	(τ = 10−4)	and	low	
(τ = 10−7)	mutation	probabilities.	Panels	show	the	effect	of	the	proportion	of	fields	where	resistance	is	deployed	(a),	their	level	of	spatial	
aggregation	(b),	the	relative	proportion	of	the	second	major	gene	(c),	its	relative	level	of	spatial	(for	mosaics)	or	temporal	(for	rotations)	
aggregation	(d)	and	the	fitness	cost	associated	with	pathogen	infectivity	(e).	Curves	represent	median	predictions	using	third-	degree	
Legendre	polynomials	including	interactions	up	to	second	order	within	a	Poisson	generalized	linear	model;	shaded	envelopes	are	
delimited	by	the	first	and	third	quartiles.	SC,	susceptible	cultivar;	RC,	resistant	cultivars,	including	the	first	(RC1)	and	the	second	(RC2)	
resistance	gene.	The	second	major	resistance	gene	is	associated	with	similar	results	(see	Supporting	information	Figure	S5).	Note	that	
when	a	major	resistance	gene	remains	effective	during	the	whole	simulation	run,	its	durability	is	set	at	48	years,	and	also	that	in	pyramids	
Dur1 = Dur2 = Dur12
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protection	 of	 the	 susceptible	 cultivar	 were	 not	 necessarily	 cor-
related.	Thus,	 the	two	main	axes	can	be	referred	to	as	the	evolu-
tionary	 and	 the	 epidemiological	 axes.	 Global	 control	 (AUDPCTot)	
contributed	to	both	axes.

3.3.2 | Effect of different deployment strategies

Pyramiding	offered	the	best	durability	at	low	mutation	probabilities,	
but	 other	 deployment	 strategies	 provided	 better	 epidemiological	

F IGURE  4 Epidemiological	outcomes.	Predictions	from	polynomial	regressions,	using	third-	degree	Legendre	polynomials	including	
interactions	up	to	second	order,	of	the	effect	of	the	proportion	of	fields	where	resistance	is	deployed	(a,b,d)	or	the	fitness	cost	associated	
with	pathogen	infectivity	(c,e)	on	different	epidemiological	outputs	at	high	(τ = 10−4)	or	low	(τ = 10−7)	mutation	probability:	AUDPC	on	the	
susceptible	cultivar	in	the	short-	term	period	when	resistant	cultivars	are	still	immune	to	disease	(AUDPCST,	a);	and	AUDPC	on	the	whole	
landscape	computed	in	the	long-	term	period	when	all	resistances	have	been	overcome	(AUDPCLT,	b,c)	or	in	the	whole	simulation	(AUDPCTOT,	
d,e).	Curves	represent	the	median	and	envelopes	are	delimited	by	the	first	and	third	quartiles.	SC,	susceptible	cultivar;	RC,	resistant	cultivars,	
including	the	first	(RC1)	and	the	second	(RC2)	resistance	gene.	Note	in	(a)	that	at	high	mutation	probabilities,	mosaics,	mixtures	and	rotations	
were	almost	always	overcome	in	less	than	1	year;	thus,	AUDPCST	could	not	be	properly	computed

FIGURE  5 Principal	component	analysis	of	model	outputs.	Projection	of	the	simulation	results	on	the	two	main	axes	(total	explained	
variance:	64%),	with	colour	codes	reflecting:	(a)	the	proportion	of	fields	where	resistance	was	deployed;	(b)	their	level	of	spatial	aggregation;	(c)	
the	fitness	cost	associated	with	pathogen	infectivity;	and	(d)	the	category	of	the	deployment	strategy.	For	legibility,	only	dots	associated	with	
low	mutation	probabilities	(τ = 10−7)	are	represented	(see	Supporting	information	Figure	S12	for	dots	associated	with	high	mutation	probabilities)
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protection	 of	 the	 susceptible	 cultivar	 across	 the	 whole	 simulated	
period	(Figure	5d	and	Supporting	information	Figure	S12D).	Both	re-
sistance	durability	and	epidemiological	protection	of	the	susceptible	
cultivar	were	improved	with	a	greater	proportion	of	resistant	fields	
(Figure	5a	and	Supporting	information	Figure	S12A)	and,	to	a	lesser	
extent,	stronger	costs	of	infectivity	(mostly	at	high	mutation	prob-
abilities,	Figure	5c	and	Supporting	information	Figure	S12C).	Finally	
the	effect	of	spatial	aggregation	of	resistant	fields	showed	a	larger	
contrast	 between	 evolutionary	 and	 epidemiological	 outcomes:	
Higher	 degree	 of	 aggregation	 led	 to	 better	 durability,	 but	weaker	
disease	control	on	the	susceptible	cultivar	(Figure	5b	and	Supporting	
information	Figure	S12B).

4  | DISCUSSION

Here,	we	investigated	a	suite	of	strategies	that	have	the	potential	
to	constrain	the	evolutionary	potential	of	pathogens	to	overcome	
plant	disease	resistance.	It	is	interesting	that	some	of	these	strat-
egies	have	counterparts	 in	 the	application	of	pesticides	or	drugs	
treatments	(van	den	Bosch	&	Gilligan,	2008;	Gilligan,	2008).	Indeed,	
mosaics	of	different	cultivars	are	equivalent	to	treatments	of	dif-
ferent	 fields	 or	 animals	 (including	 humans),	 crop	 rotations	 refer	
to	 the	periodic	application	of	molecules	and	pyramiding	matches	
with	the	combination	of	molecules	in	a	single	treatment.	Previous	
empirical	and	modelling	studies	have	variously	evaluated	the	per-
formance	of	all	these	strategies	in	controlling	pathogens,	but	few	
of	these	allowed	direct	comparisons	between	all	possible	catego-
ries	of	strategies	(REX	Consortium	2013,	2016).	Recently,	a	global	
approach	 has	 been	 proposed	 to	 compare	 periodic	 applications,	
treatment	of	different	patients	and	combination	strategies	for	an-
tibiotic	treatment	in	hospitals	(Tepekule,	Uecker,	Derungs,	Frenoy,	
&	 Bonhoeffer,	 2017).	 In	 this	 approach,	 the	 combination	 therapy	
outperformed	 the	 other	 strategies	 in	 most	 cases.	 Nevertheless,	
in	the	context	of	plant	disease,	different	results	may	be	expected	
owing	to	the	spatial	structuration	of	plant	epidemics.	In	the	plant	
pathology	 literature,	 some	 studies	 compared	 two	 categories	 of	
resistance	 deployment	 strategies	 (Djidjou-	Demasse,	 Moury,	 &	
Fabre,	 2017;	 Kiyosawa,	 1972;	 Koller	 et	al.,	 2018;	 Sapoukhina,	
Durel,	&	Le	Cam,	2009;	Skelsey,	Rossing,	Kessel,	&	van	der	Werf,	
2010),	and	very	few	have	compared	three	categories	of	strategies	
(Djian-	Caporalino	et	al.,	2014;	Lof,	de	Vallavieille-	Pope,	&	van	der	
Werf,	2017).	Moreover,	the	durability	of	resistance	and	the	epide-
miological	control	it	provides	have	rarely	been	considered	jointly,	
although	 these	 are	 not	 necessarily	 correlated	 (van	 den	 Bosch	 &	
Gilligan,	2003;	Burdon	et	al.,	2014;	Fabre,	Rousseau,	Mailleret,	&	
Moury,	2015;	Papaïx	et	al.,	2018).	Here,	we	used	a	previously	de-
veloped	 spatiotemporal	 simulation	model	 (Rimbaud,	 Papaïx,	 Rey,	
Barrett	et	al.,	2018),	to	examine	both	evolutionary	and	epidemio-
logical	outcomes	for	four	major	categories	of	deployment	strate-
gies:	mosaics,	mixtures,	rotations	and	pyramids.	For	each	strategy,	
a	 range	 of	 deployment	 options	was	 explored	with	 regard	 to	 the	
proportion	and	level	of	aggregation	of	the	different	cultivars.	For	

the	pathogen,	mutation	probability	and	the	cost	of	infectivity	were	
also	varied	to	provide	some	consideration	of	these	important	bio-
logical	features.	It	is	important	to	note	that	we	arbitrarily	selected	
two	values	for	the	mutation	probability	to	investigate	the	deploy-
ment	 strategies	 in	 two	 contrasted	 situations	 and	 that	 our	 intent	
was	to	compare	different	deployment	strategies	rather	than	pro-
vide	 an	 absolute	 prediction	 of	 the	 durability	 and	 efficiency	 of	 a	
particular	strategy.

The	model	was	parameterized	to	broadly	represent	rust	diseases	
of	cereal	crops	with	a	focus	on	strategies	involving	the	deployment	
of	 two	major	 resistance	 genes	 in	 areas	where	 the	 pathogen	was	
already	present	(although	not	 initially	adapted	to	host	resistance).	
We	 recognize	 that	our	 focus	on	major	gene	 resistance	conferring	
immunity	to	infection	by	nonadapted	pathogens	means	that	we	are	
assessing	only	a	subset	of	the	types	of	major	resistance	genes	ef-
fective	against	stem,	leaf	and	stripe	rust	of	cereal	crops	(McIntosh,	
Wellings,	 &	 Park,	 1995).	 Other	 major	 resistance	 genes	 (either	
“weak”	major	genes	coding	 for	NLR	proteins	or	genes	 involved	 in	
adult	plant	resistance)	may	provide	incomplete	protection	allowing	
some	 pathogen	 reproduction	 (Burdon	 et	al.,	 2014).	 The	 possible	
consequences	 of	 the	 simultaneous	 use	of	major	 resistance	 genes	
with	different	expression	profiles	(with	the	potential	for	contrasting	
and	 fluctuating	 selection	 on	 the	 pathogen)	will	 be	 the	 focus	 of	 a	
subsequent	study.

4.1 | No deployment strategy is universally optimal

4.1.1 | High durability of pyramids

Our	 results	 are	 consistent	 with	 previous	 empirical	 and	 modelling	
studies	suggesting	that,	in	absence	of	preadapted	pathogens,	pyra-
mids	of	resistance	genes	(or,	similarly,	combination	of	molecules	 in	
the	context	of	pesticide	applications)	outcompete	other	deployment	
strategies	 with	 regard	 to	 durability	 (Djian-	Caporalino	 et	al.,	 2014;	
REX	Consortium	2013).	In	real-	world	pathosystems,	pyramids	of	re-
sistance	genes	are	expected	to	show	good	durability	because	of	the	
low	probability	that	the	pathogen	will	simultaneously	acquire	all	of	
the	mutations	 required	to	overcome	multiple	major	genes	and	the	
potential	accumulation	of	fitness	costs	associated	with	these	muta-
tions	(Leach	et	al.,	2001).	Both	factors	contributed	to	the	durability	
of	our	 simulated	pyramids.	At	 low	mutation	probabilities,	mutants	
with	 single	 infectivity	 appeared	 within	 1	year,	 whereas	 mutants	
with	double	infectivities	(i.e.,	superpathogens)	never	appeared	(see	
Supporting	information	Figure	S13A,C).	At	high	mutation	probabili-
ties,	 superpathogens	 appeared	quickly	 (on	 average	 after	0.5	year),	
but	establishment	within	 the	population	 took	much	 longer.	 In	par-
ticular,	superpathogens	took	an	average	of	14	years	to	be	transmit-
ted	 to	 resistant	hosts	and	did	not	become	established	on	average	
before	24	years	(Supporting	information	Figure	S13B	and	Figure	3).	
The	 delays	 between	 appearance,	 infection	 of	 resistant	 hosts	 and	
subsequent	establishment	are	because	mutant	pathogens	must	sur-
vive	 the	end	of	 season	bottleneck	and	also	because	 they	 first	ap-
pear	in	susceptible	fields,	where	they	may	suffer	a	cost	of	infectivity	
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compared	 to	noninfective	pathogens,	before	dispersal	 to	 resistant	
fields.

It	is	important	to	note	that	the	scenario	we	simulated	favoured	
pyramiding	 durability	 (Stam	 &	McDonald,	 2018).	We	 assumed	 no	
prior	adaptation	of	the	pathogen	to	the	deployed	resistances,	so	in-
fective	pathogens	could	only	appear	through	mutation.	 In	 the	real	
world,	 complex	pyramids	 are	often	developed	via	 the	 incremental	
addition	of	major	 genes	 to	 ones	 that	 have	 already	been	deployed	
elsewhere	(Burdon	et	al.,	2016).	In	this	context,	infectivity	towards	
some	of	the	major	genes	in	the	pyramid	may	already	be	present	in	a	
pathogen	population.	As	shown	in	recent	modelling	studies,	the	ini-
tial	presence	of	preadapted	pathogens	can	have	a	dramatic	impact	on	
the	durability	of	the	pyramid	compared	to	other	strategies	(Djidjou-	
Demasse	et	al.,	2017;	Lof	et	al.,	2017).	Moreover,	mutations	towards	
multi-	infectivity	were	considered	independent,	and	our	model	does	
not	currently	include	pathogen	sexual	reproduction.	Synergistic	mu-
tations	and	sexual	reproduction	may	facilitate	acquisition	and	reas-
sortment	of	 infectivity	genes	 in	pathogen	populations	and	 further	
accelerate	 the	breakdown	of	pyramids	 (McDonald	&	Linde,	2002).	
Sexual	reproduction	is	uncommon	in	cereal	rust	pathogens	at	least	
in	some	parts	of	the	world	(Park,	2008),	but	it	should	be	accounted	
for	where	there	is	a	real	possibility	that	it	contributes	to	diversity	(Ali	
et	al.,	2014;	Groth	&	Roelfs,	1982).

4.1.2 | Mosaics, mixtures and rotations can mitigate 
superpathogen emergence

Pathogen	 adaptation	 to	 a	 pyramid	 results	 in	 the	 breakdown	of	 all	
of	 the	 component	 resistance	 genes.	 In	 contrast,	 when	 resistance	
sources	are	deployed	 in	different	 cultivars,	 there	are	 intermediate	
evolutionary	outcomes	between	the	complete	durability	of	all	culti-
vars	and	establishment	of	a	superpathogen	able	to	infect	all	hosts.	
Our	 results	 indicate	 that,	 at	high	mutation	probabilities,	when	 the	
cost	of	infectivity	is	also	high,	rotations,	and	particularly	mosaics	and	
mixtures,	were	better	able	to	prevent	or	at	least	delay	the	establish-
ment	of	a	superpathogen	than	pyramids	(Figure	2e	and	Supporting	
information	Figure	S6B).	This	can	be	explained	by	the	fact	that	the	
superpathogen	accumulates	fitness	costs	(due	to	the	accumulation	
of	mutations).	The	higher	 these	costs,	 the	 less	 the	 superpathogen	
is	 adapted	 to	 cultivars	 carrying	 single	 resistance	 genes,	 and	 thus	
the	more	it	relies	on	the	presence	of	the	cultivar	carrying	multigene	
resistance	(absent	in	the	mosaics,	mixtures	and	rotations	we	simu-
lated).	This	disruptive	selection,	based	on	host	genetic	diversity,	ex-
ploits	these	fitness	differences	to	favour	local	host	specialization	of	
the	pathogen	and	constrain	the	emergence	of	generalists	 (Barrett,	
Kniskern,	Bodenhausen,	Zhang,	&	Bergelson,	2009).	For	example,	in	
China,	a	traditional	century-	old	rice	agrosystem,	based	on	mosaics	
of	 rice	cultivars	carrying	various	 resistance	sources	and	cultivated	
using	appropriate	cropping	ratios,	induced	a	high	level	of	specializa-
tion	of	Magnaporthe oryzae	on	locally	grown	rice	cultivars	(Liao	et	al.,	
2016).	This	specialization,	due	to	 the	 fitness	costs	associated	with	
local	adaptation	of	the	pathogen,	is	likely	the	main	contributor	to	the	
successful	control	of	rice	blast	in	this	agrosystem.

4.1.3 | All strategies offer the same short-  and mid- 
term epidemiological protection

When	all	resistances	were	still	effective,	all	resistant	cultivars	were	
considered	 immune	 to	 the	disease.	 In	 this	 context,	 it	was	not	 sur-
prising	to	observe	similar	short-	term	epidemiological	outcomes	from	
different	 deployment	 strategies,	 all	 of	 them	being	 equivalent	 to	 a	
mosaic	of	a	susceptible	and	a	resistant	cultivar	(Figure	4a).	Therefore,	
short-	term	epidemiological	control	depended	more	on	the	propor-
tion	of	 fields	where	 resistance	was	deployed	 (see	also	below).	We	
obtained	similar	results	with	partially	effective	strategies	(i.e.,	only	
one	major	gene	was	overcome,	Supporting	information	Figure	S8B).	
All	these	results	show	that	for	a	given	organization	of	an	agricultural	
landscape	 (i.e.,	 particular	 cropping	 ratio	 and	 level	 of	 aggregation),	
disease	dynamics	on	the	susceptible	cultivar	(as	represented	by	av-
eraged	AUDPC	values)	were	largely	unaffected	by	the	way	the	major	
genes	were	deployed	in	the	other	fields.

4.1.4 | Rotations decrease losses once all 
resistances have been overcome

In	 a	 recent	 article,	Djidjou-	Demasse	 et	al.	 (2017)	 compared	mosa-
ics	and	pyramiding	strategies	in	a	scenario	where	all	pathotypes	(in-
cluding	infective	ones)	were	initially	present	in	pathogen	population	
(although	not	with	 the	 same	 frequency).	 They	 found	 that	mosaics	
were	at	least	as	good	as	pyramids	with	regard	to	an	AUDPC-	based	
criterion	which	may,	to	some	extent,	be	compared	to	our	long-	term	
epidemiological	 control,	 once	 all	major	 resistance	 genes	 had	been	
overcome	 (AUDPCLT).	With	 respect	 to	 this	 criterion,	 our	 mosaics	
and	pyramids	of	two	major	resistance	genes	performed	similarly,	and	
mixtures	were	slightly	better	(Figure	4b,c).	These	differences	may	be	
attributed	to	the	fact	that	in	the	first	study	(Djidjou-	Demasse	et	al.,	
2017),	mosaics	outperformed	pyramids	mostly	when	three	or	more	
major	resistance	genes	were	deployed,	and	when	there	was	high	in-
terfield	pathogen	transmission.	It	could	be	interesting	to	assess	the	
impact	of	the	dispersal	kernel	(parameterized	here	to	rust	diseases,	
although	with	some	uncertainty	on	the	likelihood	of	long-	dispersal	
events,	see	Supporting	information	Text	S1	in	Rimbaud,	Papaïx,	Rey,	
Barrett	et	al.,	2018)	on	our	findings.	Our	results	also	show	that	rota-
tions	performed	significantly	better	than	the	other	strategies.	Once	
all	 resistances	 are	overcome,	 the	 system	becomes	equivalent	 to	 a	
set	of	genetically	diverse	susceptible	cultivars	and	diverse	pathogen	
populations.	However,	with	crop	rotations,	a	well-	adapted	special-
ist	pathogen	can	 lose	 its	 associated	host	 at	 the	end	of	 a	 cropping	
season.	This	pathogen	 then	becomes	maladapted	 to	 its	new	envi-
ronment,	which	imposes	severe	bottlenecks	and	increases	the	likeli-
hood	of	extinction	events.

To	disentangle	 the	effects	of	 spatial	 and	 temporal	diversity,	 in	
our	 simulations	 the	 two	 resistant	 cultivars	 were	 never	 present	 at	
the	 same	 time	 in	 rotations	 (one	 replaced	 the	 other).	 Real	 agricul-
tural	 landscapes	are	more	complex,	where	neighbouring	 fields	are	
sown	with	 rotating	 cultivars	 in	 such	 a	way	 that	 the	whole	 system	
consists	of	a	temporally	dynamic	mosaic	which	essentially	combines	
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our	definitions	of	mosaics	and	rotations.	 In	such	systems,	all	culti-
vars	may	be	present	simultaneously	in	the	landscape	(although	their	
locations	may	 change	 from	year	 to	 year).	 In	 this	 situation,	 in	 con-
trast	to	our	simulation	framework,	even	if	rotations	remove	a	host	in	
space,	specialist	pathogens	may	disperse	to	fields	where	the	cultivar	
is	newly	grown.	The	extent	to	which	this	reduces	the	performance	
of	 rotations	 (as	 compared	 to	our	 results)	would	at	 least	partly	de-
pend	on	pathogen	dispersal	and	survival	abilities,	two	key	life	history	
features	 (Barrett,	Thrall,	Burdon,	&	Linde,	2008;	Buoro	&	Carlson,	
2014).	This	further	suggests	that	the	efficacy	of	rotations	may	well	
vary	for	different	kinds	of	pathogens.

4.1.5 | Pyramids and rotations had the best global 
efficiencies

This	result	can	be	explained	by	the	fact	that	the	global	control	pro-
vided	by	each	category	of	resistance	deployment	was	computed	for	
the	entire	landscape	over	the	whole	simulation	run.	As	all	strategies	
had	 the	 same	 epidemiological	 performance	 during	 the	 short-	term	
and	 the	 transitory	 periods,	 global	 control	 was	 mostly	 correlated	
with	the	durability	of	resistance	(during	which	resistant	cultivars	did	
not	contribute	to	the	global	AUDPC)	and	long-	term	epidemiological	
control.	Therefore,	promising	deployment	strategies	would	consist	
of	 rotating	different	pyramids	of	 resistance	genes,	provided	 these	
genes	have	not	been	already	overcome	somewhere.

4.2 | Landscape organization impacts both 
durability and epidemiological efficiency

4.2.1 | Impact of cropping ratio and spatial 
aggregation

This	study	emphasizes	the	impact	of	landscape	organization	on	the	
epidemiological	 and	 evolutionary	 performance	 of	 different	 resist-
ance	deployment	 strategies.	 In	mosaics,	high	proportions	of	 fields	
cultivated	with	a	resistant	cultivar	(Fabre	et	al.,	2015;	Papaïx	et	al.,	
2014,	2018)	or	 a	nonhost	 species	 (Skelsey	et	al.,	 2010)	with	weak	
levels	 of	 aggregation	 (or	 strong	 connectivity	 between	 susceptible	
and	resistant	fields)	have	been	shown	to	favour	good	epidemiologi-
cal	control.	The	same	conclusions	emerged	 for	mixtures	 (Suzuki	&	
Sasaki,	2011;	Xu	&	Ridout,	2000).	The	present	 study	 is	consistent	
with	these	conclusions	and	extends	them	to	rotation	and	pyramid-
ing	 strategies	 (Figures	4	and	5c,d).	When	 the	proportion	of	 resist-
ant	 fields	 increases,	 the	proportion	of	hosts	suitable	 for	pathogen	
infection	 decreases	 and	 disease	 spread	 is	 reduced	 via	 a	 dilution	
effect	 (Keesing	 et	al.,	 2010).	 This	 effect	 is	 amplified	 in	well-	mixed	
landscapes.

With	 respect	 to	 the	durability	of	major	 resistance	genes,	 the	
proportion	of	resistant	fields	had	a	U-	shaped	effect	in	all	deploy-
ment	strategies	(Figures	2a	and	3a).	This	effect	has	already	been	
described	with	mosaic	strategies	for	the	deployment	of	plant	re-
sistance	 (van	den	Bosch	&	Gilligan,	2003;	Papaïx	et	al.,	2018)	or	
the	application	of	pesticides	(Bourget,	Chaumont,	&	Sapoukhina,	

2013).	The	higher	durability	 at	high	cropping	 ratios	 is	 attributed	
to	the	 large	reduction	 in	pathogen	population	size,	 resulting	 in	a	
low	probability	of	appearance	of	mutants	(see	the	positive	effect	
of	 cropping	 ratio	 on	 the	 time	 to	 first	 appearance	 of	mutants	 in	
Supporting	 information	 Figure	 S13A).	 At	 small	 cropping	 ratios,	
high	durability	can	be	explained	by	the	low	probability	that	a	mu-
tant	pathogen	will	successfully	disperse	to	a	resistant	field	(see	the	
negative	effect	of	cropping	ratios,	when	below	50%,	on	the	time	
to	the	first	infection	of	a	resistant	host	in	Supporting	information	
Figure	S13B).

In	contrast	to	its	effect	on	epidemiological	efficiency,	spatial	ag-
gregation	had	a	positive	effect	on	resistance	durability	 (Figures	2b	
and	5d).	This	is	attributed	to	how	different	levels	of	aggregation	alter	
the	 interface	between	resistant	and	susceptible	components	 in	an	
agricultural	 landscape	 (Papaïx	 et	al.,	 2018).	When	 this	 interface	 is	
small	(i.e.,	there	is	a	high	level	of	aggregation),	resistant	cultivars	are	
less	exposed	to	potential	mutant	pathogens	emerging	from	suscepti-
ble	fields.	On	the	contrary,	disease	spread	in	susceptible	fields	is	less	
efficiently	mitigated.	It	is	noteworthy	that	we	based	our	simulations	
on	a	landscape	completely	cultivated	with	host	crops,	an	initial	con-
tamination	of	every	susceptible	field	and	an	isotropic	dispersal	of	the	
pathogen.	Alternative	scenarios	should	be	more	conducive	to	patho-
gen	extinctions	and	would	likely	lead	to	an	even	greater	influence	of	
spatial	aggregation.

4.2.2 | Impact of relative cropping ratios and 
relative aggregation

Within	the	different	deployment	options,	we	simulated	different	
relative	 proportions	 and	 relative	 spatial/temporal	 aggregation	
of	 the	resistance	types.	 In	many	of	our	simulations,	mosaics	and	
especially	mixtures	resulted	 in	the	breakdown	of	only	one	major	
gene	(Figure	2c)	when	resistant	cultivars	were	deployed	in	unbal-
anced	 proportions	 (Figure	3c).	 More	 precisely,	 when	 two	 major	
resistance	genes	were	deployed	in	uneven	proportions,	the	dura-
bility	of	the	gene	in	minority	was	increased	to	the	detriment	of	the	
one	in	majority.	Protection	of	the	resistant	cultivar	in	minority	was	
likely	due	to	specialization	of	the	pathogen	on	the	major	cultivar.	
This	conclusion,	analogous	to	using	refuge	zones	to	influence	pest	
evolutionary	trajectories	(Alstad	&	Andow,	1995),	has	interesting	
implications	 for	 agricultural	 systems	 where	 high-	value	 cultivars	
may	 be	 grown	 at	 a	 small	 scale	 in	 the	 neighbourhood	 of	 broadly	
grown	standard	cultivars.

In	rotations,	the	 length	of	the	rotation	had	only	a	small	 impact	
on	model	outputs.	As	rust	pathogens	are	biotrophs	(i.e.,	they	cannot	
survive	in	the	absence	of	the	host),	and	alternate	hosts	are	absent	in	
most	of	the	large	grain	production	areas,	we	simulated	severe	bot-
tlenecks	between	seasons	and	considered	that	the	end	of	a	cropping	
season	influenced	the	beginning	of	the	next	season	only.	However,	
as	mentioned	before,	different	results	could	be	obtained	with	patho-
gens	showing	different	life	histories,	such	as	those	whose	survival	on	
stubbles	or	alternate	hosts	allows	secondary	 infections	for	several	
years.
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4.3 | Pathogen mutation probability and infectivity 
costs have major effects on resistance durability

In	 an	 investigation	 of	 the	 durability	 of	 pyramided	 genes,	 Fabre,	
Bruchou,	Palloix,	and	Moury	(2009)	found	a	strong	effect	of	genetic	
mutation	 rate,	 the	 number	 of	 required	 genetic	mutations,	 their	 na-
ture	 (transition	 or	 transversion)	 and	 the	 associated	 fitness	 costs.	 In	
our	 study,	 we	 focused	 on	 phenotypic	 changes	 and	 integrated	 the	
first	 three	of	 these	variables	 into	a	mutation	probability.	This	muta-
tion	probability	and	the	associated	cost	of	infectivity	(which	have	been	
poorly	characterized	quantitatively	and	may	be	highly	variable;	Laine	
&	Barrès,	2013)	had	a	 large	 influence	on	evolutionary	outcomes	for	
the	simulated	deployment	strategies	(Figure	2).	It	is	not	surprising	that	
resistance	 durability	was	 higher	when	 the	mutation	 probability	was	
low	and	the	cost	of	infectivity	was	high.	These	effects	are	especially	
strong	with	respect	to	the	time	to	appearance	and	establishment	of	a	
superpathogen	(Supporting	information	Figure	S6),	which	corresponds	
to	the	durability	of	a	pyramiding	strategy.	Pyramids	of	major	resistance	
genes	may	therefore	not	be	the	best	strategy	when	the	target	patho-
gen	has	a	high	probability	of	mutating	towards	infectivity	(especially	
when	there	are	only	weak	associated	fitness	costs).

In	addition,	our	simulations	highlight	the	synergistic	interaction	
between	the	cost	of	 infectivity	and	cropping	ratios	on	the	time	to	
establishment	 of	 a	 superpathogen	 (Supporting	 information	 Figure	
S6)	and	the	mid-		and	long-	term	control	of	the	disease	(Supporting	in-
formation	Figures	S8	and	S9).	This	corroborates	the	results	obtained	
by	 Fabre,	 Rousseau,	Mailleret,	 and	Moury	 (2012),	 suggesting	 that	
the	 optimal	 cropping	 ratio	 increases	with	 increasing	 fitness	 costs.	
Overall,	these	results	indicate	that	the	harder	it	is	for	a	pathogen	to	
overcome	a	resistance	gene,	the	more	this	resistance	source	can	be	
cultivated	in	the	landscape.

4.4 | Conclusions and next challenges

In	 this	 study,	 we	 compared	 the	 main	 categories	 of	 resistance	 de-
ployment:	mosaics,	mixtures,	 rotations,	 pyramiding	 and	 a	 variety	 of	
options,	 using	 a	 single	 ecoevolutionary	 framework.	 In	 line	with	 the	
principles	of	integrated	pest	management	and	the	illusory	“one-	size-	
fits-	all”	pest	control	method	(Barzman	et	al.,	2015),	none	of	the	strat-
egies	we	 considered	 could	 be	 considered	 as	 a	 ‘‘universal	 optimum.”	
Indeed,	 as	 previously	 demonstrated	 for	 mosaics	 (van	 den	 Bosch	 &	
Gilligan,	2003;	Papaïx	et	al.,	2018),	 the	optimal	strategy	depends	on	
the	objective	of	a	given	stakeholder	group	(e.g.,	breeders,	growers,	risk	
managers).	Extended	cultivar	durability,	prevention	of	superpathogen	
emergence,	protection	of	susceptible	crops	or	minimization	of	disease	
levels	during	growing	seasons	are	all	possible	management	targets	that	
may	not	 always	be	 compatible	 and	may	 require	different	 strategies.	
Nevertheless,	 in	the	context	of	cereal	resistance	to	rust	fungi,	given	
our	model	assumptions,	we	conclude	that	pyramiding	is	the	strategy	
less	likely	to	breakdown,	but	should	that	occur,	the	consequences	may	
be	drastic.	On	the	contrary,	although	more	likely	to	be	overcome,	al-
ternative	strategies	better	mitigate	epidemic	losses	in	the	event	of	the	
breakdown	of	some	or	all	sources	of	resistance.

Our	results	emphasize	the	impact	of	landscape	organization	on	
both	epidemiological	and	evolutionary	outcomes,	but	also	show	how	
the	effectiveness	of	different	strategies	can	be	further	modified	by	
factors	related	to	pathogen	evolutionary	ability.	It	is	interesting	that	
these	factors	(pathogen	mutation	probability	and	fitness	cost	of	ad-
aptation)	may	be	influenced	by	the	choice	of	the	resistance	source,	
as	suggested	by	empirical	evidence	that	major	resistance	genes	act-
ing	with	distinct	mechanisms	are	associated	with	different	rates	of	
pathogen	adaptation	 (Djian-	Caporalino	et	al.,	 2014;	Mundt,	2018).	
Based	on	our	results,	and	not	surprisingly,	resistance	genes	associ-
ated	with	small	rates	of	pathogen	adaptation	(requiring	several	and	
costly	genetic	mutations	to	be	overcome)	must	be	favoured	for	de-
ployment	in	the	field.

Our	conclusions	may	hold	 for	a	wide	 range	of	wind-	dispersed,	
biotrophic	foliar	pathogens,	such	as	rusts	of	cereal	crops,	but	could	
considerably	differ	with	pathosystems	showing	contrasted	life	his-
tories.	 Therefore,	 our	 next	 challenge	will	 be	 to	 apply	 this	 model-
ling	 framework	 to	 other	 pathosystems	 associated	 with	 different	
dispersal	and	postharvest	survival	abilities	and	mode	of	 reproduc-
tion.	Different	outcomes	may	be	found,	as	parameters	contributing	
to	 epidemic	 spread	 have	 been	 found	 to	 significantly	 impact	 both	
the	resistance	durability	(Bourget	et	al.,	2013)	and	epidemiological	
efficiency	 (Djidjou-	Demasse	 et	al.,	 2017;	Ohtsuki	 &	 Sasaki,	 2006;	
Suzuki	 &	 Sasaki,	 2011)	 of	 different	 deployment	 strategies.	 It	 will	
also	 be	 of	 interest	 to	 explore	more	 complex	 strategies	 that	 com-
bine	several	types	of	deployment	and	both	spatial	and	temporal	ge-
netic	host	diversity.	As	shown	by	previous	studies,	we	expect	some	
combinations	to	favour	resistance	durability,	such	as	rotations	and	
mosaics	 (Fabre	 et	al.,	 2015;	 Lof	 et	al.,	 2017),	 or,	 as	 suggested	 be-
fore,	 rotations	and	pyramids.	On	 the	other	hand,	 cultivating	pyra-
mids	 together	with	 cultivars	 carrying	 only	 single	 resistance	 genes	
has	the	opposite	effect	 (Bourget	et	al.,	2013;	Lof	et	al.,	2017).	We	
hope	 that	 the	 modelling	 ecoevolutionary	 framework	 presented	
here	will	provide	a	solid	foundation	for	such	future	and	interesting	
investigations.
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