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Parkinson’s disease (PD) is caused by the degeneration of dopaminergic neurons due to
an accumulation of intraneuronal abnormal alpha-synuclein (α-syn) protein aggregates.
It has been reported that the levels of exosomal α-syn of neuronal origin in plasma
correlate significantly with motor dysfunction, highlighting the exosomes containing
α-syn as a potential biomarker of PD. In addition, it has been found that the selective
autophagy-lysosomal pathway (ALP) contributes to the secretion of misfolded proteins
involved in neurodegenerative diseases. In this review, we describe the evidence that
supports the relationship between the ALP and α-syn exosomal secretion on the PD
progression and its implications in the diagnosis and progression of this pathology.

Keywords: autophagy-lysosomal pathway, α-syn exosomal secretion, Parkinson’s disease progression,
biomarker, degradation

INTRODUCTION

Parkinson’s disease (PD) is the second more common neurodegenerative disease globally, and it is
associated with age (Dorsey et al., 2018). The PD incidence is estimated from 5 to more than 35
new cases per 100,000 individuals, depending on demographic differences (Poewe et al., 2017). The
pathology prevalence ranges from 41/100,000 individuals in the fourth decade of life to more than
1,900/100,000 among those 80 and older (Pringsheim et al., 2014). Have been described that PD
is more prevalent in men (1,729/100,000, >65 years) than in women (1,644/100,000) (Pringsheim
et al., 2014; Riedel et al., 2016). Although the risk of developing PD is higher in men, women have
a higher mortality rate and faster clinical progression (Cerri et al., 2019).

Parkinson’s disease is a complex neurodegenerative disorder clinically characterized by
bradykinesia, tremor, rigidity, later postural reflexes instability, and progressive paralysis (Jankovic,
2008). Some non-motor symptoms such as dementia, depression, anxiety, and sleep disorder may
precede motor symptoms for more than a decade, affecting several neurotransmitter pathways
(Langston, 2006). PD coexists with dementia in over 25% of the cases and depression in over 30%
of the cases in some countries (Riedel et al., 2016). As a motor disorder, PD affects patients’ quality
of life, making social interaction more difficult and worsening their financial condition due to the
high medical expenses associated with the pathology.
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Part of the PD symptomatology is caused by the degeneration
of dopaminergic (DA) neurons of Substantia Nigra pars
compacta (SNpc) and loss of the dopaminergic fibers that
innervate the striatum (Dauer and Przedborski, 2003). The
appearance of the first symptoms correlates with a 30%
loss of dopaminergic neurons (Fearnley and Lees, 1991),
indicating degeneration of the neurotransmission integrity in
the basal ganglia circuits. Currently, PD has no cure, and the
potential treatment to prevent or revert this pathology arises
as a substantial challenge (Troncoso-Escudero et al., 2020).
Therefore, it is essential to obtain a better understanding of
the correlation between associated cellular mechanisms and the
clinical features of PD to develop strategies to optimize the
prevention, diagnosis, and treatment.

About 10% of PD cases are associated with genetic mutations
(Selvaraj and Piramanayagam, 2019), which includes: (i)
mutation in the SCNA gene that encodes for the alpha-synuclein
protein (α-syn) (Bras et al., 2020), (ii) mutations in the LRRK2
gene, which encodes leucine-rich repeat kinase 2, are a cause of
autosomal dominant forms of PD (Zimprich et al., 2004; Tolosa
et al., 2020), (iii) heterozygous mutations of the GBA1, encoding
for lysosomal enzyme glucocerebrosidase (GCase), are a strong
risk factor for PD and can lead to α-syn accumulation (Avenali
et al., 2020). While 90% of PD cases are classified as idiopathic,
the evidence indicates that the histopathology characteristic
of PD is the accumulation of intraneuronal abnormal protein
aggregates, including the α-syn protein. These aggregates of the
amyloid type are called Lewy bodies and are constituted mainly
by oligomers of α-syn and ubiquitin (Spillantini et al., 1998;
Schulz-Schaeffer, 2010). Idiopathic cases show an increase of
endogenous wild-type α-syn (Golbe et al., 1990; Michell et al.,
2005; Shprecher et al., 2018), forming aggregates of this protein
that have a toxic effect on dopaminergic neurons, triggering
neurodegenerative processes (Petrucelli et al., 2002; Volpicelli-
Daley et al., 2016).

Mitochondrial toxins have been identified in epidemiological
studies as contributors to “sporadic” PD in humans. In this
context, animal and in vitro models used to study PD are
based on the administration of neurotoxins, generating oxidative
stress and mitochondrial dysfunction. 6-hydroxydopamine (6-
OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP),
paraquat (PQ; 1, 10-dimethyl-4,40-bipyridinium), and rotenone
are conventionally used in PD modeling (Chia et al., 2020),
as they can be uptaken by DA neurons through dopamine
transporters, inhibiting complex I of the mitochondrial electron
transport chain, leading to ATP depletion, increasing reactive
oxygen species, and ultimately resulting in neuronal death
(Betarbet et al., 2002; Devi et al., 2008; Potashkin et al., 2010).
PQ, a commonly used herbicide, shares structural similarities
with MPP+, the active metabolite of MPTP. PQ crosses the
blood-brain barrier, generates reactive oxygen and nitrogen
species (ROS/RNS), and causes the loss of SNpc DA neurons in
animal models (Castello et al., 2007). In rats, chronic rotenone
exposure leads to α-syn aggregation, DA neurodegeneration, and
behavioral defects (Hoglinger et al., 2003). This toxin induced the
cytosolic accumulation of α-syn through the de novo synthesis,
rather than a reduction of degradation by chaperone-mediated
autophagy (CMA), suggesting a mechanism independent from

lysosomal degradation (Sala et al., 2013). Indeed, rotenone
regulates α-syn phosphorylation, reducing protein phosphatase
2A (PP2A) activity (Wang et al., 2016).

Classical pharmacological therapies for PD patients
are dopamine precursors as levodopa, L-dopa, and L-3,4-
dihydroxyphenylalanine. Other treatments include dopamine
agonists such as amantadine, apomorphine, pramipexole,
and monoamine oxidase inhibitors (MAO) or catechol-O-
methyltransferase (COMT). The sustained administration
of these drugs induces a “wearing-off phenomenon” and
additional psychomotor, cardio-cerebrovascular, and hormones
regulation problems (Cacabelos, 2017). Novel biotherapies, as
natural products, should achieve dopaminergic protection
to avoid neurodegeneration, enhancing dopaminergic
neurotransmission. However, the cellular and molecular
events involved in PD must be broadly explored to design and
develop efficient treatments (Solayman et al., 2017; Wang et al.,
2017; Troncoso-Escudero et al., 2020).

ALPHA-SYNUCLEIN (α-SYN): A
HALLMARK IN PARKINSON’S DISEASE

α-syn protein is expressed at high levels in the central nervous
system (CNS), specifically neurons. It is found in presynaptic
terminals as a monomeric, unfolded, and soluble protein
(Maroteaux et al., 1988), bound with high affinity to the
membranes of synaptic vesicles (Burre et al., 2010). α-syn was
described in neuromuscular junctions (Askanas et al., 2000),
suggesting other cellular functions in addition to its activity in
the CNS. Although α-syn is enriched in synaptic boutons, which
sprout from axons of different neurochemical phenotypes, α-syn
is not present in all synaptic terminals. In agreement, not all
terminals accumulate the protein in neurodegenerative disorders
(Totterdell et al., 2004). Furthermore, the expression of α-syn
is not limited to the nervous system. This protein is present in
the cerebrospinal fluid (CSF), in plasma (El-Agnaf et al., 2003;
Forland et al., 2018), as well as is expressed in the erythropoietic
lineage cells (Nakai et al., 2007) and peripheral lymphocytes
(Kim et al., 2004).

To clarify the α-syn function, knockout mice for the SCNA
gene were generated. Although knockout mice were viable
and fertile, with a lack of spontaneous neurodegeneration
signs, this model displays alterations in activity-dependent
dopamine release from axons in the striatum (Abeliovich et al.,
2000). In addition, the triple knockout mice lacking the three
variants of syn (α, β, and γ) were generated, showing no
neurodegeneration (Greten-Harrison et al., 2010). However, it
was possible to observe synapse-structure modifications and
a decrease in the synaptic terminal size in an age-dependent
manner (Greten-Harrison et al., 2010). Lack of α-syn in the
transgenic mice model showed less mobilization of glutamatergic
vesicles (Gureviciene et al., 2007) and increased the expression
levels of proteins involved in vesicle traffic, such as SNAREs,
synapsins, and complexines (Greten-Harrison et al., 2010). In
addition, it has been described that the participation of α-syn
in vesicle homeostasis is Ca2+-dependent (Lautenschlager et al.,
2018). Overall, these data suggest a direct physiologic role of

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 February 2022 | Volume 15 | Article 805087

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-neuroscience#articles


fnmol-15-805087 February 12, 2022 Time: 16:51 # 3

Sepúlveda et al. Autophagy Pathway and Alpha-Synuclein Secretion

α-syn in synaptic transmission in the CNS, especially in the
dopamine system.

Different factors can trigger α-syn aggregation, including
point mutations (Narhi et al., 1999; Rutherford et al., 2014),
truncations (Li et al., 2005), posttranslational modifications of
α-syn (Duda et al., 2000; Fujiwara et al., 2002; Lazaro et al.,
2014), and wild-type SCNA gene duplication or triplication
(Singleton et al., 2003; Fuchs et al., 2007). An increase in somatic
copy number of the SNCA gene in CNS neurons, especially
from the SN region, was reported in a cohort of PD patients,
contributing to the sporadic α-syn accumulation (Mokretar
et al., 2018). However, it is still unknown what prompts the
accumulation of wild-type α-syn into toxic aggregates. Evidence
indicates that toxic α-syn conformers can act as seeds for the
misfolding and aggregation of the native protein. For instance,
α-syn preformed fibrils (PFFs), synthetically produced, were
added in neuronal cultures and taken up inside cells, recruiting
α-syn endogenous into protein aggregates (Luk et al., 2012a,b).
The inoculation of PFFs into the brain of young adult A53T
SNCA mice (overexpressing mutated human α-syn) generated
in vivo aggregates and PD-like symptoms in mice (Luk et al.,
2012b). Moreover, species of α-syn isolated from A53T transgenic
mice induce aggregation of α-syn in primary neuronal cultures
(Colla et al., 2018), indicating a potential trigger role of α-syn
aggregates on wild-type soluble α-syn.

Nevertheless, not only protein interactions determine the
status of α-syn aggregation. α-syn contains a lipid-binding
domain that allows its binding to vesicles at the presynaptic
terminal (Lashuel et al., 2013). However, in pathological
conditions or modified lipids composition, this interaction can
potentiate conformational changes in α-syn protein, prompting
it to aggregation (Marschallinger et al., 2020). Recently, it was
reported that the lipid alteration in membrane compartments,
as instability of lipid raft microdomains, promoted by aging,
and neurotoxins, as the MPTP, could affect α-syn aggregation
(Galvagnion, 2017; Canerina-Amaro et al., 2019). Caveolins,
a subgroup of lipid rafts, act as scaffolding proteins that
recruit other proteins and lipids, leading to colocalization
and interaction of proteins involved in vesicular transport,
signal transduction, and receptor trafficking (Hanzal-Bayer
and Hancock, 2007). The central protein controlling caveolae
formation is caveolin-1 (Cav-1). Cav-1 is widely expressed in
the central and peripheral nervous systems (Boulware et al.,
2007), regulating neurotrophin signaling pathways and synaptic
remodeling (Bilderback et al., 1999; Suzuki et al., 2004). In
addition, Cav-1 modulates neurotransmitter receptor signaling
(Bhatnagar et al., 2004; Francesconi et al., 2009).

aveolin-1 is also involved in the aging process. Since Cav-
1 expression is upregulated in old rat brain and aged human
cortex (Park et al., 2000; Kang et al., 2006), suggesting that
overexpression of Cav-1 may induce aging phenotypes (Wheaton
et al., 2001; Lee et al., 2015). Some evidence suggests that scaffold
proteins such as Cav-1 may be involved in the pathogenesis of
several neurodegenerative disorders, including PD (Hashimoto
et al., 2003; Benarroch, 2007). Age-related expression of Cav-1
may affect the cell-to-cell transmission of α-syn, contributing to
the pathogenesis of PD (Ha et al., 2021). Cav-1 overexpression

facilitated the uptake of α-syn into neurons and the formation
of additional Lewy body-like inclusion bodies (Ha et al., 2021).
Immunoprecipitation experiments demonstrated that the double
mutant alpha-synuclein protein (A30P/A53T) interacts with Cav-
1 present in both cytoplasmic and inner membrane extracts of
the mouse brain, suggesting that the double mutation of α-syn
increases the affinity for Cav-1 in the cytosol. These results
suggest a direct interaction between Cav-1 and α-syn under
non-physiological conditions (α-syn overexpressed or α-syn
mutated) (Madeira et al., 2011). Furthermore, colocalization
experiments using SH-SY5Y cells demonstrate that α-syn and
caveolin interact directly and mediate endocytosis and colocalize
to a lesser extent along the endocytosis pathway with early
endosome antigen 1 (EEA1) and Rab7-positive late endosomes
(Fakhree et al., 2021). EEA1 is an early endosomal Rab5
effector protein that has been implicated in the docking of
incoming endocytic vesicles before fusion with early endosomes
(Fakhree et al., 2021), and Rab7, a member of the Rab
family of small GTPases, is a ubiquitously expressed protein
that plays a vital role in the regulation of the trafficking,
maturation, and fusion of endocytic and autophagic vesicles
(McCray et al., 2010).

A recent work using human iPSC-derived cerebral organoids
found that 3D-cultures from donors carrying homozygous
APOE4 allele presented aggregation of α-syn, loss of synaptic
integrity, and impairment on lipids metabolism, resulting in
accumulation of lipid droplets (Zhao et al., 2021). APOE4
isoform is a known risk factor for late-onset Alzheimer’s disease
(AD) development. In this study, researchers also reported a
boosted interaction of APOE4 itself with α-syn in postmortem
brain samples from Lewy bodies disease patients (Zhao et al.,
2021), confirming a link between lipid metabolism and α-syn
aggregation. As previously mentioned, heterozygosis variants in
the gene encoding GCase (GBA1) represent a significant PD
genetic risk factor (Avenali et al., 2020). Indeed, about 10%
of PD patients present mutations in the gene that codifies to
GCase (Sidransky et al., 2009). GCase is a lysosomal enzyme
that catalyzes the hydrolysis of the glycolipid glucosylceramide.
Homozygous mutations in GBA1 cause Gaucher’s disease, the
most prevalent recessively inherited lysosomal lipid storage
disease, characterized by neurodegeneration and peripheral
symptoms (Han et al., 2020). GBA1 variants associated with
PD present a decreased enzymatic activity, resulting in the
accumulation of the substrate glucosylceramide, as shown in
CSF samples from PD patients (Huh et al., 2021). Accumulated
glucosylceramides were reported to promote wild-type α-syn
aggregation in in vitro studies (Taguchi et al., 2017). Of
note, a small-molecule modulator (activator) of GCase reduces
pathological α-syn aggregates and restores lysosomal function
in PD patient midbrain neurons (Mazzulli et al., 2016b). In a
bilateral correlation, α-syn aggregation also causes impairment
on GCase activity and lysosomal dysfunction (see below).

The overexpression of α-syn selectively induced apoptotic
programmed cell death in primary dopamine neurons (Zhou
et al., 2000), neuroblastoma cell lines, and hippocampal primary
neurons (Mahul-Mellier et al., 2015). The causal relationship
between α-syn aggregation and cellular toxicity was investigated
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by assessing the effect of inhibiting fibrillization on α-syn-
induced cell death. It was reported that exogenous α-syn
fibrils bind to the plasma membrane and act as nucleation
sites for the formation of endogenous α-syn fibrils, promoting
the accumulation and internalization of the aggregates that
finally turn on the activation of both the extrinsic and
intrinsic apoptotic cell death pathways in cellular models
(Mahul-Mellier et al., 2015).

It has been described that secreted α-syn can be
internalized by neighboring cells via endocytosis (Desplats
et al., 2009), demonstrating the cell-to-cell transmission
of α-syn accumulation and providing evidence of the
pathological mechanism to explain PD progression and
other synucleinopathies (Desplats et al., 2009; Hansen et al.,
2011). Recent works also showed α-syn transference cell-to-cell
through the formation of tunneling nanotubes (TNTs; Abounit
et al., 2016; Dieriks et al., 2017). The α-syn uptake by cells
depends on the fibrillization (Luk et al., 2009) and oligomeric
(Lee et al., 2008) state of α-syn. Oligomers of α-syn have more
significant cytotoxicity in recipient cells than soluble monomers
of α-syn (Desplats et al., 2009; Emmanouilidou et al., 2010).
It was reported that a single intrastriatal injection of synthetic
α-syn fibrils initiates a pathological α-syn transmission sufficient
to cause PD-like neurodegeneration in non-transgenic mice (Luk
et al., 2012b). Furthermore, extracellular α-syn has been shown to
activate microglia and astroglia, enhancing neurodegeneration,
indicating a cell non-autonomous mechanism (Zhang et al.,
2005; Klegeris et al., 2006).

An abundance of synaptic vesicle-related proteins like
CD9 (exosomes), Clathrin, AP-2 complex, and dynamin
(clathrin-mediated endocytosis), dynein, dynactin, and spectrin
(retrograde transport), synaptosomal-associated protein 25,
vesicle-associated membrane protein 2, and syntaxin-1 (synaptic
vesicle fusion) are present in α-syn-containing protein inclusions
purified from post mortem brain tissues from dementia with
Lewy bodies (DLB) patients (McCormack et al., 2019). Different
models of intercellular transmission of α-syn, not mutually
exclusive, have been proposed, such as the α-syn cellular release,
movement, and uptake, by different mechanisms, including
exocytosis, exosomes, TNTs, glymphatic flow, and endocytosis
(Valdinocci et al., 2017). In this regard, different types of
vesicles are released from the cells depending on the metabolic
and homeostatic cellular status into the extracellular space
(extracellular vesicles, EVs), such as exosomes. EVs act as a
shuttle for cargo delivery between cells, participate in cell-to-
cell communication, and have a potential pathogenic role in
the cell-to-cell transmission of toxic aggregated proteins in a
neurodegenerative disease context.

EXOSOMAL α-SYN SECRETION IN
PARKINSON’S DISEASE AND ITS
IMPACT ON DISEASE PROGRESSION

Exosomes are small vesicles (40–100 nm in diameter) released
into the extracellular space by various cell types, including
neurons, astrocytes, microglia, and lymphocytes. Exosomes are

generated from multivesicular bodies (MVB) that, after fusion
with the plasma membrane, releases intraluminal vesicles –
exosomes – containing membrane components, proteins, lipids,
and microRNAs (Kowal et al., 2014; Hessvik and Llorente,
2018). Moreover, this EV population can be detected in body
fluids such as blood, urine, and CSF (Thery et al., 2006;
Keller et al., 2011).

Increasing evidence suggests that the secretion of α-syn,
and oligomeric species, is associated with membrane vesicles,
as exosomes (Alvarez-Erviti et al., 2011; Danzer et al., 2012;
Emmanouilidou and Vekrellis, 2016). The secretion of exosomal
α-syn is a calcium-dependent mechanism (Emmanouilidou
et al., 2010). The mechanism of exosomes internalization
is not entirely decoded, and it seems to depend on the
type of recipient cells (Fruhbeis et al., 2013; Nanbo et al.,
2013; Svensson et al., 2013; Tian et al., 2014). The pathways
caveolin-dependent, clathrin-dependent, and macropinocytosis
are not involved in the internalization of exosome-associated
oligomeric α-syn (Delenclos et al., 2017). Furthermore, heparin
sulfate proteoglycans (HSPGs), transmembrane, and lipid-
anchored cell surface receptors modulate the internalization
exosomes containing Aβ monomer (Kanekiyo et al., 2011) and
α-syn recombinant fibrils (Holmes et al., 2013). However, in
contradictory results, another group reported that the deficiency
of HSPG did not attenuate the up-taking of α-syn exosomes
(Delenclos et al., 2017), suggesting that this pathway is not critical
for the α-syn oligomers internalization.

Neurons secrete α-syn by non-canonical cellular pathways
that may involve the participation of chaperones UPS19 and
DNAJ/HSC70 complex (Lee et al., 2016; Bieri et al., 2018).
Although the mechanism of exosomal α-syn secretion and
uptake has not been elucidated, it is more apparent that the
secreted vesicular α-syn is readily internalized compared to free
α-syn oligomers (Delenclos et al., 2017; Gustafsson et al., 2018),
conferring toxicity on the neighboring cells (Emmanouilidou
et al., 2010; Danzer et al., 2012).

Exosomes may provide a catalytic environment for nucleation
of α-syn aggregation (Grey et al., 2015). Vesicles containing-
α-syn have been shown to increase the oligomerization status of
α-syn (Lee et al., 2005; Grey et al., 2015), and oligomers negatively
impact cellular health more than monomers. α-syn species with
presumably lost physiological functions or altered aggregation
properties may shift the cellular processing toward vesicular
secretion. Fluorescent protein tags on the N-terminus of α-syn
alter intracellular dynamics (Goncalves and Outeiro, 2013) and
induce vesicular secretion (Jang et al., 2010). N-terminal protein
tags on α-syn lead to altered membrane-binding properties
and may form particularly pathogenic and stable forms of
aggregated α-syn that could increase cell-to-cell spreading
(Gustafsson et al., 2018).

A minor fraction (0.1–2%) of secreted α-syn are associated
with EVs, whereas most of the protein can be found
free in the extracellular space (Danzer et al., 2012; Shi
et al., 2014). Even though the EV-associated fraction of
extracellular α-syn is slight, such vesicles are considered
biologically active (van Niel et al., 2006) and molecules in this
environment could be more efficiently delivered to other cells
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(Subra et al., 2010). Interestingly, the exosomal α-syn levels of
neuronal origin in plasma correlate significantly with motor
dysfunction, a parameter of the severity of the disease (Shi
et al., 2014), highlighting the exosomes containing α-syn as
a potential biomarker of PD (Figure 1A). α-syn and DJ-
1, also known as Parkinson’s disease protein 7 (PARK7),
an antioxidant, transcriptional co-activator, and molecular
chaperone, presence in plasma neural-derived exosomes were
significantly higher in PD patients (Zhao et al., 2018). Recently,
it was described that exosomes derivated from saliva also
contain α-syn and may be used as a potential biomarker in PD
(Cao et al., 2019).

Is the secretion of exosomal α-syn an intercellular
transmission mechanism that increases toxicity in the brain?, or
could it be a cellular protective response against the intracellular
accumulation of α-syn? This response has not been elucidated,
and there is controversial literature about it. In this context,
it has been described that exosomes isolated from brain tissue
of patients with DLB injected into the brain of wild-type mice
generate the misfolding of the endogenous α-syn protein (Ngolab
et al., 2017). Notable, CSF exosomes from PD patients induce
oligomerization of α-syn in a reporter cell line in a dose-
dependent manner (Stuendl et al., 2016). About the secretion
and uptake of α-syn via EVs in cultured cells, it has been
reported that disease-causing mutants, as A53T α-syn, displayed
increased association with EVs (Gustafsson et al., 2018). It has
been described that γ-syn, another protein family member of
synucleins, can be oxidized and initiate α-syn aggregation. γ-syn
secreted in exosomes from neuronal cells can be transmitted
to glial cells and cause the aggregation of intracellular proteins
(Surgucheva et al., 2012).

Interestingly, pramipexole, an agonist of the dopamine
receptor family, is used as a treatment for PD patients. After
12 weeks of pharmacological therapy, the patient’s motor
performance was statistically improved, and the α-syn content
in serum exosomes was lower after the treatment (Luo et al.,
2016). Although these results propose a correlation between the
α-syn content in serum exosomes and motor symptoms, the
mechanism to explain it is still unknown.

Not only neurons would participate in the transmission of
α-syn exosomal since microglia also can capture exosomes from
the plasma of patients with PD. α-syn induces an increase of
exosomal secretion by microglia, and these exosomes showed
a high level of MHC class II molecules and TNF-α (Chang
et al., 2013). More recently, it was described that the secretion
of exosomal human α-syn from the microglia could facilitate its
aggregation (Guo et al., 2020) and propagation, possibly through
dysregulation of autophagy (Xia et al., 2019).

On the other side, on physiological conditions, it is possible to
detect monomers of α-syn, which are degraded by the ubiquitin-
proteasome system (UPS; Bennett et al., 1999) and the chaperone-
mediated autophagy (CMA; Cuervo et al., 2004; Vogiatzi et al.,
2008; Mak et al., 2010). Oligomers, however, are efficiently
degraded by the autophagy-lysosomal pathway (ALP; Ebrahimi-
Fakhari et al., 2011). Both processes, exosomes secretion of α-syn
and degradation by ALP, occur in a coordinate balance (Fussi
et al., 2018; Figure 1B). Nevertheless, the mechanism involved

in the balance of autophagy and α-syn exosomal secretion in
neurons has not been elucidated.

IMPACT OF AUTOPHAGY-LYSOSOMAL
PATHWAY IN PARKINSON’S DISEASE
PROGRESSION

Autophagy (derived from the Greek words for “self ” and
“eating”) is an evolutionarily conserved lysosomal pathway
that digests long-lived proteins, protein aggregates, stress RNA
granules, and abnormal cytoplasmic organelles. Based on the
type of substrate, mode of cargo recognition, transport, and
delivery to the lysosome, three types of autophagy have been
described: microautophagy, CMA, and macroautophagy in PD
(Martinez-Vicente and Cuervo, 2007; Kenney and Benarroch,
2015). During microautophagy, the cargo is taken into the
lysosome or late endosome through its membrane invagination,
being quickly degraded in the lysosomal lumen (Frake et al.,
2015; Bento et al., 2016). In the CMA, the cargo containing
an aminoacidic sequence binds to cytosolic chaperones, is
recognized and imported into the lysosomal lumen by a
receptor on the lysosomal membrane (Kaushik and Cuervo,
2008). Macroautophagy (hereafter referred to as autophagy or
autophagy-lysosomal pathway) is a highly regulated mechanism
that forms a double-membrane vesicle called the autophagosome
to isolate the cargo that will be degraded (Bento et al.,
2016). After maturation, autophagosomes fuse with lysosomes
to degrade their content by the activity of lysosomal acid
hydrolases (Figure 1B). Lysosomes’ proper function is central
to concluding several convergent pathways, including autophagy
and endocytosis. Under basal conditions, autophagy is an
active quality control process that prevents metabolic and
oxidative stress in the cell by degrading aggregated proteins
and damaged or dysfunctional organelles. Starvation-induced
autophagy is a cellular response to nutrient deprivation that
recycles macromolecules to offer substrates for metabolism
(Mizushima et al., 2008).

In a pathological context, it has been found that selective
autophagy contributes to the clearance of misfolded proteins
involved in neurodegenerative diseases such as tau, SOD1,
and α-syn (Vidal et al., 2014; Frake et al., 2015). Moreover,
evidence has demonstrated a link between PD and mitophagy
(selective mitochondrial autophagy). Mitophagy is mediated
by binding selective autophagy receptors simultaneously to
ubiquitinated proteins in the mitochondria surface and proteins
from the autophagy machinery, such as the LC3-II family
proteins (Pickles et al., 2018; Conway et al., 2020). The most
studied mitophagy pathway is dependent on two proteins, PTEN-
induced kinase 1 (PINK1) and Parkin (Narendra et al., 2010). In
this pathway, PINK1 accumulates on depolarized mitochondria,
triggering the translocation of Parkin from the cytosol, eliciting
the ubiquitination of several mitochondrial proteins, including
mitofusin 1 and 2 (MFN1 and MFN2), translocase of outer
membrane 20 (TOM20), and voltage-dependent anion-selective
channel 1 (VDAC1; Bayrhuber et al., 2008; Wang et al., 2011;
Sarraf et al., 2013). Notably, mutations in PINK1 and Parkin
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FIGURE 1 | Crosstalk between the autophagy-lysosomal pathway (ALP) and the exosomes secretion in Parkinson’s disease. (A) The presence of soluble free or
exosomes-containing α-synuclein (α-syn) derived from Substantia Nigra can be detected in cerebrospinal fluid (CSF) and blood samples from Parkinson’s disease
patients, potentially contributing to the early disease’s diagnosis and progression monitoring. (B) Overview of the autophagy-lysosomal pathway (ALP) and
exosomes secretion. In (1), the formation of the initial membrane that will originate the double-vesicle autophagosome (2) depends on several complex proteins’
actions (shown in different colors). (3) The fusion of autophagosomes with lysosomes is a final step of the pathway, originating the autolysosome (4), where the
substrates are finally degraded into their monomeric components that can be recycled back to the cytosol (5). Multivesicular bodies (MVB) originate the exosomes
vesicles, which are secreted by exocytosis and participate in the cell-to-cell transmission of α-syn (neurons and glia cells).

are associated with familial parkinsonism, while the loss of
PINK1 function induces oxidative stress and mitophagy (Valente
et al., 2004; Dagda et al., 2009). Moreover, the parkinsonian
neurotoxin MPP+ (the active metabolite of MPTP) induces
autophagy and mitophagy depending on autophagy proteins
ATG5, ATG7, and ATG8, but independently of the protein Beclin
1 (Chu et al., 2007).

Autosomal dominant mutations in the gene LRRK2 encoding
the protein leucine-rich repeat kinase 2 are among the most
common causing familial PD (Zimprich et al., 2004). Mutations

in LRRK2 have been shown to reduce mitochondria trafficking
in rat neurons (Godena et al., 2014; Hsieh et al., 2016), impair
the mitophagy activity in PD-derived cells (Bonello et al., 2019;
Wauters et al., 2020), and increase aggregation of α-syn in
mice models and human iPSC-derived dopaminergic neurons
(Bieri et al., 2019). In a recent work, researchers studied α-syn
spreading levels in CSF from patients carrying different DLB
and PD mutations using an α-syn real-time amplification assay
(Brockmann et al., 2021). Interestingly, CSF samples from
patients harboring mutations in PINK1 or Parkin did not show
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positive α-syn seeding activity. However, CFS samples from
LRRK2 PD patients (78%) showed an elevated α-syn positivity,
only exceeded by CSF samples from DLB (100%) or PD (93%)
patients carrying GBA1 mutations (Brockmann et al., 2021).
Notably, this higher α-syn seeding activity in CSF from GBA1
patients was associated with lower levels of proteins related
to α-syn clearance, including autophagy, lysosomal function,
and endocytosis pathways in the same samples, suggesting
GBA1 mutations promote a negative correlation between α-syn
accumulation and degradation pathways, mainly associated
with lysosomal dysfunction (Brockmann et al., 2021). This
work also found decreased levels of proteins from the UPS
and neurosecretion processes in CSF from GBA1-carrying
patients, which increase the urge to elucidate the mechanisms
involved in this broad reduction in degradation pathways
proteome (Brockmann et al., 2021) and to check if this data is
reflected in CNS samples.

The failure of the protein quality control systems, especially
lysosomal-dependent degradation, promotes the accumulation
of α-syn (Desplats et al., 2009). Heterozygous mutations in
the GBA1 gene encoding lysosomal enzyme GCase are strong
risk factors for PD (Avenali et al., 2020). GCase is an
N-glycosylated protein synthesized and transported in vesicles
from the ER-to-Golgi apparatus, where it is correctly folded
through a maturation process before reaching the lysosomes.
α-syn aggregation generated by wild-type SNCA triplication in
PD patients iPSC-derived dopaminergic neurons was reported
to disrupt the ER-GA trafficking by inhibiting the SNARE
protein ykt6 (Cuddy et al., 2019), depleting lysosomes from
acid hydrolases, and increasing the accumulation of insoluble
immature GCase in ER (Stojkovska et al., 2021). Interestingly,
using a pharmacological enhancer of ER proteostasis plus a
farnesyltransferase inhibitor (FTI), which restores ykt6 activity,
was reestablished GCase maturation and lysosomal activity,
becoming a promising therapeutic strategy for future studies in
synucleinopathies (Stojkovska et al., 2021).

Recent works have suggested that the secretion of exosomes
containing α-syn could result as a protection mechanism against
the blockage of autophagy-dependent α-syn clearance (Fussi
et al., 2018). In particular, the silencing of ATG5, a key protein
involved in the extension of the phagophore membrane in
autophagic vesicles (Pyo et al., 2005), increases the secretion of
α-syn via exosomes, which are associated with a decrease in
cell death α-syn induced (Fussi et al., 2018). In accordance, the
inhibition of lysosomal function in α-syn overexpressing neural
cell lines generated an increase of exosomal secretion of α-syn,
promoting a cell-to-cell transfer of α-syn (Alvarez-Erviti et al.,
2011). Other evidence also shows that the ALP inhibition reduces
intracellular α-syn while increasing the secretion of smaller
oligomers, exacerbating the uptake, inflammation, and cellular
damage (Poehler et al., 2014). Moreover, has been reported
a secretion of aggregated α-syn by exosomes and Rab11a-
associated pathways and by membrane shedding (Poehler et al.,
2014). It was confirmed that the ALP inhibition promotes
the release and transmission of α-syn via EVs with a hybrid
autophagosome-exosome phenotype, increasing the ratio of
extracellular α-syn/intracellular α-syn and its association with

EV in neuronal cells (Minakaki et al., 2018). GCase loss-
of-function was also associated with α-syn secretion. Studies
in transgenic mice harboring the human mutation A53T in
SNCA found that inhibition of GCase increases the exosome-
associated α-syn oligomers release (Papadopoulos et al., 2018).
The plasma exosomal/total α-syn ratio is associated with GCase
activity, and it correlates with severity (motor deficiency) in
PD patients (Cerri et al., 2018; Johnson et al., 2020), proposing
the link between lysosomal dysfunction with increased exosome
secretion. Similar results were reported in fibroblasts derived
from PD patients with or without GBA1, in which defective
GCase activity increased the release of exosomes (Cerri et al.,
2021). Isolated exosomes from these cells caused increased levels
of phospho-α-syn in SH-SY5Y recipient cells, overexpressing
wild-type α-syn (Cerri et al., 2021). Interesting, this effect
was not due to a seeding effect since fibroblasts are α-syn-
free. The researchers hypothesize that fibroblast-derived from
patients harboring GBA1 mutations promote changes in the
lipid composition of recipient cells, which may account for
the increased phospho-α-syn, posttraductional modification that
increases the formation of insolubleα-syn forms (Canerina-
Amaro et al., 2019). Besides releasing exosomes, MVBs can be
eliminated through the ALP by a direct fusion with lysosomes
or autophagosomes (Fader et al., 2008; Vanlandingham and
Ceresa, 2009; Szatmari et al., 2014; Teixeira et al., 2021). α-syn
itself can disturb the ALP activity, promoting potential positive
feedback to its secretion. Notably, α-syn fibrils have been shown
to impair lysosomes’ morphology from inside the organelle
lumen, reducing the ALP-dependent clearance of aggregates and
defective organelles. Moreover, lysosomes filled with α-syn fibrils
can be transferred to neighboring cells through TNTs or secretion
vesicles, contributing to the disease’s spread (Dilsizoglu Senol
et al., 2021). There is evidence for a loop between the lysosome
and α-syn proteoforms (Wildburger et al., 2020).

Some genes encoding proteins involved in intracellular
vesicle trafficking and lysosome transport are risk genes
associated with PD (Abeliovich and Gitler, 2016; Mazzulli
et al., 2016a). For example, Kufor-Rakeb syndrome (KRS) is
caused by an autosomal recessive mutation in the PARK9 gene
encoding ATP13A2 (transmembrane lysosomal type 5 P-type
ATPase protein) characterized by juvenile-onset parkinsonism.
Interestingly, a mutation in this gene was described in a Chilean
family patient for the first time (Ramirez et al., 2006). PARK9
encodes a lysosomal ATPase involved in cation homeostasis,
and its loss of function leads to lysosomal dysfunction (Gitler
et al., 2009; Kong et al., 2014; Tsunemi et al., 2014). Interestingly,
in Caenorhabditis elegans and dopamine cell culture models,
it was described that ATP13A2 would have a protective role
against the accumulation of misfolded α-syn and cellular
toxicity (Gitler et al., 2009). However, the overexpression
of ATP13A2 increases the release of exosomes, promoting
the secretion of α-syn in primary cortical neurons (Tsunemi
et al., 2014). The evidence suggests that the ATP13A2 protein
regulates the release of α-syn via EVs through the modification
of the biogenesis of exosomes by a functional interaction with
the lysosomal sorting complex required for transport (ESCRT;
Tsunemi et al., 2014). Additionally, the enhanced secretion of
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exosome-associated α-syn may explain the increased viability in
neurons of the SNpc in sporadic PD patients by overexpressing
ATP13A2 (Kong et al., 2014). A recent work has shown that PD
mutations in ATP13A2 increase α-syn intracellular accumulation
by impairing lysosome exocytosis using iPSC-derived neurons
from PD patients (Tsunemi et al., 2019). The mechanism by
ATP13A2 modulates lysosomal exocytosis is by mediating Ca2+

homeostasis in these organelles. Interestingly, a pharmacological
agonist of the lysosomal Ca2+ channel, TRPML1, recovers
lysosomal exocytosis, correcting α-syn secretion defects and
decreasing intracellular accumulation in ATP13A2 patient
neurons (Tsunemi et al., 2019).

What is the contribution of neighboring cells of neurons in
PD? Microglia isolated from adult mice, in contrast to microglia
from young mice, display phagocytosis deficits of free and
exosome-associated α-syn oligomers (Bliederhaeuser et al., 2016).
The neuronal α-syn secreted by exosomes or lysosomal exocytosis
is partially endocytosed by astrocytes, which contribute to
reducing the α-syn spread between neurons. Indeed, degradation
of α-syn is more efficient in astrocytes than neurons (Tsunemi
et al., 2020). However, the iPSC-derived astrocytic protection
against the α-syn accumulation and propagation is partially lost
by ATP13A2 mutations, resulting in the increased accumulation
and propagation of α-syn between neurons (Tsunemi et al.,
2020), suggesting that astrocytic lysosomal dysfunction indirectly
contributes to the α-syn neuronal pathology.

Moreover, impaired biogenesis of MVBs by a dominant-
negative mutant of vacuolar protein sorting 4 (VPS4) interferes
with the lysosomal targeting of α-syn and facilitates α-syn
secretion (Hasegawa et al., 2011). The hypersecretion of α-syn in
VPS4-defective cells was restored by the functional disruption of
recycling endosome regulator Rab11a. VPS4, a master regulator
of MVBs sorting, may serve as a determinant of lysosomal
targeting or extracellular secretion of α-syn (Hasegawa et al.,
2011). Another member of the endosomal protein sorting,
VPS35, is also associated with PD (Vilarino-Guell et al., 2011).
VPS35 is part of the retromer complex, which mediates the
endosome-to-Golgi recovery of membrane proteins. The VPS35
D620N mutation causes an autosomal-dominant form of PD,
and the cells expressing the mutant form have impaired
autophagy. The defects in autophagy can be explained in part
by the abnormal traffic of the transmembrane autophagy protein
ATG9A (Zavodszky et al., 2014).

Another traffic protein associated with PD is Secretory Carrier
Membrane Protein 5 (SCAMP5), a regulator of membrane
trafficking enriched in the brain, identified as an autophagy
inhibitor that promotes exosomal secretion of α-syn (Yang
et al., 2017). SCAMP5 is a novel coordinator of autophagy and
exosome secretion, induced under protein stress by Bafilomycin
A1 to clear toxic proteins via the exosomes rather than ALP
(Yang et al., 2017).

All these results support the idea that exists a connection
between autophagy, lysosomal homeostasis, and α-syn exosomes
secretion on the PD progression (Xu et al., 2018). Moreover,
autophagy modification (gain and loss function) impacts
exosomes released into the extracellular space in vitro (Hu et al.,
2020). Although, the full mechanism underlying these processes

in vivo and the effect on the progression of the PD remains poorly
understood (Figure 2). Overall, several lines of evidence propose
that a correction in lysosomal function can boost dopaminergic
neurons’ survival in PD, avoiding α-syn aggregation. However,
it is open to whether the increase in the α-syn secretion, by
exosomes or other vesicles kinds, can result in a progression
spread of the disease in an in vivo long-term study.

CLINICAL ASPECTS OF
AUTOPHAGY-LYSOSOMAL PATHWAY
AND PARKINSON’S DISEASE
PROGRESSION

As mentioned, oligomers and fibrils α-syn degradation is
mediated by autophagy, connecting the role of lysosomes
to the etiology/progression of PD (Webb et al., 2003; Lee
et al., 2004). Concerning the above, the expression of genes
from the autophagy pathway [UNC- 51- like kinase (ULK) 3,
autophagy-related (Atg) 2A, Atg4B, Atg5, Atg16L1, and histone
deacetylase 6] were evaluated in peripheral blood mononuclear
cells (PBMCs) of patients with PD. Researchers observed a
decrease in the expression of autophagy regulatory components
in patients with PD, while they reported an increase of α-syn
protein levels in PBMCs compared to controls (Miki et al.,
2018). However, the comprehensive mechanisms of the dynamic
interaction of ALP-MVBs for the secretion of α-syn via EVs
have not been fully elucidated. It has been recently described
that a significant percentage of the proteins detected in tissue-
purified Lewy bodies from DLB patients and cytoplasmic
glial inclusions (CGI) of oligodendrocytes from multiple
systemic atrophy (MSA) patients are synaptic vesicle proteins,
including CD9 associated with exosomes (McCormack et al.,
2019). This fact suggests that the misfolding or accumulation
of α-syn, characteristic of synucleinopathies, contributes to
the vesicle-mediated transport of these protein inclusions
(McCormack et al., 2019). A recent study demonstrated that
the inhibition of dynamin-related protein 1 (Drp1) improved
both mitochondrial function and autophagic flux in experimental
models of α-syn (Fan et al., 2019). The following key step is
to determine if the Drp1 inhibition confers neuroprotection
through the abolished autophagic impairment induced by α-syn
in in vivo models of PD.

Several pharmacological agents targeting ALP components,
especially lysosomal function, are active research topics in
preclinical and clinical phases to PD and other synucleinopathies.
They include the previously mentioned FTI, which restores
the SNARE ykt6 activity, reestablishing lysosomal hydrolases
maturation, and finally, the lysosomal activity (Stojkovska et al.,
2021) pharmacological agonists of lysosomal Ca2+ channel,
TRPML1, which has been shown to restore lysosomal exocytosis,
enhancing α-syn secretion and decreasing accumulation in
ATP13A2 patient iPSC-derived neurons (Tsunemi et al., 2019); or
the ambroxol, a cough syrup approved by the FDA since 1971,
which has been reported to reduce α-synuclein levels in vitro
and in vivo (Migdalska-Richards et al., 2016), and to increase
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FIGURE 2 | Contribution of autophagy-lysosomal pathway and α-syn secreted in Parkinson’s disease. (A) In normal conditions, it is possible to detect monomers of
alpha-synuclein (α-syn), which are degraded by Ubiquitin Proteasome System (UPS), and oligomers of α-syn are efficiently degraded by Autophagy-Lysosomal (ALP)
pathway or can be secreted by exosomes. Both degradation and secretion processes occur in a coordinate balance. (B) On Parkinson’s Disease condition,
abundant oligomers and fibrils of α-syn are formed, and it less degraded by autophagy due to an impairment of this pathway, and it is possible to observe an
increased secretion of α-syn by exosomes.

GCase expression and activity (Migdalska-Richards et al., 2017).
Ambroxol was shown to restore lysosomal exocytosis (Magalhaes
et al., 2018) and promote ER folding. Recently, ambroxol
treatment in PD patients harboring or not GBA1 mutations
has shown promising results regarding α-syn secretion in
CSF (Mullin et al., 2020). However, although these drugs
are promising hopes, they need to be tested in different
mutations associated with PD, considering the broad clinical and
physiological variability between them (Cerri et al., 2018; Johnson
et al., 2020).

CONCLUSION AND PERSPECTIVES

This review summarized the antecedents that demonstrate
altered autophagy in PD and some evidence that proposes a
link between ALP components and the exosomal secretion of
α-syn. To elucidate the mechanisms that explain the relation
between ALP and the secretion of EVs in PD is still a field in
study. However, some clues of the crosstalk between exosomes
and autophagy have been proposed [review in Xu et al. (2018),
Gudbergsson and Johnsen (2019), Buratta et al. (2020), Xing et al.
(2021)].

The origin of extracellular vesicles can offer additional
information. For example, mitochondrial-derived vesicles are
a candidate as biomarkers in body fluids of PD patients
may provide clues to understand the association between
mitochondrial dysfunction and systemic inflammation in PD
(Picca et al., 2019). Interesting proposals are in the therapy
field based on autophagic degradation and exosomal secretion.

The development of an α-syn nano-scavenger for PD capable
of stimulating nuclear translocation of TFEB (master regulator
of autophagy), promoting autophagy and calcium-dependent
exosome secretion for the clearance of α-syn (Liu et al.,
2020). While α-syn expression can be reduced by antisense
oligonucleotides (ASOs), the big challenge is delivering ASOs
efficiently and safely into the neurons. Exosomes can be a safe
and highly effective ASO delivery method (Yang et al., 2021).
Promising ALP and exosomal secretion research are developed
on in vitro models. However, further validations in animal models
and physiology-related conditions are required.

Recently, in vitro study reported that proteins from SARS-
CoV-2, which causes COVID-19, interact with α-syn, speeding
up the formation of amyloid plaques (Semerdzhiev et al., 2021)
open an interesting research field associating virus infections with
PD or other neurodegenerative diseases development.
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