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SUMMARY

To understand the impact of genome sequence variation (the genotype) responsible for biological 

diversity and human health (the phenotype) including cystic fibrosis and Alzheimer’s disease, we 

developed a Gaussian-process-based machine learning (ML) approach, variation spatial profiling 

(VSP). VSP uses a sparse collection of known variants found in the population that perturb the 

protein fold to define unknown variant function based on the emergent general principle of spatial 

covariance (SCV). SCV quantitatively captures the role of proximity in genotype-to-phenotype 

spatial-temporal relationships. Phenotype landscapes generated through SCV provide a platform 

that can be used to describe the functional properties that drive sequence-to-function-to-structure 

design of the polypeptide fold at atomic resolution. We provide proof of principle that SCV can 

enable the use of population-based genomic platforms to define the origins and mechanism of 

action of genotype-to-phenotype transformations contributing to the health and disease of an 

individual.
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In Brief

Wang and Balch develop variation spatial profiling (VSP), a machine learning approach to 

integrate genomics and phenomics of the population to inform on the phenotype of the individual 

at atomic resolution. VSP is based on the principle of spatial covariance (SCV) that defines central 

dogma as matrices to track information flow from the genotype-to-phenotype to facilitate high-

definition medicine.

INTRODUCTION

Interpreting the impact of familial and somatic variation in the genome on the protein fold 

and function in diverse physiological contexts (Anfinsen, 1973) is critical for 

implementation of high-definition medicine (Torkamani et al., 2017). Associated with this 

concern is the need to link the genotype to the phenotype—a universal challenge in the era 

of human genome sequencing (Manolio et al., 2017). To assess the impact of genetic 

diversity on protein function and structure, ancestral approaches can be used to compare 

residue conservation across evolutionary time to assign evolved chemical and/or physical 

constraints defining the function of the polypeptide fold (Hopf et al., 2017), whereas deep 

mutational scanning (DMS) attempts to facilitate interpretation through induced random 

genetic variation (Starita et al., 2017). These approaches fail to guide an understanding of 

the impact of genetic diversity on protein function found in the many cell- and tissue-

specific environments that are unique to each one of us.

To understand the genotype-to-phenotype transformation contributing to function, we 

hypothesized that sequence variation in the human population can be used as a collective to 

generate a platform that quantitatively tracks hidden sequence-to-function-to-structure 

relationships that contribute to diversity and function in the individual. For this purpose, we 

developed variation spatial profiling (VSP). VSP uses the fiduciary (trusted) sequence 

positions (i.e., genotypes) of a sparse collection of inherited disease-associated variants 
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found in the population with known biological functions (i.e., phenotypes) to map their 

collective spatial relationships, which we define as spatial covariance (SCV). Herein, we 

first develop and validate the interpretive power of VSP using the recessive, loss-of-function 

variants of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) to reveal 

the sequence-to-function-to-structure relationships contributing to CF disease, a platform 

useful for application of therapeutics to the individual CF patient. To generalize our SCV-

based platform, we use allele frequency to assess the evolutionary impact of variation on CF. 

To expand the application of the SCV principle, we use function and allele frequency to 

predict the pathogenicity of dominant gain-of-function amyloid precursor protein (APP) 

variants responsible for Alzheimer’s disease (AD), and to capture the value of the Aβ-42/

Aβ-40 ratio to predict age of onset (AO) of dementia. We suggest VSP provides an 

unanticipated approach to read the genome by interpreting central dogma in the context of 

genetic diversity of the population through the principle of SCV.

RESULTS

Defining SCV through a Gaussian Process

To address the role of genetic variation in biological diversity and human healthspan, we 

reasoned that variants found in the population report on conserved (but largely unknown) 

evolutionary rules that dictate the biophysical, biochemical, and/or biological properties of 

folding intermediates informing normal protein function. To bridge sequence variation with 

phenotypic diversity, we developed VSP. VSP is inspired by well-established Gaussian-

process (GP)-based regression approaches used in geostatistics (Chilès and Delfiner, 2012) 

that analyze relationships between datasets based on x axis (latitude) and y axis (longitude) 

position coordinates (Figure 1A; see STAR Methods). These coordinates are used to build an 

image of the landscape that predicts the probability of the distribution of, for example, a 

geologic feature such as a commodity (e.g., oil) (Figure 1A, z axis). This matrix-based map 

is derived using the spatial relationships between a sparse collection measured positions in 

the landscape (e.g., “boreholes” used for oil) and the covariance calculated between the 

values found in these positions (Figure 1A). These known spatial relationships are then used 

to capture the values for all unmeasured (unknown) positions in the landscape based on the 

rationale that measured positions closely separated in geophysical space (their proximity) 

are more correlated to each other than those at more distant spatial locations. Only a sparse 

collection of positional relationships in the landscape, that is, their proximity-linked 

measurements, are necessary to define unknown values across the entire landscape with high 

confidence. In geostatistics, high-confidence (low uncertainty) predictions typically require 

~50 or greater sampling positions (Kerry and Oliver, 2007).

We recognized that variants in the population can experimentally serve as fiduciary (trusted) 

“molecular markers,” like geological boreholes, to yield fundamental insights into the value 

of relationships that link each variant position (its genotype) to its value in the polypeptide 

chain, that is, its phenotype defined by protein function. For this purpose, we apply a 

proximity-based biological principle we term SCV. SCV captures the impact of GP-based 

covariance to map value in sequence-to-function relationships as a continuous landscape 

image that can be transformed to structure. By linking the linear sequence information found 
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in the genotype of the population to functional states of the polypeptide fold, SCV 

relationships can be used to predict unknown functional and structural values for every 

amino acid position in the polypeptide sequence.

Applying SCV to Profile Disease Variants

To test the SCV principle, we first turned our attention to the broad field of human 

Mendelian disease, where inherited variants have a transformative impact on protein folding, 

stability, and function. Familial disease provides a robust genotype-to-phenotype differential 

relative to the normal wild-type (WT) protein to address the role of sequence variation in 

human physiology. Of the over 10,000 rare diseases cataloged to date (Landrum et al., 

2016), CF is a well-studied and prevalent (~100,000 patients worldwide) early-onset, 

autosomal recessive (loss-of-function) disorder involving variants in the CFTR (Cutting, 

2015).

CFTR is a multi-membrane-spanning polypeptide (Figure 1B) belonging to a large and 

diverse ABC transporter family containing transmembrane domains (TMDs) and regulatory 

nucleotide-binding domains (NBDs) (Figures 1B and S1A) (Liu et al., 2017; Zhang et al., 

2017). At the apical surface, CFTR functions as a key chloride channel that maintains ion 

balance and hydration in sweat, intestinal, pancreatic, and pulmonary tissues, each providing 

a unique physiological environment likely differentially contributing to CFTR function 

(Amaral and Balch, 2015).

Assigning CFTR Landscape Coordinates: Step 1

Of the CFTR variants found in the population with a confirmed CF clinical phenotype 

(Sosnay et al., 2013), 159 have an allele frequency above 0.01% and encompass ~96% of the 

patient population. 67 genotypes are missense or deletion variants that result in the 

expression of a full-length but dysfunctional protein (Figures 1B and S1A). The Phe508 

deletion (F508del) variant contributes to ~85% of clinical disease in homozygous (~45%) or 

heterozygous state with other rare variants. Recent cryoelectron microscopy (cryo-EM) 

structures of CFTR in the presence or absence of phosphorylation and ATP binding reveal 

that large conformational changes accompany channel gating and function (Liu et al., 2017; 

Zhang et al., 2017). The impact of variation (Cutting, 2015) (https://www.cftr2.org/) on 

these structural states and their contribution to the natural history of disease, risk 

management, and/or clinical intervention through therapeutics for each individual in the CF 

patient population remain to be defined.

To generate the input data for our VSP approach, we used 63 experimentally characterized 

CFTR missense variants (Sosnay et al., 2013) (Figures 1B and S1A). In the first step of VSP 

(Figure 1C, step 1), we positioned these variants as distance relationships based on the 

position of their genotype encoded variant amino acid along a linear (1-dimensional [1D]) 

polypeptide sequence normalized to the full-length WT chain set as a value of 1. Here, we 

refer to this value as the variant sequence position (VarSeqP) (Figure 1C, step 1, 1D). For the 

y and z axis coordinates that will contribute to sequence-to-function relationships, we used 

biologic features associated with each variant. CFTR requires trafficking in the exocytic 

pathway from the endoplasmic reticulum (ER) through the Golgi to its final destination at 
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the apical cell surface of epithelial cells to achieve biological function. Therefore, as a 

second dimension (2D) y axis coordinate, we assigned the value of each variant’s 

experimentally determined trafficking to the Golgi, referred to as the trafficking index 

(TrIdx) (Figure 1C, step 1,2D). The Trldx is the fraction of a CFTR variant exported from 

the ER relative to the total amount of variant found in the cell, normalized to WT CFTR. 

The resulting plot (Figure 1C, step 1,2D) links the genotype (x axis) to a phenotype (y axis).

To correlate sequence position (VarSeqP) (x axis) and trafficking (y axis) to a feature to be 

predicted by VSP, the third dimension (the z coordinate) was defined by the experimentally 

measured chloride conductance (ClCon) value for each variant normalized to the ClCon 

value of WT (Figure 1C, step 1, three-dimensional [3D]). The z axis functional feature is 

equivalent to the measured values recovered from a sparse distribution of geological features 

(e.g., such as oil found in boreholes; Figure 1A). The ClCon value is spatially defined in the 

context of its unique x axis (sequence position) and y axis (trafficking) coordinates. The 

spatial relationships defined by the x axis and functional y and z axes coordinates provide a 

quantitative framework to assign value and map function across the entire polypeptide 

sequence through GP regression.

Building the Phenotype Landscape: Step 2

To transform the sparse genotype sequence information encoded by our collection of 63 

variants into the phenotype of the entire polypeptide chain, in the second step of VSP 

(Figure 1C, step 2), we assessed the spatial relationships of each known variant (x axis) and 

its unique biological features (y and z axes) using a variogram (STAR Methods). The 

variogram is a GP descriptor that captures biological spatial correlations that are used for 

ML based on the input sparse collection of variants and their features (Figure 1C, step 1).

Generation of the variogram involves pairwise analysis of the 63 sparse variants to yield all 

possible 1,953 combinations of spatial relationships as output (Figure 1C, step 2, top). The 

2D distance values linking VarSeqP to TrIdx (Figure 1C, step 2, bottom, x axis) were first 

calculated to report how CFTR trafficking is changed in response to each variant sequence 

position. The associated 3D spatial relationships with ClCon were then calculated to assess 

variance of the proximity values of ClCon for all combinations of the VarSeqP coupled 

TrIdx positions (Figure 1C, step 2, bottom, y axis) to generate the variogram (Figures S1B-

S1D). The variogram reports on the SCV relationships of known sequence positions to 

trafficking to ClCon function to define the unknown SCV relationships as output matrix, just 

as x and y axis linear coordinates in geostatistics links the positions of boreholes to predict 

the spatial distribution pattern of commodity values as output (z axis) (Figure 1A).

Our “molecular” variogram quantitates the sequence range where the variants co-vary with 

each other for a given set of functional relationships, in this case the TrIdx and ClCon 

values. We find that the spatial variance of ClCon for CFTR increases according to the 

linked changes in both VarSeqP and TrIdx until it reaches a plateau (Figure 1C, step 2, 

bottom). The plateau occurs at distance of ~0.14 (Figure 1C, step 2, bottom), a computed 

feature of the fold we refer to as the molecular range. A molecular range of ~0.14 reveals 

that the TrIdx and ClCon function of variants are generally dependent on each other only 

over a short sequence range, a module of function, in this case ~150–200 amino acids. 
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Variants with spatial relationships extending beyond the module range are generally not 

correlated and therefore likely to have more extended (direct or indirect) relationships to 

modulate function, perhaps reflecting flexible intra- or inter-domain interactions found in the 

full-length protein and/or in their interactions with other proteins in the complex 

environment of the cell (Pankow et al., 2015). Thus, SCV reports on spatial relationships 

that coordinate sequence position with function that now enable us to calculate an output 

matrix, the “phenotype landscape” that captures the unknown.

Using the Phenotype Landscape to Define Function in the Individual: Step 3

Based on the SCV relationships generated in step 2 as input, we apply GP regression to 

relate our characterized sparse collection of variants (the known) to the uncharacterized 

amino acids comprising the remainder of the polypeptide chain (the unknown). The resultant 

matrix-based output phenotype landscape allows us to quantitatively assess all unmeasured 

ClCon values in the context of the TrIdx for amino acids spanning the entire polypeptide 

sequence, along with an uncertainty associated with each value (Figure 1C, step 3, 

~2,100,000 predictions shown as a color gradient; Video S1). We refer to this 3D landscape 

(Figure 1C, step 3) as the ClCon-phenotype landscape reflecting its z axis coordinate.

The SCV-based landscape generated from genetic diversity in the population can be used to 

assess function in the individual harboring a specific variation. For this purpose, the ClCon-

phenotype landscape (Figure 1C, step 3) is back-projected to a 2D map with the color scale 

(a heatmap) representing the z axis ClCon function (Figure 2A). The molecular variogram 

(Figure 1C, step 2, bottom) used to generate the ClCon-phenotype landscape also defines the 

confidence or uncertainty for each mapped value. These values can be plotted as a gradient 

of contour lines (a molecular fingerprint) representing the uncertainty in applying SCV 

relationships for each uncharacterized amino acid in the CFTR full-length sequence (Figure 

2A, gray contours; Figure S1E). For example, a location within the top 25% confidence 

quartile (Figure 2A, opaque color regions) have input variant values within the top one-third 

of the molecular range (Figure 1C, step 2, bottom). These SCV relationships are of high 

confidence and more dependent on one another than locations outside the top 25% 

confidence quartile (Figure 2A, transparent color regions). The residues in the top 25% 

contours with similar predicted ClCon values we refer to as clusters. Clusters reveal the 

contribution of both known and unknown (predicted) amino acids to the overall functional 

spatial design of the fold.

To validate the output of the ClCon-phenotype landscape (Figure 2A), we used a different 

dataset of diverse CF variants (Van Goor et al., 2014; Yu et al., 2012) (Figure S1F, inset) not 

included in the training dataset (Sosnay et al., 2013) (Figure 2A, plus symbols). Validation 

reveals a strong correlation (Figure S1F; Pearson’s r = 0.81, p value = 2 × 10−4) between all 

the experimentally measured values and the newly mapped values that define the output 

phenotype landscape. These results demonstrate that VSP can incorporate complex sequence 

and feature-based functional relationships using >50 fiduciary variant markers (Figure S1G), 

which comprise only 5% of the total CFTR sequence, to generate a continuous landscape 

view of physiological features spanning the entire CFTR polypeptide. For example, the 

ClCon-phenotype landscape reveals that for all residues that have a TrIdx value of 
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approximately <0.4–0.5 (Figure 2A, y axis), VSP predicts a nearly complete loss of ClCon, 

reflecting the impact of SCV states that prioritize cellular location (i.e., ER) relative to 

ClCon function found at the cell surface (Figure 2A, z axis, red). In contrast, for CFTR 

variants that have a TrIdx value of approximately >0.4–0.5 (Figure 2A, y axis), VSP predicts 

substantial sequence-based variability in ClCon (from none to greater than WT), illustrating 

the sensitivity of the CFTR fold to highly variable endocytic trafficking and channel 

regulation pathways at the cell surface that have no impact on export from the ER.

Translating the Phenotype Landscape to a Functional Structure

To examine whether phenotype landscapes derived from linear sequence information and 

associated biological features can provide functional insight into the conformation(s) 

captured by structural methods, we mapped phenotype landscape values to cryo-EM 

snapshots of CFTR (Liu et al., 2017; Zhang et al., 2017) in open and closed channel 

conformations reflecting the response of the channel to ATP-binding (Figure 2B). We 

assigned the prediction value with highest confidence to uncharacterized residues (Figure 

2B, left panels) to link function to conformation where TrIdx (Figure 2B, right panels, ball 

size), predicted values of ClCon (Figure 2B, right panels, color gradient), as well as their 

confidence in prediction (Figure 2B, right panels, transparency gradient) provide a complete 

map of sequence-to-function-to-structure relationships in CFTR (STAR Methods). We refer 

to this overlay of phenotypic landscape values onto the CFTR structure snapshot as a 

functional structure.

To illustrate the biological design of CFTR (Figure 2B) revealed by our VSP perspective 

(Figure 2A), the predicted sequence regions within the high-confidence 25% contour that 

have low trafficking values (TrIdx < 0.2) allow us to quantitatively assign the role of the ER 

in the folding and trafficking of CFTR (Figure 2C). For example, NBD1 can be defined by 

the SCV relationships that form the high-confidence cluster 1 (<25% confidence contour) 

(Figure 2C, top, SCV cluster 1) that includes the common CF variant F508del and the 

critical S492 residue central to the molecular dynamics of the NBD1 module controlling 

trafficking (Proctor et al., 2015). This cluster also contains the diacidic exit code required for 

ER export (Figure 2C, bottom, circle 1, black arrows; Figure S1H) (Wang et al., 2004). The 

high-confidence SCV relationships defined by cluster 1 in this subdomain of NBD1 (Figure 

S1H) illustrate the spatial design of intra-domain functional interactions that coordinate the 

interaction of NBD1 with COPII for ER export. Moreover, VSP predicts that NBD1 does not 

operate in isolation from the other modular features of the CFTR fold. Cluster 2 (Figure 2C, 

top, cluster 2; bottom, bar 2 on functional structure) in TMD2 defines longer-range, inter-

domain interactions that tune ER stability and/or export, a conclusion supported by 

experimental observations (Mendoza et al., 2012; Rabeh et al., 2012). These two major 

clusters together with several other regions contributing to trafficking in the functional 

structure provide a mechanism in which two legs of the transmembrane fold (Figure 2C, 

bottom, TM11-ICH4-NBD1 [leg 1] and TM4-ICH2-NBD2 [leg 2] connected by TM1 and 

TM3; Figure S1I) that defines the functionality of NBD1 for export. Most of the predicted 

residues restricting trafficking are neither facing the interior of the gated channel nor 

involved in ATP binding (Figure 2C, bottom, top view), indicating that ER export is largely 

uncoupled from features guiding CFTR channel and gating function at the surface. 
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Consistent with this view, ~30% of CF missense variants show >80% of the WT trafficking 

value but have deficient ClCon function (<15% of WT ClCon) (Figure 2A). In contrast to 

residues modulating ER export, when we mapped the sequence clusters in the phenotype 

landscape with WT-like TrIdx but deficient ClCon function onto the CFTR functional 

structure (Figure 2D), all of them can be aligned along the channel faces or in ATP-binding 

regions that do not impact ER export. For example, SCV clusters 3 and 4 found at the 

interface of the NBD1 and NBD2 are predicted to couple inter-domain interactions to 

mediate the channel gating (Figure 2D, bottom; Figure S1J). Thus, VSP transforms SCV 

relationships (i.e., high-confidence clusters) into structural units and links them by their 

contributions to function that highlights unanticipated modularity of the fold for trafficking 

and function.

Using Phenotype Landscapes to Assess Value in Therapeutics

To demonstrate that VSP can reveal how the local chemical environment influences the 

genotype-to-phenotype transformation, we applied VSP to the variant dataset (Van Goor et 

al., 2014; Yu et al., 2012) that we used for validation of the CFTR ClCon-phenotype 

landscape (Sosnay et al., 2013). Variants were either untreated or treated with the US Food 

and Drug Administration (FDA)-approved therapeutic ivacaftor, a channel gating potentiator 

that increases the open probability of cell-surface-localized CFTR (Van Goor et al., 2014; Yu 

et al., 2012). While ivacaftor has no effect on export of F508del, it was shown to have a 

substantial impact on improving ClCon of the G551D variant found in SCV cluster 3 at the 

NBD1-NBD2 interface (Figure 2D, bottom, #) which traffics normally to the cell surface, 

but lacks conductance (Figure 3A, left, #).

The variogram (Figure S2B) reveals that ivacaftor has only a minor impact on the molecular 

range but increases the spatial variance of the plateau value from 0.05 in the absence of 

ivacaftor to 0.29 in its presence. This unexpected large change suggests that ivacaftor 

mechanistically increases the overall spatial variance of the fold leading to decreased 

stringency in gating and/or channel activity to restore function. Consistent with this 

interpretation, VSP reveals a striking change in the ClCon-phenotype landscape output for a 

substantial fraction of the polypeptide chain (Figures 3A and S2C). The ivacaftor responsive 

phenotype landscape demonstrates that variants with a measured or predicted minimum 

TrIdx value of ~0.3–0.4 (Figures 3A and S2D–S2F; Pearson’s r = 0.6, p value = 4 × 10−7) 

and a level of post-ER mature glycoform of approximately >0.4–0.5 of that observed for WT 

CFTR (Figures S2G–S2I; Pearson’s r = 0.73, p value = 8 × 10−12), will be responsive to 

management by the drug. For example, in addition to G551D (Figure 3A, #), most of the 

variants that were recently approved by the FDA based on in vitro data (Ratner, 2017) 

(Figure 3A, right, black triangles) are mapped by VSP to be responsive to ivacaftor with the 

exception of A455E (Figure 3A, right, *) that has a TrIdx of 0.3 and is predicted by VSP to 

be an ivacaftor nonresponder (Figures S2F and S2I, *), suggesting that this variant is not a 

good candidate for ivacaftor intervention, as observed in the clinic (McGarry et al., 2017).

To visualize the therapeutic response of ClCon-phenotype landscapes from our functional 

structure view, the highest-confidence predicted values following ivacaftor treatment for 

each residue were mapped onto the closed and open CFTR structure snapshots (Figures 3B 
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and S2E). As expected, a before and after comparison of the ER-restricted residues such as 

SCV cluster 1 in NBD1 domain and cluster 2 in TMD2 failed to show a response to 

ivacaftor (Figure 3B). In contrast, 63% of CFTR residues within the 25% confidence quartile 

(Figure 3A, right) are shown to have at least a 20% increase in function relative to that of 

WT ClCon in response to ivacaftor (Figure 3B, right, 813 residues, yellow to blue 

balls;Figure S2E ; Table S1). These variants already have a significant TrIdx and are mostly 

located in the ATP-binding site contributed by SCV clusters 3 and 4 found at the NBD1-

NBD2 interface and along the channel region (Figures 3B and S2E; Videos S2 and S3). The 

integrated results captured by VSP lead us to suggest that ivacaftor unexpectedly serves as a 

dynamic “SCV agonist” that triggers a ripple effect that either directly or indirectly spans 

most of polypeptide chain to improve its spatial flexibility to improve its channel function 

(Figures 3B and S2J). These SCV relationships now provide a platform explain the basis for 

correction of sequence-to-function-to-structure responses of numerous CFTR variants to 

ivacaftor. Furthermore, the impact on the variable response to ivacaftor by different cell-

based and/or clinical modifier environments, or the response of different variants at the same 

physical location in the sequence, can be assessed by deep analysis of 3D projections of 

phenotype landscapes (Figure S3).

Tissue-Specific Phenotype Landscapes

To demonstrate that our VSP strategy can capture SCV relationships defining genotype to 

phenotype transformations impacting the onset and progression of disease in the clinic, we 

used TrIdx as the input y axis value with known clinical measures of CF disease as input z 

axis values (Figure 4A) (Sosnay et al., 2013). Patient measures include sweat chloride (SC), 

forced expiratory volume in 1 breath (FEV1), Pseudomonas burden (PB), and pancreatic 

insufficiency (PI) (Sosnay et al., 2013). To make all z axis input measures comparable, we 

normalized their values by setting the F508del value to 0 and that of WT to 1. Here, 

phenotype landscapes (Figure 4A) and their functional structures (Figure 4B) demonstrate, 

as expected, that a poor TrIdx predicts not only poor ClCon across all human tissue 

environments (Figure 4A; ClCon layer, y axis < 0.4 [red to orange]) but also poor FEV1, SC, 

PB, and PI clinical outcomes (Figure 4A; SC, FEV1, PB, PI layers, y axis < 0.4 [red to 

orange]). For example, NBD1-based SCV relationships that limit ER export (e.g., Figure 4B, 

cluster 1 and bar 2) are defective for all phenotypes. Moreover, residues localized to the 

ATP-binding site managing ClCon (Figure 4B, cluster 3 and 4) are also defective in all tissue 

environments. These results suggest a conserved role for these residues in managing the 

CFTR fold for all tissue function.

In contrast to the conserved roles of trafficking and channel gating variants, VSP captures a 

number of SCV relationships that either under- (Figure 4B, cluster 5) or overestimate 

(Figure 4B, cluster 6) the potential impact of a variant on a given clinical phenotype relative 

to the cell-based derived measurement of ClCon. Tissue-specific SCV relationships are best 

seen by the divergent FEV1 and PI phenotype landscapes (Figure 4A; compare FEV1 to PI 

layers, arrow) and their functional structures (Figure 4B, compare FEV1 to PI, arrow; Video 

S4). For example, cluster 7 presents as a severe phenotype for FEV1 and PB but is mild for 

PI and SC (Figure 4B). In contrast, cluster 8 is mild for FEV1 but severe for PI (and other 

clinical responses) (Figure 4B). Moreover, cluster 9 is severe for all clinical indications but 
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has only a mild impact on PI (Figure 4B). The differences found in tissue specificity of 

function may reflect the fact that CFTR manages ClCon and hydration in a non-homeostatic 

environment in the lung, while CFTR manages bicarbonate secretion that is critical for 

pancreas function in response to homeostatic environment (Figure S4) (LaRusch et al., 

2014).

Linking Bench to Bedside through VSP

Given that VSP is a highly flexible platform that can integrate a common set of sparse 

variant datasets, we generated phenotype landscapes and the predicted functional structures 

for all 30 pairwise combinations of y and z axis coordinates reflecting both bench and 

bedside measurements (Figure 5A). These phenotype landscapes were used to cross-

correlate the predicted output of a basic and/or a clinical feature with one another. Using a 

leave-one-out cross-validation analysis to evaluate the prediction accuracy of each 

phenotype landscape (Figure 5B), we found significant Pearson r values of 0.52 (p = 2 × 

10−5) and 0.77 (p = 3 × 10−13) using the bench-based model to predict either ClCon or 

TrIdx-phenotype landscapes as the z axis value, respectively (Figure 5B, bottom left 

quadrants). Moreover, statistically significant SCV correlations were found using FEV1, SC, 

PB, or PI as a y axis value to predict a different clinical feature as the output z axis value 

(Figure 5B, top right quadrant). For example, we observed a significant quantitative 

relationship using FEV1 as the y axis to predict PB as the z axis (Figure 5B; panel 9; 

Pearson’s r = 0.67, p = 3 × 10−9) or, conversely, using PB to predict FEV1 (Figure 5B; panel 

14; Pearson’s r = 0.64, p = 2 × 10−8). These results are consistent with the fact that these 

features are physiologically linked in airway-associated CF disease. In contrast, when using 

PI as the y axis coordinate to predict FEV1 as the z axis value, we found a substantially 

lower Pearson’s r value (Figure 5B; panel 15; Pearson’s r = 0.32, p = 0.01), consistent with 

their very different physiologic role(s) in CF clinical progression (LaRusch et al., 2014).

To link bench to bedside, we tested the value of cell-based (bench) measurements as the y 

axis value to predict clinical measures (bedside) as the z axis value across the entire 

predicted CF variant population (Figures 5A and 5B, top left quadrant). Such relationships 

present a fundamental challenge in high definition medicine where most cell-based and 

animal models fail to predict clinical outcome, leading to substantial loss of time and 

financial resources. Consistent with this concern, nearly all VSP bench-to-bedside 

predictions show weak but statistically significant correlations (Figure 5B, top left quadrant). 

The strongest correlation was seen when we use ClCon as the y axis to predict SC (Figure 

5B, panel 17; Pearson’s r = 0.63, p = 3 × 10−8). Thus, cell-based ClCon measurements 

largely capture SC responses recovered from the patient population, a prediction validated 

by clinical observations (Collaco et al., 2016). These results validate the utility of the VSP to 

serve as a guide to link the value of SCV relationships generated by cell-based models to 

assess the impact of a therapeutic for a physiologically relevant clinical feature (Figures S5A 

and S5B).

Generalizing VSP Using Allele Frequency

To generalize the SCV principle, we considered the possibility that allele frequency from the 

GnomAD database (http://gnomad.broadinstitute.org/; 138,632 individuals) could serve as a 
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universal genome-based y axis coordinate, like the x axis position coordinate, to assess 

biologically relevant functional SCV relationships (z axis) for all variant genotypes found in 

the population. Using CFTR variants to first calibrate whether allele frequency as the y axis 

coordinate can inform on SCV relationships contributing to disease in the CF population, we 

generated TrIdx- (Figures 5C and S5C; Pearson’s r = 0.6, p = 3 × 10−7) and ClCon-

phenotype landscapes (Figures 5D and S5D; Pearson’s r = 0.67, p = 5 × 10−9) as predicted z 

axis features. Intriguingly, they are strikingly different. As shown in Figure 5C in the Trldx-

landscape molecular fingerprint, variants are found distributed as small clusters throughout 

the primary sequence, reflected in the very short molecular range found in the variogram 

(Figure S5E; range = 0.17, ~150 amino acids). These results suggest that allele frequency 

reports on trafficking through local SCV relationships (Figure S5G). In contrast to the TrIdx 

phenotype landscape, the ClCon-phenotype landscape molecular fingerprint shows that 

allele frequency largely correlates with ClCon function across the entire polypeptide (Figure 

5D). Here, variants with allele frequency below ~0.02% of the population (Figure 5D) all 

have deficient ClCon function, while most of variants with allele frequency above ~0.02% 

have strong ClCon values. The ClCon variogram has an extended molecular range (Figure 

S5F; range = 2.65, i.e., the full-length protein), indicating that the entire polypeptide 

operates as a functional unit to determine the evolutionary trajectory of the fold in the health 

of the individual (Figures 5D and S5H). Exceptions are F508del (NBD1) and L997F (Figure 

5D, highlighted by *), possibly due to their beneficial role in partial protection of the 

population to pathogens such as V. cholerae (Thiagarajah et al., 2015). Thus, allele 

frequency provides an unanticipated y axis feature that can be used to assess SCV 

relationships in recessive loss-of-function genotype to phenotype transformations.

Using VSP to Assess Onset of AD

To address the ability of allele frequency as general metric to move beyond loss-of-function 

recessive rare diseases such as CF and provide insight into the pathogenicity of more 

common age-related gain-of-toxic function such as neurodegenerative diseases, we applied 

VSP to AD. Whereas combined inherited and somatic forms of AD impact nearly 50 million 

people worldwide, ~25% of the population has familial AD (FAD), of which ~95% is 

defined by late-onset AD (LOAD) (age >60–65 years) and 5% is defined by early-onset AD 

(EOAD) (age <60–65 years), largely in response to variants in APP and presenilin 1 (PS1). 

APP contributes to 10%–15% and PS1 contributes to ~50% of EOAD (Giri et al., 2016). 

APP is a single-membrane-spanning protein whose cleavage through the sequential activity 

of β- and γ-sec-retases (Hunter and Brayne, 2018) is altered in response to inherited and/or 

sporadic disease, leading to the generation of amyloidogenic peptides referred to as Aβ.

For VSP, we used as input the available 45 missense variants of APP reported in ClinVar 

(Landrum et al., 2016) and ALZFORUM (https://www.alzforum.org/) databases as x axis 

values, allele frequency reported in the GnomAD database as y axis values, and 

pathogenicity as reported in the ClinVar and ALZFORUM databases as z axis values to 

generate as output the APP pathogenicity (APPpath)-phenotype landscape (Figures 6A and 

S6A; Pearson’s r = 0.9, p = 2 × 10−13; STAR Methods). VSP achieves 0.98 area under the 

curve (AUC) in receiver-operating characteristic (ROC) analysis, which is significantly 

higher than other variant function prediction algorithms, which are all below 0.75 (Figure 
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S6B), indicating that VSP can consistently capture the biological principle(s) underlying AD 

from population genomics. As shown in the APPpath-phenotype landscape, “benign” or 

“likely benign” variants of higher frequency in the population are predicted by VSP to be 

distributed throughout the sequence (Figure 6A, green-yellow). In contrast, nearly all 

pathogenic variants generate a high-confidence SCV cluster in the C-terminal region of the 

APPpath-phenotype landscape that is absent from GnomAD (STAR Methods), emphasizing 

their rarity in the population (Figure 6A, *) with an exception of A713T (Figure 6A, **). 

These residues can be mapped to a partial APP functional structure (Barrett et al., 2012) 

(Figure 6B, red residues ~667–728). This SCV hotspot contains the nonpathogenic α-

secretase cleavage site as well as the β- and γ-secretases cleavage sites that are responsible 

for the generation of Aβ-40 and the highly pathogenic Aβ-42 peptides found in amyloid 

plaques (Figure 6B) (Hunter and Brayne, 2018). In addition, VSP based on sparse variants in 

population predicts a high allele frequency region around the γ-secretase cleavage site 

(Figure 6A, ** and ***; Figure 6B, large balls), which is validated by plotting all the 

variants found in GnomAD (Figure S6C), suggesting that the sequence at this region is 

being continually optimized to (re)balance the composition of different Aβ peptides in 

human population possibly in response to aging.

To link the SCV hotspot (Figure 6A, *) in APP found in the population to the impact of Aβ 
fragments in familial disease in the individual, we applied VSP to variants found in 

presenilin 1 (PS1), the catalytic subunit of the γ-secretase that generates Aβ-42 and Aβ-40 

fragments. Each variant has been shown to contribute differentially to levels of Aβ-42 or 

Aβ-40 (Sun et al., 2017), although no statistically significant correlation was found between 

either the total absolute amount of Aβ-42 plus Aβ-40 and the mean AO or between the 

Aβ-42/Aβ-40 ratio and the mean AO using conventional statistical parameters (Sun et al., 

2017). Here, the Aβ-42/Aβ-40 ratio relative to that observed for WT PS1 (set as value of 1) 

was used as the y axis coordinate to predict the mean AO as the z axis coordinate in an AO-

phenotype landscape (Figure 6C, left; Figure S6D, Pearson’s r = 0.37, p = 4 × 10−4). Using 

input data from 89 PS1 variants to generate the AO-phenotype landscape (Sun et al., 2017), 

we found variants that generate ~10-fold-change higher Aβ-42/Aβ-40 ratio than that of WT 

(Figure 6C, left, y axis > 10) show an early AO (Figure 6C, left, orange to red, AO < ~40). 

Variants that generate a 1- to 10-fold change Aβ-42/Aβ-40 ratio relative to that of WT 

(Figure 6C, left, 1 < y axis < 10) show a broad range of AO (Figure 6C, left panel, light blue 

to orange). In general, the overall impact of variants in this region (Figure 6C, left, 1 < y axis 

< 10) leads to a later AO compared to variants with y axis value above this range (Figure 6C, 

y axis > 10) (Figure S6E, p = 0.02). Consistent with these results, when the Aβ-42/Aβ-40 

ratio is lower than WT (Figure 6C, y axis < 1), SCV reveals a significant delay in AO 

compared to all other variants (Figure 6C, left, blue; Figure S6E). Using the absolute level of 

Aβ-42 as the y axis coordinate in the AO-landscape, we found that the delay of onset does 

not simply reflect Aβ-42 levels (Figures S6F–S6H). Furthermore, neither absolute Aβ-40 

nor absolute Aβ-40 plus absolute Aβ-42 as y axis values yield significance in predicting AO 

(Figures S6I and S6J).

The corresponding functional structure projection (Figure 6C, right) of the Aβ-42/Aβ-40-

ratio-based AO-phenotype landscape (Figure 6C, left) onto the structure of PS1 (Bai et al., 

2015a, 2015b) reveals the sequence-to-function-to-structure relationships contributing to 
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AO. Here, an SCV cluster leading to early onset comprises a region of PS1 that comprises 

TM2, TM3, and the loop between TM1 and TM2 (Figure 6C, left, highlighted by *). This 

cluster forms a putative APP-binding pocket (Bai et al., 2015a) in the PS1 functional 

structure (Figure 6C, right, dashed oval *). In contrast, the variant values between 1-fold 

change and 10-fold change relative to WT (Figure 6C, left, 1 < y axis < 10) show diverse AO 

relationships that highlight different SCV clusters contributing to AO based on the Aβ-42/

Aβ-40 ratio. For example, the cluster comprising TM8 (Figure 6C, left, **) has an earlier 

age of onset compared to other residues with a similar Aβ-42/Aβ-40 ratio. The Pro-Ala-Leu 

(PAL) motif adjacent to this cluster has been shown to contribute to the catalytic core of PS1 

(Figure 6C, right, arrows) (Bai et al., 2015b). In contrast, y axis Aβ-42/Aβ-40 ratio values < 

WT (Figure 6C, left, ***) contribute to a cluster found at the C terminus that begins at the 

hydrophilic loop (HL) region (Figure 6C, right, dashed oval, ***) affecting EOAD 

progression (Nelson et al., 2011). These results reinforce the ability of SCV to capture the 

importance of the residues impacting the Aβ-42/Aβ-40 ratio as a broadly predictive sensor 

of onset and progression of disease, a prediction consistent with its biomarker value in 

cerebrospinal fluid (Baldeiras et al., 2018) and in plasma of the AD population (Nakamura 

et al., 2018).

DISCUSSION

We have developed a platform that assigns SCV relationships to track as matrices the flow of 

information from the genotype to the phenotype (Figure 6D). VSP requires only a sparse 

collection of variants recorded in the genome of the population (Figure 6D, top, Input 

Training) to serve as fiduciary input reporters of evolution-based rules responsible for the 

phenotype. Variation can be used to build phenotype landscapes that predict the unknown 

from the known based on GP (Chilès and Delfiner, 2012; Rasmussen and Williams, 2006) 

(Figure 6D, middle, Hidden Layers). Using the linear sequence information stored in the 

genome, VSP captures same spatial relationships used by transcriptional and translational 

machineries to build flexible design into the protein fold for function in diverse 

physiological states (Anfinsen, 1973) defined by the y and z axis coordinates. From this 

perspective, the phenotype landscape creates an image-based view of features that can be 

used to quantitate and predict at atomic resolution how the physiological state of the fold 

utilizes SCV to generate function in the individual (Figure 6D, bottom, Output).

Our ability to use SCV-based phenotype landscapes to map the unknown from the known in 

the context of extant biology and physiology cannot be captured by structure snapshots that 

are generated out of context of their biological function(s) or by ancestral approaches that 

rely on evolutionary divergent physiological states. Moreover, SCV-based insight informs 

new relationships that cannot be defined using PolyPhen-2, SIFT and related predictive 

algorithms (Glusman et al., 2017) and is able to achieve predictive insights with higher 

fidelity (Figures S5G, S5H, and S6B). While we used available snapshot structures of 

CFTR, APP, and PS1 to validate SCV relationships, a structure is not necessary for the 

generation of the phenotype landscape. On the contrary, it is VSP that provides insight into 

structure snapshots that lack value without function. Our SCV platform suggests that 

polypeptides can have numerous diverse and unanticipated spatial relationships reflecting 

their physiological state based on the y and z function coordinates (Anfinsen, 1973).
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Because VSP gains its interpretative power based on only a sparse collection of fiduciary 

markers found in the extant population, it differs substantially from DMS approaches that 

rely on large-scale mutagenesis to model disease (Starita et al.,2017). We have found that 

interpretation of the results generated using DMS can substantially benefit by application of 

VSP principles (Figures S7A–S7C). Furthermore, by embracing the high dimensionality of 

the protein physiological state (Anfinsen, 1973), VSP assigns value to structure based on 

evolved diversity that is highly relevant to the human population. VSP substantially differs 

from the current focus on prediction of protein structure to function relationships based on 

the chemical-physical properties of amino acid residues. Combining SCV principles with 

chemical-physical and/or ancestral alignment measurements as y and z coordinates may 

enable their use from our functional structure perspective (Figure 6D, middle). Moreover, 

SCV relationships captured by VSP could be used to prioritize functional diversity of native 

structural conformations using cryo-EM (Shen, 2018) Consistent with our VSP strategy 

(Figure 6D, middle), GP-based approaches can be used to evolve protein sequences to 

improve function (Romero et al., 2013).

VSP currently allows us to read sequence-to-function-to-structure relationships from coding 

sequence defining <2% of the genome (Figure 6D, middle). By focusing on functional 

relationships, SCV captures biological features reflecting the spatial organization of the 

genome impacting gene expression, post-translational modifications that impact both 

genome and proteome function, the buffering capacity of the proteostasis machinery that 

manages the protein fold (Balch et al., 2008), and interactions within the variation sensitive 

proteome that are unique to specific cell and tissue environments. Moreover, SCV suggests 

that endomembrane compartments play specific roles in the tunable management of 

sequence-to-function-to-structure relationships. For example, ClCon phenotype landscapes 

suggests that the ER only utilizes a subset of SCV relationships that can be independent of 

channel function to promote trafficking, suggesting that it does not operate as a quality 

control compartment to limit the delivery of functionally defective variants to downstream 

destinations (Ellgaard and Helenius, 2003). Rather, VSP suggest that the ER utilizes SCV 

relationships to manage the tolerance of the fold in biology (Wiseman et al., 2007).

As VSP generally requires a minimum of ~50 variants for generation of high-confidence 

landscapes (Kerry and Oliver, 2007), it can currently be applied to most genes found in 

public databases such as GnomAD (Lek et al., 2016), ClinVar (Landrum et al., 2016), or 

specialized databases that annotate the natural history of variant disease that link genotype to 

phenotype. Proteins for which genotype-linked phenotype information is currently not 

available is necessarily a limitation for application of VSP. Genetic relationships beyond 

missense mutations, including somatic variation, heterozygous alleles, epistatic alleles, and 

variants in the non-coding region of genome, can be captured by SCV when annotated by 

their functional features in the context of human genome sequencing efforts. VSP can serve 

as a versatile platform for high-throughput screening (HTS) to capture human phenotypic 

plasticity early in the therapeutic development pipeline (Figure 6D, bottom).

We now posit by quantifying genetic diversity in the extant population, SCV principles 

provide a universal basis to use the population to define molecular level spatial relationships 

and mechanisms contributing to fitness of the individual. In this relative way of thinking of 

Wang and Balch Page 14

Cell Rep. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spatial-temporal dependencies found in the population (Figure 6D, top, “the many”), 

phenotype landscapes help us to appreciate the complex integration of the parts (Figure 6D, 

middle) to understand the individual (Figure 6D, bottom, “the one”). VSP, being an 

unprecedented interpolation platform that can embrace multiple dimensions (Figure 6D, 

middle), suggests that SCV may enable the use of predictive data-rich phenotype landscape 

images to model human variation in the population (Goodfellow et al., 2016; Rasmussen and 

Williams, 2006) (Figure 6D, middle) and for management of the patient in the clinic (Figure 

6D, bottom; Figure S7D). Defining central dogma as matrices of SCV relationships across 

the genome and proteome (Figure 6D, bottom, SCV[DNA ↔ RNA ↔ Protein]) suggests a 

potential role of spatial states for understanding the origins of genetic and phenotypic 

diversity contributing to natural selection (Darwin, 1859).

STAR★METHODS

Detailed methods are provided in the online version of this paper and include the following:

CONTACT FOR RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, William E. Balch (webalch@scripps.edu).

METHOD DETAILS

Brief introduction of GP in geostatistics—VSP is based on Gaussian Process (GP), 

which is widely used in geostatistics to analyze and predict spatially continuous phenomena 

in complex geophysical landscapes encompassing a wide range of geological, 

epidemiological, anthropological and environmental features (Chilès and Delfiner, 2012). 

GP is also widely used for regression problems in supervised machine learning and artificial 

intelligence (AI) applications (Rasmussen and Williams, 2006). GP used in geostatistics 

generates unbiased distance-based covariance relationships using measurable features in the 

context of sparse sampling techniques as a limited ‘known’ knowledge-base to predict the 

‘unknown’ value in the geophysical landscape. In GP, a higher weight for prediction is 

placed on measured positions in closer proximity to the unmeasured locations compared to 

those found in more distant locations. GP not only provides interpolated values, but also 

measures of uncertainty for those values (confidence contours), generating a metric for 

assessing the probability of the prediction. The measurement of uncertainty is critical to 

informed decision making and risk management, as it provides information on the possible 

values for each location rather than just one interpolated value. In simple terms, GP in 

geostatistics embraces the general concept that sparse covariance relationships can be used 

to predict unknown values and their uncertainty across an entire feature-based landscape 

(Chilès and Delfiner, 2012).

The specific method of GP in geostatistics we used in this paper is Ordinary Kriging, which 

has the least assumptions and is the most commonly used GP method in geostatistics to 

provide optimal unbiased prediction(Chilès and Delfiner, 2012). Ordinary Kriging predict 

the unknown value by local weighted averaging the surrounding known values, where the 

weight associated with the known value is determined according to their positions both in 
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relation to the unknown point and to one another (Chilès and Delfiner, 2012). There are 

other geostatistical interpolation techniques, for example, Universal Kriging, Probability 

Kriging, Co-kriging and Empirical Bayesian Kriging that have additional assumptions that 

are specialized for particular sets of data and may ultimately prove valuable for our VSP 

approach.

Rationale for applying GP to biological data—In VSP, we consider each variant as a 

fiduciary (trusted) reporter of proteostasis-sensitive folding intermediates that can be used to 

define the hidden evolutionary defined SCV relationships directing the genotype to 

phenotype transformation. VSP uses a sparse collection of variants spanning the full 

polypeptide sequence to predict function in a similar way that geostatistics uses sparse 

sampling measurements (boreholes) to predict unknown values across an entire geophysical 

landscape. Variants (i.e., variation distributed across the population) are the exceptions to the 

rules that make the rules. In so doing, they help us to understand the rules as they report on 

the evolved mechanisms that drive the normal function of the protein fold and multiple 

challenges by the environment to facilitate survival and fitness required for natural selection. 

From a practical perspective, SCV relationships captured by VSP can teach us, for example: 

(1) evolutionary design of protein fold for function, (2) relationship(s) that categorize value 

of population traits and, as shown herein, the onset and progression of disease in the clinic; 

(3) cell and tissue specific variables impacting variant polypeptide function or, among 

others, (4) generate a quantifiable common platform to assess the value of bench, animal and 

bedside derived features for developing interventional management/therapeutic strategies for 

any gene where clinically relevant variation in the population is available (e.g., (Landrum et 

al., 2016; Lek et al., 2016; Manolio et al., 2017)). A flowchart illustrating the application of 

VSP to human variation is shown in Figure S7D.

Spatial organization of the biological data—To integrate the sparse collection of 

sequence variation information found in the genome (the genotype) with biological features 

contributed by spatial relationships with function, we positioned the variants, our ‘molecular 

borehole/locations’, by their sequence positions in the polypeptide chain on the ‘x’ 

coordinate and measurements of a biological function on the ‘y’ coordinate to describe and 

predict another biological function along the ‘z’ coordinate. These relationships are similar 

to the positioning of boreholes defined by their longitude (x axis) and latitude (y axis) 

coordinates to predict oil reserves (z axis) in geostatistical analysis.

Variogram analysis—A geostatistics prediction is based on the SCV relationships of the 

input experimental data. A ‘molecular variogram’ (Figure 1C, Step 2, lower panel; Figure 

S1D) is used to describe how the ‘spatial variance’ (i.e., the degree of dissimilarity) of ‘z’ 

changes according to the separation distance (proximity) defined by the ‘x’ and ‘y’ 

coordinates. The molecular variogram defines a sequence-based ‘molecular range’ where the 

function of the variants depend on one another. The molecular variogram enables the 

calculation of SCV relationships in the dataset, forming the basis for prediction. The 

analysis of SCV relationships are described below:
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Suppose the ith (or jth) observation in a dataset consists of a value ‘zi’ (or ‘zj’) at coordinates 

‘xi’ (or ‘xj’) and ‘yi’ (or ‘yj’). The distance ‘h’ between the ith and jth observation is 

expressed by

h i, j = (xi − x j)
2 + (yi − y j)

2 (1)

and the γ(h)-variance for a given distance (h) is defined by

γ(h) = 1
2(zi − z j)

2 (2)

γ(h)-variance is the semivariance of ‘z’ value between the two observations (in this case, 2 

different variants), which is also the whole variance of ‘z’ value for one observation at the 

given separation distance ‘h’. In VSP, we refer to the γ(h)-variance as ‘spatial variance’ as 

indicated in the y axis of molecular variogram (Figure 1C, Step 2, lower panel; Figure S1D). 

Using Equations 1 and 2, the distance (h) and γ(h)-variance for all the data pairs are 

generated. Then, the average values of γ(h)-variance for different distance intervals are 

calculated to plot γ(h) versus h used in the molecular variogram. Linear, spherical, 

exponential or Gaussian models can be used to fit the data in the molecular variogram, and 

the choice of model is usually determined by the residual maximum likelihood (REML) and 

the leave-one-out cross-validation result of the final phenotype landscape model. The 

distance where the model plateaus is referred to as the molecular range. Sample locations 

separated by distances within the molecular range are spatially dependent on one another, 

whereas those outside the molecular range are not. The SCV value at the distance (h) is 

expressed by C(h) = C(0) – γ(h), where C(0) is the covariance at zero distance representing 

the global variance of the data points under consideration (i.e., the plateau of the variogram).

Confidence contour maps of SCV relationships—According to the variogram, 

observations that are close in distance (close proximity) are usually highly correlated and 

have more weight for prediction. To solve the optimum and unbiased weights of SCV 

relationships, Ordinary Kriging aims to minimize the variance associated with the prediction 

of the unknown value at location ‘u’, which is generated according to the expression-

σu
2 = E zu

∗ − zu
2 = ∑

i = 1

n
∑
j = 1

n
ωiω jCi, j − 2 ∑

i = 1

n
ωiCi, u + Cu, u (3)

where ‘zu
∗’ is the prediction value while ‘zu’ is the true but unknown value, ‘Ci,j’ and ‘Ci,u’ 

are SCV between data points ‘i’ and ‘j’, and data points ‘i’ and ‘u’ respectively, and ‘Cu,u’ is 

the SCV within location ‘u’. ωi is the weight for data point ‘i’. The SCV is obtained from 

the above molecular variogram analysis.

To ensure an unbiased result, the sum of weight is set as one.
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∑
i = 1

n
ωi = 1 (4)

Equations 3 and 4 not only solve the set of weights associated with input observations, but 

also provide the minimized Kriging variance at location ‘u’ which can be expressed as

σu
2 = Cu, u = ∑

i = 1

n
ωiCi, u + µ (5)

where ‘Cu,u’ is the SCV within location ‘u’, ωi is the weight for data point ‘i’, ‘Ci,u’ are the 

SCV between data points ‘i’ and ‘u. ‘μ’ is the Lagrange Parameter that is used to convert the 

constrained minimization problem in Equation 3 into an unconstrained one.

The standard deviation of prediction is generated as the square root of the resulting 

minimized Kriging variance in Equation 5. It provides the uncertainty of predictions that 

represents the confidence for using the SCV relationships both within the input data points 

and in relation to the unknown locations to make predictions. The confidence level is tightly 

linked with the distance range in the molecular variogram and the spatial distribution 

patterns of measured input points surrounding the unknown location. The shorter the 

distance between an unknown point to the input data points, the higher confidence for using 

the SCV relationships for the prediction.

The VSP matrix notation—The minimization of Kriging variance (Equation 3) with the 

constraint that the sum of the weights is 1 (Equation 4) can now be written in matrix form as

C ⋅ W = D
C1, 1 ⋯ C1, n 1

⋮ ⋱ ⋮ ⋮
Cn, 1 ⋯ Cn, n 1

1 ⋯ 1 0

⋅

ω1
⋮

ωn
µ

=

C1, u
⋮

Cn, u
1

(6)

where ‘C’ is the covariance matrix of the known data points. ‘W’ is the set of weights 

assigned to the known data points for generating the predicted phenotype landscape. ‘μ’ is 

the Lagrange multiplier to convert a constrained minimization problem into an 

unconstrained one. ‘D’ is the covariance matrix between known data points to the unknown 

data points. Since ‘W’ is the value we want to solve to generate the phenotype 

transformation (the phenotype landscape), this equation can be also written as

W = C−1

Clustering
⋅ D

Distance
(7)
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where ‘C−1‘ is the inverse form of the ‘C’ matrix.

As a more intuitive explanation of the Kriging matrix notation, herein we simply refer to the 

VSP matrix that generates the phenotype landscape (‘W’) to be based on the two important 

computational features used for predicting the unknown function values from the known- (1) 

the clustering (i.e., clustered sequence values with similar functional properties (C−1)) and 

(2) the distance constraints (D). Here, ‘C−1’ represents the clustering information of the 

known data points while ‘D’ represents predicted statistical distance between known data 

points to unknown data points.

Generating the VSP prediction—With the solved weights ‘W’, we can calculate the 

prediction of all unknown values to generate the complete phenotype landscape by the 

equation

zu
∗ = ∑

i = 1

n
ωizi (8)

where zu
∗ is the prediction value for the unknown data point ‘u’, ‘ωi’ is the weight for the 

known data point and ‘zi’ is the measured value for data point ‘i’ (Chilès and Delfiner, 

2012).

Mapping phenotype landscapes onto structure—Phenotype landscapes built based 

on a sparse collection of input variants contain experimental or clinical information that 

predict the full range of values describing function (based on the y- and z axis metrics) for 

the entire polypeptide sequence (x axis). To map the function predictions onto structure, we 

assign the prediction value with lowest standard deviation (i.e., highest confidence) to each 

residue to generate a functional structure that illustrates all values interpolated from the 

sparse collection variants used to generate the phenotype landscape at atomic resolution. 

This collection of all possible functional structure states is referred to as CFTR functional 

structure. The y axis feature is always depicted as ball size; the z axis feature is depicted as 

ball color and the prediction confidence (i.e., the contour intervals reflecting standard 

deviation) is shown as ball transparency. All the atomic resolution structure presentations 

were produced with the software of PyMOL.

Data requirements for VSP—Sampling data input required for reliable Kriging or GP 

prediction not only depends on the sample size (number of boreholes/locations) but also 

depends on the spatial distribution of the samples. Thus, there are a number of 

considerations in deciding the number of variants and their associated function features 

required to generate a high confidence value molecular range in the variogram to carry out 

the phenotype landscape prediction using VSP. The number of datapoints in conventional 

Kriging have ranged from as little as 20-30 in some geophysical applications to analyses 

predicting a requirement for 150 datapoints. A rule of thumb in Kriging to allow statistical 

testing is to have a sample size above > 50 (Kerry and Oliver, 2007), although this number 

can be impacted based on the method of variogram generation (method of moment (MoM) 
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or residual maximum likelihood (REML). In the case of Ordinary Kriging REML is used, 

requiring fewer datapoints (Kerry and Oliver, 2007).

Validation of VSP based on the 63 variant dataset used in the current study suggests that that 

number is sufficient to predict with high confidence (top 25%) values within the molecular 

range that span the entire polypeptide sequence for a large protein such as CFTR. By using 

K-fold validation (Figure S1G), we found the prediction accuracy keeps stable until the 

number of training data points drops below ~50, consistent with the empirical rule of ~50 

data points and above recommended in geostatistical studies (Kerry and Oliver, 2007).

Furthermore, when we applied the VSP approach to variation in the BRCA1 RING domain 

to functional readouts using either 1747 deep scanning generated variants or 62 human 

variants observed in the general population and patient tumor samples (Starita et al., 2015), 

we found that the VSP model based on the 62 human variants (Figure S7B, Pearson’s r = 

0.57) more effectively captures the predictive power in a leave-one-out cross validation 

when compared to input of data from thousands (1747) arbitrary variants (Figure S7A, 

Pearson’s r = 0.46). When predicting the E3 ligase activity of human BRCA1 variants, the 

output of VSP, using either 1747 DMS variants (Pearson’s r = 0.61) or 62 human variants 

(Pearson’s r = 0.57) as input data in a leave-one-out cross-validation, are significantly better 

than other prediction tools, such as PolyPhen-2 (Adzhubei et al., 2010) (Pearson’s r = 0.15), 

SIFT (Kumar et al., 2009) (Pearson’s r = 0.28) and CADD (Kircher et al., 2014) (Pearson’s r 

= 0.26), as well as Envision (Gray et al., 2018) (Pearson’s r = 0.38) that is trained with the 

DMS datasets together with sequence and/or structural properties (Figure S7C).

Given that most disease genes annotated to date have > 50 missense variants (Landrum et 

al., 2016), many of which are captured in the GenomAD database (Lek et al., 2016), the 

VSP method should be valid across many disease states- the limitation being the availability 

of function datasets for the y- and z axis coordinates. The latter issue has been discussed 

recently (Manolio et al., 2017; Starita et al., 2017) highlighting the need for a change in 

bench and clinical experimental design from a unidimensional protocols focusing on a single 

sequence variant to multidimensional (multiplexed) protocols driven by assays using > 50 

variants combined with open access to clinical data such as ClinVar (Landrum et al., 2016) 

using standardized formats (Manolio et al., 2017; Starita et al., 2017) to invoke lessons 

learned from the population.

QUANTIFICATION AND STATISTICAL ANALYSIS

VSP prediction validation—The statistical validation methods to assess the performance 

of the VSP strategy used in this study include a leave-one-out cross-validation, k-fold 

validation and validation by an external dataset. The default validation method is leave-one-

out cross-validation because of small sample size modeling. In the leave-one-out cross 

validation (Figures 5B, S2F, S2I, S5C, S5D, S5G, S5H, S6A, S6D, S6G, S6I, and S6J), all 

data are initially used to build the molecular variogram and geostatistical models. We 

remove each data point, one at a time and use the rest of the data points to predict the 

missing value. We repeat the prediction for all data points and compare the prediction results 

to the measured value to generate the Pearson’s r-value and its associated p value (ANOVA 

test).
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For the k-fold cross-validation (Figure S1G), samples are randomly partitioned into k = 63, 

20, 10, 5, 3, or 2 sets. Of the k sets, a single set is used as validation data and the remaining 

k-1 sets are used as training data. The size of training and validation subsamples are 

indicated for each k-fold in Figure S1G. The cross-validation process is repeated k times and 

every set is used as validation once. The prediction of each sample is collected. For k < 63, 

the partition process is repeated 5 times and the averaged Pearson’s r and p value of the 

correlation between predicted value and actual value is reported.

For the external dataset validation of ClCon prediction (Figure S1F), we considered the 

results of 16 CF variants from a separate study (Van Goor et al., 2014; Yu et al., 2012) that 

were not used for training (Sosnay et al., 2013). Predicted z values were generated by 

feeding the model with x- and y- values, and subsequently compared to the observed values 

by Pearson’s correlation analysis and p value calculation (ANOVA test).

For the external dataset validation of FEV1 and SC response to Ivacaftor (Figures S5A and 

S5B), we fed ClCon measurements determined by cell-based assays in the absence or 

presence of Ivacaftor (Van Goor et al., 2014; Yu et al., 2012) into the FEV1 or SC (z axis) 

phenotype landscapes (Figure 5A, upper left quadrant, panels 12 and 17). Although these 

phenotype landscapes were built on the input variant’s phenotypes in basal state, the diverse 

phenotype relationships for the whole collection of fiduciary variants, when interpreted by 

VSP, can report the dynamic response range of the phenotype value for each variant as an 

output. Using as input ClCon values measured in absence or presence of Ivacaftor, the 

projected output clinical values predicted in response to Ivacaftor are subsequently 

compared to the observed response for the patients from clinical trial datasets (De Boeck et 

al., 2014; McGarry et al., 2017; Moss et al., 2015; Ramsey et al., 2011) (Figures S5A and 

S5B). The error bars associated with each prediction is the prediction confidence. In the 

correlation analyses, we took the confidence level into account as weight. A prediction with 

small uncertainty will have a larger weight because it is more precise than prediction with 

larger uncertainty. The weight is calculated as: ωi = 1 σi
2  where σi is the error for i. All 

quantitative correlation analyses and p value calculations were performed using the software 

Originpro 2016. A p value < 0.05 was considered to indicate statistical significance

DATA AND SOFTWARE AVAILABILITY

Key input datasets can be downloaded from Mendeley Data at:https://data.mendeley.com/

datasets/8d7w8963rb/3.

CFTR—The datasets comprising trafficking and chloride conductance measurements of 63 

CF variants used to build the phenotype landscape in Figure 2 is from the reference (Sosnay 

et al., 2013). The dataset used in Figure 3 is from different references (Van Goor et al., 2014; 

Yu et al., 2012) given the need for the Ivacaftor input data. The clinical data presented in 

Figure 4 and Figures 5A and5B are from reference (Sosnay et al., 2013). Sweat Chloride 

(SC) and Forced Expiratory Volume in 1 s (FEV1) values are the average value for all the 

patients carrying the variant in trans with a known CF-causing variant previously shown to 

have minimal residual function as indicated in reference (Sosnay et al., 2013). Pseudomonas 

burden (PB) and pancreatic insufficiency (PI) are percentage of patients that are pancreatic 
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insufficient (insulin deficient) or Pseudomonas infected, respectively (Sosnay et al., 2013). 

All the function or clinical values in Figure 4 and Figures 5A and 5B are normalized to 

F508del (set as 0) or WT (set as 1) to make them comparable. For the clinical trial results 

used in Figures S3D, S3E, S5A, and S5B, the FEV1 and SC measurements of patients with 

G178R, S549N, S549R, G970R, G1244E, G1349D, S1251N and S1255P after Ivacaftor 

treatment are from reference (De Boeck et al., 2014). The clinical trial results for G551D are 

from reference (Ramsey et al., 2011). The clinical trial results for R117H are from reference 

(Moss et al., 2015). The values for R334W, G85E and A455E are from reference (McGarry 

et al., 2017). This study did not report the exact measurements of FEV1 but stated that none 

of the subjects showed significant change in FEV1 measurement (McGarry et al., 2017), so 

we set the FEV1 change of the three variants as ‘0’. The exact SC values for these patients 

were reported in this study and are used in Figures S3D and S5B.

APP—The clinical classification of APP variants is obtained from ClinVar and 

ALZFORUM (https://www.alzforum.org/). ClinVar and ALZFORUM classify the variants 

as ‘Not pathogenic or benign’, ‘likely benign’, ‘likely pathogenic’, ‘pathogenic’ and 

‘Variants of uncertain significance (VUS)’. Here, 45 APP variants with clear clinical 

classification were used as input data. We set ‘Not pathogenic or benign’ as 1, likely benign’ 

as 0.66, ‘likely pathogenic’ as 0.33, and ‘pathogenic’ as 0 to generate the output ‘APP 

pathogenicity’ (APPpath)-phenotype landscape.

PS1—The level of Aβ-40 and Aβ-42 generated by PS1 variants and the AOs of FAD 

patients associated with each PS1 variant were obtained from (Sun et al., 2017). Among 138 

characterized PS1 variants, 42 variants could not be used to generate the Aβ-42/Aβ-40 ratio 

due to undetectable levels of Aβ-42 and/or Aβ-40; six variants do not have reported AO; one 

variant (DE9) lacks exon 9. The remaining 89 missense PS1 variants were used as input data 

in the VSP analysis. For Aβ-42/Aβ-40 ratio value, we used log10 transformation as input 

data format.

Allele frequency—The allele frequency for CFTR and APP is obtained from GnomAD 

database (http://gnomad.broadinstitute.org/). If a patient variant is not found in GnomAD, to 

include the variant in VSP analysis, we assigned the allele count for that variant as 0.5 in the 

context of total 277,264 allele counts to date found in the 138,632 individuals in GnomAD. 

The corresponding allele frequency value for these variants is 0.00018%. The log10 value of 

allele frequency is used as input data format.

BRCA1—When applying VSP to the BRCA1 RING domain the deep mutational scanning 

data (DMS) was from reference (Starita et al., 2015). We used 1747 missense variants that 

have both BARD binding score and E3 ligase activity measurements. Among them, the data 

for 62 variants observed in patients, general population and tumor samples listed in 

reference (Starita et al., 2015) was extracted for separate VSP modeling and evaluation.

Geostatistical software used in this study—Given the practical value of geostatistics 

in geological, epidemiological, and anthropological efforts, there are many open-source R 

packages and GUI (Graphical User Interface)-based software for performing analyses. We 

used R package such as gstat (https://cran.r-project.org/web/packages/gstat/index.html) and 
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GUI-based software packages such as Gamma Design Software (https://geostatistics.com/), 

yielding identical results when using the Ordinary Kriging module.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We develop VSP, a Gaussian-process-based approach to interpret genomic 

diversity

• VSP is based on spatial covariance (SCV) in the genotype-to-phenotype 

transformation

• SCV uses population genomics to inform individualized phenotypes at atomic 

resolution

• Phenotype landscapes generated through SCV enable high-definition 

medicine
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Figure 1. Building Phenotype Landscape Through VSP
(A) A schematic illustrating application of Gaussian-process (GP)-based geostatistics for oil 

exploration in a geophysical landscape.

(B) CFTR linear, secondary, and 3D structure with CF variants indicated.

(C) Steps for generating the phenotype landscape through VSP (see Video S1).
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Figure 2. Phenotype Landscape Informs Functional Structure
(A) The VSP-predicted values of ClCon (z axis) relating to TrIdx (y axis) across the entire 

VarSeqP (x axis) in this Wang-Balch plot is shown as a phenotype landscape overlaid with 

the confidence contour intervals.

(B) Phenotype landscape is mapped to CFTR structure snapshots (PDB: 5UAK, 5W81) to 

generate functional structures.

(C) The residues in the functional structure (B) with predicted variants that define low 

trafficking (TrIdx < 0.2) values in the landscape (top; highlighted by one asterisk in A) are 

shown as balls in the structural snapshots (bottom). The di-acidic ER exit code of CFTR 
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(YKDAD) in NBD1 domain is highlighted by black arrows. ATP at the consensus site is 

shown as black sticks.

(D) The residues in the functional structure (B) with predicted variants that locate on the cell 

membrane (TrIdx > 0.8) (top; highlighted by two asterisks in A) but with deficient ClCon 

function (ClCon < 0.15) are shown as balls on the structure snapshots (bottom). The position 

of G551D is denoted by a number sign.
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Figure 3. Ivacaftor-Responsive Phenotype Landscapes
(A) The predicted ClCon values (z axis) in the absence (left) or presence of Ivacaftor (right) 

are shown as phenotype landscapes (see Videos S2 and S3). Top 25% quartile confidence 

interval of prediction is highlighted by bold contour line. FDA-approved variants for 

treatment with ivacaftor are highlighted by the square boxes. Variants recently approved 

based on in vitro cell-based data (Ratner, 2017) are highlighted by black triangles. Among 

them, A455E is highlighted by one asterisk.

(B) Mapping the predicted ClCon on human CFTR structure snapshots to generate 

therapeutic responsive view of the fold.
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Figure 4. Applying VSP to Clinical Phenotypes
(A) Phenotype landscapes relating the sequence position of variant (x axis) and its cell-based 

TrIdx (y axis) to the indicated features (z axis): cell-based chloride conductance (ClCon), 

clinical sweat chloride (SC), clinical forced expiratory volume 1 (FEV1), clinical 

Pseudomonas burden (PB), and clinical pancreatic insufficiency (PI).

(B) Mapping clinical phenotype landscapes on CFTR structure snapshots.
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Figure 5. Phenotype Landscapes Linking Bench, Bedside, and Population Genomics
(A) Predicted phenotype landscapes and functional structures that use any two combinations 

of the indicated cell-based or clinical features as y axis and z axis values.

(B) Leave-one-out cross-validation of phenotype landscapes shown in (A). Pearson’s r value 

is indicated by the pink to dark red color scale; p value is indicated by asterisks (0.01 < *p < 

0.05; 0.001 < **p < 0.01; ***p < 0.001; 0.01 <*1p<0.05, where V754M is set as an outlier 

for validation given its variability in phenotype landscapes; Figure S4).

(C and D) Phenotype landscapes relating CFTR variants (x axis) and the allele frequency in 

GnomAD (y axis) to TrIdx (C) or ClCon (D).
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Figure 6. Applying VSP to APP and PS1
(A) Phenotype landscape relating APP variants (x axis) and the GnomAD allele frequency 

(y axis) to the clinical presentation of Alzheimer’s disease (z axis).

(B)The highest confidence prediction of the phenotype generated by VSP is assigned to each 

residue and mapped on APP schematic structure with atom resolution in the region of (683–

728) (PDB: 2LP1). For position of G713, only the clinical value of G713T is assigned for 

structural presentation, while the clinical values of both G713T and G713V can be captured 

in the landscape (A).
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(C) Phenotype landscape relating PS1 variants (x axis) and the Aβ-42/Aβ-40 ratio relative to 

WT (y axis) to mean age of onset (AO) from FAD patients (z axis). The landscape is divided 

into 3 sections (brackets) based on y axis thresholds: below 1, 1 < y < 10, and y > 10. Each 

landscape section is mapped on the structural snapshot of γ-secretase complex (PDB: 5FN2) 

separately by assigning predicted AO with highest confidence to each residue of PS1. The 

SCV clusters (25% confidence level) in each section of the landscape with close sequence-

to-function-to-structure relationships are highlighted by one asterisk, two asterisks, and three 

asterisks, respectively, and the corresponding functional structure projections are highlighted 

by dashed ovals. The TMs are numerically labeled in the structure and the two catalytic 

aspartate residues in TM 6 and 7 are shown as black sticks and highlighted by arrows.

(D) Cartoon illustrating VSP. GP-based SCV relationships suggest a matrix-based flow of 

information in central dogma facilitates the genotype to phenotype transformation (lower 

panel, SCV[DNA<->RNA->Protein]) where the genome tells the proteome how to shape; 

the proteome tells the genome how to evolve.
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