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Abstract: The biological network plays a key role in protein function annotation, protein superfamily classification, disease
diagnosis, etc. These networks exhibit global properties like small-world property, power-law degree distribution, hierarchical
modularity, robustness, etc. Along with these, the biological network also possesses some local properties like clustering and
network motif. Network motifs are recurrent and statistically over-represented subgraphs in a target network. Operation of a
biological network is controlled by these motifs, and they are responsible for many biological applications. Discovery of network
motifs is a computationally hard problem and involves a subgraph isomorphism check which is NP-complete. In recent years,
researchers have developed various tools and algorithms to detect network motifs efficiently. However, it is still a challenging
task to discover the network motif within a practical time bound for the large motif. In this study, an efficient pattern-join based
algorithm is proposed to discover network motif in biological networks. The performance of the proposed algorithm is evaluated
on the transcription regulatory network of Escherichia coli and the protein interaction network of Saccharomyces cerevisiae. The
running time of the proposed algorithm outperforms most of the existing algorithms to discover large motifs.

1Introduction
Network motifs are basic building blocks of various biological
networks such as metabolic network, gene regulatory network, and
protein interaction network [1]. These are not only studied in a
biological network, but also key features in many other networks
such as social network, ecological network (food web), World
Wide Web (the Internet), etc. Network motifs are over-represented
patterns in a target network like a sequence motif in a protein
sequence. But network motif discovery requires computationally
expensive isomorphic testing and repeated frequency computation
for the statistical significance measure. Network motifs act as a key
feature in a wide range of applications of biological networks.
Most of the biological networks possess two critical motifs: feed-
forward-loop and Bifan [2]. However, motifs like autoregulation,
feedback loops, and dense overlapping regulons, etc. [3] are
functionally important. Przulj et al. [4] distinguish different
protein–protein interaction networks by using network motifs as a
feature. These are also used for network model selection. Based on
motif significance profiles, Milo et al. [5] classified networks of
the various domains into superfamilies. Albert and Albert [6] used
these features successfully to predict protein–protein interactions.
Gupta et al. [7] used network motifs for cancer disease diagnosis.
These are also used for network superfamily classification [5] and
artificial network model for a real-world network, prediction of
breast cancer survival outcome, analysis of functional network in
diabetes patients, etc. A three-node network motif found in the
human waving network helps recognise breast cancer patients from
regular patients [8].

Network motif discovery algorithms broadly classified into two
categories: (i) network-centric and (ii) motif-centric [9]. Depending
on frequency computation again, they can be classified as exact
search and sampling. Some of the network-centric algorithms are
enumerate subgraphs (ESU) [10], MFinder [11], MAVisto [12],
NeMoFinder [13], Kavosh [14] and FANMOD [15]. Out of these
algorithms, MFinder and FANMOD use a sampling approach for
counting motif frequency, whereas other algorithms use the exact
census. Two popular motif centric algorithms are Grochow and
Kellis [16] and MODA [17]. Both of these algorithms follow the
exact census approach. A brief introduction to some of the existing
algorithms is given in the next paragraph.

The first significant contribution in network motif discovery by
Milo et al. [1], published in 2002. To measure the statistical
significance, the frequency of a motif in a real network is
compared with a set of random networks having the same degree
distribution as the real network. A backtracking algorithm name as
MFinder is used for discovering network motifs. The exponential
space complexity of this algorithm made this method incapable of
dealing with large motifs. Kashtan et al. [18] improved the
execution time of motif detection algorithm by sampling approach,
but the results obtained are biased. Wernicke [10] proposes a
specialised algorithm ESU that could avoid redundancy in
computation through proper enumeration. This method uses a
third-party algorithm NAUTY [19] for checking isomorphism. A
lot of redundant subgraph isomorphism check is involved in this
method as it is not able to handle automorphism. The flexible
pattern finder algorithm [20] proposed a pattern growth approach
for computing pattern frequency. However, the number of patterns
grows rapidly concerning increase pattern size. Therefore,
searching all patterns systematically is a time-consuming task, even
for a medium-size pattern. Grochow and Kellis [16] proposed a
motif centric algorithm, where frequency counting is done on a
specific isomorphic class. This algorithm avoids unnecessary and
redundant searches by mapping the query graph only on one
representative of its equivalence class. The symmetry conditions
are removed by adding constraints on the labelling of the vertices.
These conditions reduce the number of isomorphic checks
significantly. However, subgraph isomorphism is still a significant
concern in this method. Kashani et al. [14] proposed a new
network-centric algorithm named as Kavosh. This algorithm
generates all combinations with the desired number of nodes
through an implicit tree rooted at the chosen vertex. Omidi et al.
[17] proposed MODA, which is based on a pattern growth
methodology. This is a subgraph-centric algorithm. The core idea
of this algorithm is first to find the frequency of acyclic subgraphs,
save the respective embeddings in memory and then use those
embeddings to quickly find out the frequencies of cyclic
subgraphs. MODA introduces the concept of expansion tree, which
is static and built at the beginning of the algorithm. A novel
algorithm named as CoMoFinder proposed by Liang et al. [21].
Composite network motifs present in co-regulatory networks are
identified accurately and efficiently by this method. Parallel
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subgraph enumeration strategy is applied to this method. Elhesha
and Kahveci [22] proposed a motif centric algorithm for finding
motifs in a target network. The core idea of this method is to build
a set of basic building patterns and find instances of these patterns.
Then the size of the motifs increases by joining the known motifs
with the instances of basic building patterns. Lin et al. [23] used
Graphical Processing Units (GPUs) to study network motif. GPUs
are employed to parallelise subgraph matching tasks in random
graphs, which significantly reduce the overall computation time.
Chen and Chen [24] published an efficient sampling algorithm for
network motif detection.

The existing methods face significant challenges when the
motif size increases [25, 26]. The performance of most of the
existing algorithms that follow the exact census significantly
decreases with increase motif size. The performance of algorithms
which follow sampling approaches is biased and hence unreliable.
Further, some methods are applicable only for finding overlapping
motif instances. Network motif discovery in a large and complex
biological network is time consuming, as the number of alternative

motif topologies increases exponentially and it involves a subgraph
isomorphism check. Furthermore, the number of alternative
topologies increases exponentially with the increase of subgraph
size. For this reason, existing methods only focus on motifs of
small size. This limitation prevents further investigation in this
field. In this paper, we adopt a pattern join method to identify large
network motifs in a biological network efficiently. The central idea
of this algorithm is to use some basic building patterns and find
their embeddings. This is followed by an iterative joining of parent
patterns with these basic building patterns. As a result, child
patterns of higher order are obtained. Non-overlapping motif
instances are obtained by using the maximum independent set
(MIS) finding [22] algorithm. The proposed algorithm significantly
reduces the computationally expensive isomorphic test and avoids
unnecessary growth of pattern which does not have any statistical
significance.

The remaining of the paper is organised as follows: Section 2
presents an overview of the motif discovery process. Section 3
presents the proposed network motif discovery algorithm.
Implementation, results, and discussion are presented in Section 4.
Finally, Section 5 presents a brief conclusion with the future scope
of this paper.

2Network motif discovery process
Network motif discovery is the process of finding statistically
significant patterns within a target network. The target network and
all the potential motifs are represented as graphs. The subgraph in a
graph with a frequency higher than the predefined threshold is
considered to be a potential motif. The major steps in the network
motif discovery process consist of (i) pattern frequency
computation, (ii) random graph generation, and (iii) statistical
testing. The block diagram of the motif discovery process is shown
in Fig. 1. In Fig. 2, hypothetical data demonstrates that out of six
non-isomorphic subgraphs of size-4, three patterns are determined
as network motifs. 

The frequency of patterns in a target network is measured by
using three different frequency measures F1, F2, and F3. These
frequencies are defined concerning the overlapping of graph
elements in subgraph instances. F1 measure, both vertices and
edges can be shared among different instances of the subgraph. F2
measure computes edge-disjoint instances of the subgraph where
only vertices can be shared. F3 measure is completely restrictive,
in which no sharing of vertices or edges are allowed. Frequency
measure F2 is used in the proposed algorithm as it counts edge-
disjoint subgraphs, which satisfy downward closure property [27].
The downward closure property ensures that the frequency of child
patterns (i.e. patterns obtained from parent after join operation) is
monotonically decreasing with increasing size of the pattern. Based
on this property, the search space of patterns can be reduced by
pruning of infrequent patterns in the iterative joining process.
Hence it reduces the search space for finding frequent patterns and
therefore ensures fast computation. In Fig. 3, a hypothetical
network and a size-3 candidate motif with all its embeddings for
different frequency measures are shown.

Graph isomorphism check plays a significant role in motif
frequency computation. The fastest way to check graph
isomorphism is through canonical ordering or canonical labelling.
The vertices of a graph are assigned with a unique label in
canonical order that makes it invariant under isomorphism. If two
or more graphs have the same canonical labelling, then they are
guaranteed to be isomorphic with each other. Canonical ordering is
obtained by using McKay's canonical graph labelling algorithm
(Nauty tool) [19]. An undirected graph and a directed graph with
their canonical order are shown in Fig. 4.

Another essential step in a network motif discovery process is
generating random networks, which is used to measure the
statistical significance of a motif in a target network. The generated
random networks must possess the same properties as the target
network, such as the number of edges, the number of nodes, and
the degree distribution of nodes, etc. In creating the random
network, there exist two common algorithms: (i) matching
algorithm and (ii) switching algorithm. A hypothetical network and

Fig. 1 Block diagram of network motif discovery process
 

Fig. 2 Demonstration of the presence of size-4 significant motifs in a
hypothetical network

 

Fig. 3 Illustration of different frequency concepts
(a) Target network, (b) Size-3 candidate motif, (c)–(e) Embeddings with respect to
frequency measures F1, F2 and F3, respectively

 

Fig. 4 Graphs with canonical order
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some randomly generated networks, which preserve the required
properties are shown in Fig. 5.

The last key step in the motif discovery process is a statistical
significance measure of a potential motif. There are three important
measures such as P-value, z-score, and significance profile (SP)
used for this purpose. The z-score of a motif M is defined as
z(M) = ( f real − μrand)/σrand, where f real is the frequency of motif in
the target network, μrand and σrand are the mean frequency and
standard deviation of frequencies of a set of random networks. The
P-value of a motif is defined as n/N, where n is the number of
times f rand ≥ f real and N is the total number of random networks. A
vector representing the z-scores of a set of motifs is called a
significance profile (SP). Motifs found in a biological network are

not necessarily functionally important. But they are always
statistically significant.

3Network motif discovery using the pattern-join
method
In this paper, we adopt a pattern join method to identify large
network motifs in biological networks efficiently. The central idea
of this algorithm is to use some basic building patterns and find
their embeddings. This is followed by an iterative joining of parent
patterns with these basic building patterns. As a result, child
patterns of higher order are obtained. The proposed algorithm
significantly reduces the computationally expensive isomorphic
test and avoids unnecessary growth of pattern, which does not have
any statistical significance. A proposed motif discovery algorithm
is a motif centric algorithm. The basic patterns can generate all
possible patterns through iterative joining and hence called basic
building patterns. The basic building patterns of undirected and
directed graphs are shown in Figs. 6 and 7, respectively. There are
four basic building patterns selected for an undirected graph, and
seven basic building patterns are selected for a directed graph. The
proposed algorithm initialises the current set of patterns with these
basic building patterns. Iteratively, each pattern present in the
current set is joined with basic building patterns to construct a new
set of patterns. At the end of an iteration, the new set of patterns
becomes the current set for the next iteration.

During the joining process, two subgraphs can be joined if they
share at least one edge. To avoid unnecessary checking on join
operation, self-joining is not allowed in the proposed algorithm. As
a result, computational cost decreases. The proposed method finds
the disjoint motif instances, and self-joining will never happen on
disjoint motif instances. The joining of two subgraphs either yields
an existing subgraph in the new set or a new subgraph. Existing
subgraph generated is treated as a duplicate subgraph and discarded
by the proposed algorithm. The pattern of the newly created
subgraph is either isomorphic to one of the existing patterns or a
new one. In the former case, we consider the generated subgraph as
an embedding of its corresponding pattern, and the algorithm
increments the pattern frequency. In the case of the new pattern, it
is added to the current set, and its frequency is initialised to 1.
Subgraph isomorphism is checked by comparing the canonical
order of subgraph with the canonical order of all the patterns
present in the current set. Nauty toll [19] is used for this purpose.
Figs. 8 and 9 demonstrate the pattern-join operation in the
undirected graph and directed graph, respectively.

The critical observations in this pattern-join method are

Fig. 5 Random networks preserving degree distribution of the original
network

 

Fig. 6 Basic building patterns for undirected graph
 

Fig. 7 Basic building patterns for directed graph
 

Fig. 8 Pattern-join operation in undirected graph
(a) Hypothetical network, (b) Pattern Pi, (c) Edge-disjoint embeddings of Pi, (d) Basic
building pattern M3, (e) Edge-disjoint embeddings of basic building pattern M3, (f)–
(l) Joining operation of embeddings of pattern Pi with embeddings of basic building
pattern M3 results four new patterns P1i + 1, P2i + 1, P3i + 1, and P4i + 1. Join-1 and
join-7 produce the same patterns because the resultant graph are isomorphic with each
other. Similarly, join-2 and join-4 result the same patterns and join-3 and join-6 result
the same patterns. Subscript i represents the pattern in the ith iteration and subscript
i + 1 represents the resultant pattern in the i + 1 iteration

 

Fig. 9 Pattern-join operation in directed graph
(a) Hypothetical network, (b) Pattern Pi, (c) Edge-disjoint embeddings of Pi, (d) Basic
building pattern M6, (e) Edge-disjoint embeddings of basic building pattern M6, (f)–
(j) Joining operation of embeddings of pattern Pi with embeddings of basic building
pattern M6 results four new patterns P1i + 1, P2i + 1, P3i + 1, and P4i + 1. Join-2 and
join-5 produce the same patterns because the resultant graphs are isomorphic with
each other. Subscript i represents the pattern in the ith iteration and subscript i + 1

represents the resultant pattern in the i + 1 iteration
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i. The two sets of basic building patterns, as shown in Figs. 6 and
7 are unique. There exist no other equivalent set of basic
patterns. Therefore, these two sets represent minimal or
irreducible sets of patterns.

ii. If anyone of the patterns is removed from the set of basic
building patterns, then that cannot be generated without self-
joining.

iii. Any pattern with k + 1 edges can be obtained from a parent
pattern with k edges by joining with one of the basic patterns.

The above observations are further justified below.
Let us consider the basic building patterns of the undirected

graph first. The minimum order (number of vertices) of the basic
pattern is chosen as 3. Because the order-2 graph represents an
edge and the method will no longer be a pattern-join method. It
will be a simple edge addition process. There are two possible
patterns of order-3, represented by M1 and M2, as shown in Fig. 6.
Both M1 and M2 must be considered in the basic building patterns
as one cannot be generated from others without self-joining. Now
consider all possible connected patterns of order-4 as shown in
Fig. 10. M3 cannot be generated from M1 and M2 without self-
joining, and M4 cannot be generated from M1, M2, and M3
without self-joining. Hence M3 and M4 must be included in the set
of basic building patterns. Now consider an instance of P5 that can
be generated by joining instances of M1 and M2 as shown in
Fig. 11a. An instance of P5 can also be generated by joining
instances of M1 and M3 or M1 and M4 or M2 and M3 or M2 and
M4 or M3 and M4. Similarly, instances of P6, P7, and P8 can be
generated by joining instances of basic patterns among themselves
or by joining an instance of basic pattern with an instance of the
already generated pattern. Generation of an instance from each of
the above patterns is shown in Fig. 11. The pattern of higher order
can be generated by the pattern-join operation as stated in the third
observation, and that is explained below.

Let us consider an undirected graph G and pattern P1 of size k
edges in G. Also, consider pattern P2 with k + 1 edges such that P2
contains P1 and an additional edge (x, y). It is required to show that
P2 can be obtained from P1 by joining it with one of the four basic
building patterns. Since both P1 and P2 are connected graphs, let
us assume that y has an edge (y, a) present in pattern P1. Fig. 12
illustrates the two edges (x, y) and (y, a). First, basic building
pattern M1 (Fig. 6) is considered for the join operation. In this
case, a copy of M1, {(x, y), (y, a)} and pattern P1 joined together to
form pattern P2. However, this join occurs only if the subgraph {(x,
y), (y, a)} is included in the F2 counts of M1. If the above
condition fails, then depending on the degree of the nodes y and a
in pattern P1, there may exist an edge (y, b) or (a, b) as shown in
Fig. 12. If (a, b) exist then join a copy of the motif M4 (Fig. 6), {(x,
y), (y, a), (a, b)} with P1 to obtain P2. Otherwise, if (y, b) exist
then join a copy of the motif M3 (Fig. 6), {(y, x), (y, a), (y, b)} with
P1 to obtain P2.

Now consider the basic building patterns of the directed graph.
Similar to the undirected graph, the order of basic building patterns
for a directed graph is also started with 3. Because the order-2
graph represents an edge and it leads to edge addition process in
place of the pattern-join operation. Let us consider all possible
connected patterns of order-3, as shown in Fig. 13. The patterns
M1, M2, M3, and M4, must be considered in the basic building
patterns as one cannot be generated from others without self-
joining. However, P5 can be generated by joining an instance of
M1 with M3, as shown in Fig. 14. Thus P5 is not included in the
basic building patterns.

Now consider all possible digraph patterns of order-4 as shown
in Fig. 15. M5 cannot be generated from M1, M2, M3, and M4
without self-joining and M6 cannot be generated from M1, M2,
M3, M4, and M5 without self-joining and M7 cannot be generated
from M1, M2, M3, M4, M5, and M6 without self-joining. Hence
M5, M6, and M7 must be included in the set of basic building
patterns. Now consider an instance of P8 that can be generated by
joining instances of M1 and M3. An instance of P9 and P10 can be
generated by joining instances of M2 and M3. An instance of P11
can be generated by joining instances of M1 and M3. An instance
of P12 can be generated by joining instances of M1 and M2.

Fig. 10 All possible order-4 patterns for undirected graph
 

Fig. 11 Generation of order-4 patterns using pattern join operation for
undirected graph

 

Fig. 12 Generation of a pattern with k + 1 edges from a pattern with k
edges. (x, y) is the additional edge in the child pattern
(a) Assuming an existing edge (y, a) in the parent pattern, the child pattern is
generated as a result of joining the parent pattern with the subgraph {(x, y), (y, a)}
which belongs to M1 (see Fig. 6). Failure to accomplish the join in (a), either (b) child
pattern is obtained by joining the parent pattern with the subgraph {(x, y), (y, a), (a,
b)} which belongs to M4 (see Fig. 6) or (c) it is generated by joining the parent pattern
with the subgraph {(x, y), (a, y), (b, y)} which belongs to M3 (see Fig. 6)

 

Fig. 13 All possible order-3 digraph patterns
 

Fig. 14 Generation of order-3 digraph pattern P5 from M1 and M3
 

Fig. 15 All possible order-4 digraph patterns
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Similarly, instances of P13–P38 can be generated by joining
instances of basic patterns among themselves or by joining an
instance of basic pattern with an instance of the already generated
pattern. The pattern of higher order can be generated by the
pattern-join operation as stated in the third observation and that is
explained below.

Let us consider a directed graph G and pattern P1 of size k
edges in G. Also, consider pattern P2 with k + 1 edges such that P2
contains P1 and an additional edge (x, y). It is required to show that
P2 can be obtained from P1 by joining it with one of the seven
basic building patterns. Since both P1 and P2 have connected
graphs, let us assume that either x has an edge (x, a) or (a, x) or y
has an edge (y, a) or (a, y) present in pattern P1. Fig. 16 illustrates
these scenarios. First, the basic patterns M1, M2, and M3 (Fig. 7)
are considered in the join operation. In these cases, either a copy of
M1, {(x, a), (x, y)} or a copy of M3, {(a, x), (x, y)} or a copy of
M3, {(x, y), (y, a)} or a copy of M2, {(x, y), (a, y)} will join with
pattern P1 having a common edge (x, a) or (a, x) or (y, a) or (a, y),
respectively, to produce pattern P2. These cases produce pattern P2
with k + 1 edges. This join, however, occurs only if the above
subgraphs are included in the F2 counts of M1, M2, and M3. If all
the above conditions fail, then there may exist four other possible
scenarios, as shown in Fig. 16. If (x, a) and (x, b) exist then join a
copy of the basic pattern M5 (Fig. 7), {(x, y), (x, a), (x, b)} with P1
to obtain P2. If (b, a) and (a, x) exist then join a copy of the basic
pattern M7 (Fig. 7), {(b, a), (a, x), (x, y)} with P1 to obtain P2. If
(a, y) and (b, y) exist then join a copy of the basic pattern M6
(Fig. 7), {(a, y), (b, y), (x, y)} with P1 to obtain P2. If (y, a) and (a,
b) exist then join a copy of the basic pattern M7 (Fig. 7), {(x, y), (y,
a), (a, b)} with P1 to obtain P2.

In summary, any pattern P2 with k + 1 edges can be constructed
by joining pattern P1 with k edges (or k − 1 edges) with one of the
basic building patterns.

Hence it can be concluded that the above four patterns in the
undirected graph and seven patterns in the directed graph act as
basic building patterns and any pattern present in the target
network can be generated using the pattern-join operation. The
proposed algorithm uses F2 measure to compute the pattern
frequency. Edge-disjoint embeddings of a pattern are obtained by
the MIS finding algorithm. A pattern is removed from the current
set in two cases. (i) Pattern size matches with required motif size.
(ii) Pattern frequency failed to cross the predefined frequency

threshold. In the first case, the pattern is added to the output motif
list and the second case is applicable as the F2 frequency measure
satisfies the downward closure property. The algorithm terminates
when no more patterns are present in the current set. The following
section contains the pseudocode of the proposed motif discovery
algorithm.

3.1 Pseudo-code of motif discovery using the pattern-join
method

The pseudo-code of the proposed method is represented by
Algorithm 1 (see Fig. 17). The inputs to the algorithm are a graph
G, motif size m, and the threshold frequency f th. This algorithm
first finds all the embeddings of basic building patterns (Line 2).
The detail of this process is present in Sections 3.2 and 3.3. Then
the algorithm extracts the edge-disjoint embeddings of each pattern
(Line 3) using an MIS finding algorithm, which is explained in
Section 3.4. The current set of patterns is initialised to four basic
patterns in the case of the undirected graph and seven basic
patterns in the case of the directed graph. The new set is initialised
to an empty set. The size of the current motif set increases in each
successive iteration.

This algorithm joins the instances of each sub-graph present in
the current set with the instances of basic building pattern set (Line
10). Two subgraphs can be joined if they share at least one edge
and joining of subgraphs belonging to the same pattern is not
allowed. Either a new pattern is created or an existing pattern is
generated as a result of joining two subgraphs (Lines 11–17). The
detail of the pattern-join operation is explained in Section 3.5. In

Fig. 16 Generation of a pattern with k + 1 edges from a pattern with k
edges. (x, y) is the additional edge in the child pattern
(a) Assuming an existing edge (x, a) in the parent pattern, the child pattern is
generated as a result of joining the parent pattern with the subgraph {(x, y), (x, a)}
which belongs to M1 (see Fig. 7), (b) Assuming an existing edge (a, x) in the parent
pattern, the child pattern is generated as a result of joining the parent pattern with the
subgraph {(a, x), (x, y)} which belongs to M3 (see Fig. 7), (c) Assuming an existing
edge (y, a) in the parent pattern, the child pattern is generated as a result of joining the
parent pattern with the subgraph {(x, y), (y, a)} which belongs to M3 (see Fig. 7), (d)
Assuming an existing edge (a, y) in the parent pattern, the child pattern is generated as
a result of joining the parent pattern with the subgraph {(x, y), (a, y)} which belongs to
M2 (see Fig. 7). Failure to accomplish the above joins, either (e) a child pattern is
obtained by joining the parent pattern with the subgraph {(x, y), (x, a), (x, b)} which
belongs to M5 (see Fig. 7) or (f) it is generated by joining the parent pattern with the
subgraph {(b, a), (a, x), (x, y)} which belongs to M7 (see Fig. 7) or (g) it is generated
by joining the parent pattern with the subgraph {(a, y), (b, y), (x, y)} which belongs to
M6 (see Fig. 7) or (h) it is generated by joining the parent pattern with the subgraph
{(x, y), (y, a), (a, b)} which belongs to M7 (see Fig. 7)

 

Fig. 17 Algorithm 1: motif discovery using pattern-join method
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Line-22, the overlapping instances of each pattern in the new set
are removed from the MIS finding algorithm and the result is saved
in the current set for the next iteration. The patterns which failed to
satisfy the frequency threshold are removed from the current set
(Lines 24–26). The algorithm stores the patterns of target motif
size in the output motif list and then delete it from the current set
(Lines 27–30). When the current set becomes empty, the algorithm
terminates (Line 6).

3.2 Embeddings of basic patterns for undirected graph

Following procedures are adopted to find the embeddings of basic
patterns M1–M4, as shown in Fig. 6:

i. To find out embeddings of pattern M1, select all possible
combinations of any two edges connected to each node vi ∈ V

of a network G. The number of such embeddings will be

∑vi ∈ V

d(vi)

2
, where d(v) represents the degree of a vertex v.

ii. To find out embeddings of pattern M2, for each edge
(vi, vj) ∈ E of the network G, select all possible vertices vk ∈ V

which are connected to both vi and vj for all k ≠ i, j. The upper
bound of the number of such embeddings will be
∑(vi, vj) ∈ E min(d(vi), d(vj)) − 1.

iii. To find out embeddings of pattern M3, select all possible
combinations of any three edges connected to each node vi ∈ V

of a network G. The number of such embeddings will be

∑vi ∈ V

d(vi)

3
.

iv. To find out embeddings of pattern M4, for each edge
(vi, vj) ∈ E of the network G, select any two vertices v3, v4 ∈ V

where v3 is adjacent to vi and v4 is adjacent to vj, but they are
not adjacent to each other. The number of such embeddings
will be less than ∑(vi, vj) ∈ E d(vi)d(vj).

3.3 Embeddings of basic patterns for a directed graph

Following procedures are adopted to find the embeddings of basic
patterns M1–M7, as shown in Fig. 7:

i. To find out embeddings of pattern M1, select all possible
combinations of any two outgoing edges from each node
vi ∈ V  of a network G. The number of such embeddings will be

∑vi ∈ V

do(vi)

2
, where do(v) represents the out-degree of the

vertex v.
ii. To find out embeddings of pattern M2, select all possible

combinations of any two incoming edges to each node vi ∈ V

of a network G. The number of such embeddings will be

∑vi ∈ V

di(vi)

2
, where di(v) represents the in-degree of the vertex

v.
iii. To find out embeddings of pattern M3, select all possible

combinations of an incoming edge and an outgoing edge for
each node vi ∈ V  of a network G. The number of such
embeddings will be ∑vi ∈ V do(vi)di(vi).

iv. To find out embeddings of pattern M4, select all possible
combinations of an outgoing edge (vi → v2) and an incoming
edge (vi ← v3) for each node vi ∈ V  of the network G then
check for an edge (v2 → v3). The number of such embeddings
will be less than ∑vi ∈ V do(vi)di(vi).

v. To find out embeddings of pattern M5, select all possible
combination of any three outgoing edges from each node
vi ∈ V  of a network G. The number of such embeddings will be

∑vi ∈ V

do(vi)

3
.

vi. To find out embeddings of pattern M6, select all possible
combinations of any three incoming edges to each node vi ∈ V

of a network G. The number of such embeddings will be

∑vi ∈ V

di(vi)

3
.

vii
.

To find out embeddings of pattern M7, select an edge (vi → vj)
then select all possible combinations of an incoming edge to vi

(vi ← v3) and an outgoing edge from vj (vj → v4) of the network
G then check the condition (v3 ≠ v4). The number of such
embeddings will be ∑(vi, vj) ∈ E di(vi)do(vj).

3.4 MIS finding algorithm

This algorithm has two phases, (i) construction of overlap graph,
(ii) finding an MIS of non-overlapping subgraphs. Algorithm 2
(see Fig. 18) constructs the overlap graph in Lines 1–9. Each node
in the overlap graph represents an embedding of a pattern in the
target network. Overlapped embeddings of a pattern in the target
network are connected through edges in the overlap graph. Lines
4–8 perform this task. Once the overlap graph is created, a node
with the minimum number of neighbours is selected from the
overlap graph (Line 12). The embedding corresponding to this
node is added in the edge-disjoint set (Line 17). Then, this node is
deleted with its neighbour from the overlap graph (Lines 13–16).
Then this algorithm updates the degree of all the nodes which were
connected to deleted nodes. The process of picking and shrinking
continue until the overlap graph becomes empty.

3.5 Pattern-join operation

In pattern-join operation, two subgraphs of a given network join
only if they share at least one edge. Algorithm 3 (see Fig. 19)
contains the pseudo-code of the joining procedure. This algorithm
checks the existence of the same edge in both the subgraphs from
Lines 1 to 3. A new graph G, which is supergraph of both G1 and
G2, is created when an edge appeared in both the subgraphs. This
task is performed in Lines 4–6. When there is no common edge
found in the subgraphs, Line-10 returns an empty graph.

3.6 Computational complexity

In this section, the computational complexity of each module is
formally analysed.

Fig. 18 Algorithm 2: MIS finding algorithm
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Finding embeddings of basic building patterns: For an
undirected graph, the computational complexity of this step can be
expressed as

T(n) = ∑
vi ∈ V

d(vi)

2
+ ∑

(vi, vj) ∈ E

d(vi)d(vj)

+ ∑
vi ∈ V

d(vi)

3
+ ∑

(vi, vj) ∈ E

d(vi)d(vj)

= O ∑
vi ∈ V

d(vi)
2 + ∑

(vi, vj) ∈ E

d(vi)d(vj) + ∑
vi ∈ V

d(vi)
3)

For a directed graph, the computational complexity of this step can
be expressed as

T(n) = ∑
vi ∈ V

do(vi)

2
+ ∑

vi ∈ V

di(vi)

2
+ ∑

vi ∈ V

do(vi)di(vi)

+ ∑
vi ∈ V

do(vi)di(vi) + ∑
vi ∈ V

do(vi)

3

+ ∑
vi ∈ V

di(vi)

3
+ ∑

(vi, vj) ∈ E

di(vi)do(vj)

= O ∑
vi ∈ V

d(vi)
2 + ∑

(vi, vj) ∈ E

d(vi)d(vj) + ∑
vi ∈ V

d(vi)
3

The worst-case scenario happens when d(vi) = O(n). In this
scenario, the computational complexity of this step becomes O(n4).

MIS finding algorithm: Let m represents the number of
overlapping embeddings. For basic building patterns m = O(n4).
However, the value of m reduces significantly in the successive
iteration. The computational complexity of constructing the
overlapping graph is O(m2). A min-heap is created based on their
degree from the nodes of the overlapping graph. The cost of
constructing the min-heap is O(m). Disjoint embeddings are
obtained by deleting the nodes one by one from the min-heap and
adjusting the rest of the nodes. This process has complexity equal
to O(mlog(m)).

Pattern-join operation: In this step, we analyse the complexity
of join iteration. Let xi denotes the number of patterns in iteration i.
For an undirected graph, xi starts at 4 and this starts at 7 in the case
of a directed graph. In each iteration, the size of the pattern is
increased by 1 or 2 edges. The initial size is either 2 or 3. Thus, the
minimum size of each pattern at the ith iteration is i + 2 and the
number of non-overlapping embeddings of a pattern is at most

E

i + 2
, where E  represents the number of edges present in the input

network. The total number of disjoint embeddings of all the basic
building patterns for both undirected and directed graph is O( E ).
During joining, embeddings of each pattern joined with all the

embeddings of basic building patterns. Thus, the total number of

join operations performed at iteration i is O E
E

i + 2
xi . For each

join, resulting subgraph is compared against each pattern in that
iteration and the cost of this operation is O(xi). The complexity of

removing duplicate embeddings is O log
E

i + 2
. Collectively, the

complexity of performing all the joins at iteration i is obtained by
multiplying the above three complexities. This is computed as

O E
E

i + 2
xixilog

E

i + 2
 which equals O xi

2 E
2

i + 2
log

E

i + 2
.

4Results and discussion
The performance of the proposed motif discovery algorithm is
evaluated on a real dataset for both undirected and directed
networks. The runtime and the number of significant motifs are
two primary criteria for evaluation of the proposed motif discovery
algorithm. The runtime of the proposed motif discovery algorithm
is compared against existing algorithms by varying both motif size
and network size. Frequency measure F2 is used to compute motif
frequency and z-score is used to measure the statistical significance
of the identified network motif. The performance of the proposed
algorithm is compared against MFinder, ESU, Grochow–Kellis,
and MODA algorithms.

4.1 Data set and computational environment

The proposed algorithm is tested in both undirected and directed
networks. The transcription regulatory network of Escherichia coli
(Eco) [28] is used for the directed network. This database contains
578 interactions between 116 TFs and 423 operons. The data is
presented in a simple interaction format (SIF) with three columns.
For the undirected network, MIPS mammalian protein–protein
interaction database of Saccharomyces cerevisiae (Sce) [29] and
Molecular INTeraction (MINT) database of Human herpesvirus-8
(Hhv8) [30] is used. The Sce network contains 1815 interactions
among 858 proteins, and Hhv8 network contains only 170
interactions among 92 proteins. The proposed algorithm is
implemented in C++ with Intel(R) Xeon(R) E5-2670 Processor 2.3 
GHz CPU, 64 GBs of main memory running Redhat Linux
operating system.

4.2 Performance evaluation

The performance of the proposed motif discovery algorithm is
evaluated based on runtime, statistically significant motifs and z-
score of most abundant motifs.

4.2.1 Runtime: In this section, the runtime of the proposed motif
discovery algorithm is computed on directed and undirected
biological networks specified above. During this computation, the

Fig. 19 Algorithm 3: pattern-join operation
 

Fig. 20 Runtime of the pattern-join method by varying motif size on a real
network of Escherichia coli (Eco), Saccharomyces cerevisiae (Sce) and
Human herpesvirus 8 (Hhv8). The x-axis indicates the motif size and the y-
axis shows the runtime in seconds
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frequency threshold is set as 5% of the size of the network and the
threshold for z-score is set as 2. The F2 measure is used to compute
motif frequency. The effect of motif size on the runtime is observed
by varying the motif sizes from 3 to 15 and the results obtained are
shown in Fig. 20. The behaviour of the result is a clear indication
of the scalability of the proposed algorithm concerning the motif
size. The proposed algorithm takes only a few minutes to run for
motif sizes 3–10 for both directed and undirected networks and it is
limited to a few hours for motif sizes 11–15. For higher motif size,
the runtime is influenced by the motif size. This behaviour is
observed due to the number of alternative patterns increases
exponentially toconcerning motif size. Irrespective of this
limitation the proposed method can discover motifs up to size-15
within a practical runtime.

4.2.2 Statistically and biologically significant motifs:  Table 1
contains the number of significant motifs found by setting the
frequency threshold as 5% of the size of the network. The
experiment is performed on the transcription regulatory network of
Escherichia coli (Eco) and protein–protein interaction network of
Saccharomyces cerevisiae (Sce), and Human herpesvirus-8 (Hhv8).
The identified motifs are statistically significant as they are over-
represented in the target network. Some of these motifs may not be
biologically significant. One of the biologically significant motifs
found in the PPI network of Human herpesvirus-8 is shown in
Fig. 21. This network motif of 10 nodes causes Kaposi sarcoma
disease. Another biologically significant motif found in S.
cerevisiae consists of 15 nodes, as shown in Fig. 21. This network
motif is responsible for transcriptional machinery and cell-cycle
regulation in the said network.

4.2.3 z-score that represent significant of the most abundant
motif: In this section, the statistical significance of the most
abundant motif is discussed across the three biological networks.
The statistical significance of the most abundant motif of a given
size is computed concerning the abundance of the same pattern in a
set of random graphs. The mathematical parameter used for this
purpose is termed as z-score. A higher value of z-score represents a
more significant motif. Typically the threshold value is taken as 2.
Table 2 presents the z-score of the most abundant motif across
three biological networks for seven motif sizes (m = 3, 5, 7, 9, 11,
13, 15). In Table 2, it is observed that the z-score of small motifs
(i.e. up to m = 7) is not so high as compared to large motifs.

However, as motif size increases (i.e. m = 9–15), the frequency gap
between the most abundant motif in the real network and the
random networks becomes highly significant. This implies the
statistical significance of large motifs as compared to small motifs.

4.3 Runtime comparison with existing methods by varying
motif size

In this section, the runtime of the proposed motif discovery
algorithm is measured on the transcription regulatory network of
Escherichia coli and protein–protein interaction network of
Saccharomyces cerevisiae and Human herpesvirus-8. The runtime
of the proposed method is compared against MFinder, ESU,
Grochow–Kellis, and MODA algorithms. The effect of varying
motif size on the runtime of the algorithms is observed by varying
motif sizes from 3 to 15. In this experiment, the frequency
threshold is set as 5% of the size of the network. The effect of
motif size on the runtime is observed the results obtained are
shown in Figs. 22–24.

Significant factors affecting the runtime are the number of
alternative motif topologies and subgraph isomorphism check.
Despite these factors, the runtime of the proposed algorithm
increases in polynomial order concerning motif size. MFinder and
ESU can find out motifs up to size-8 and size-10, respectively, in a
practical time bound. Grochow–Kellis and MODA can find out
motifs up to size-12 in a practical time bound. The proposed
algorithm can find out motifs up to size-15. The behaviour of the
result is a clear indication of the scalability of the proposed
algorithm concerning motif size. The proposed algorithm takes
only a few minutes to run for motif sizes 3–10, and it is limited to a
few hours for motif sizes 11–15.

4.4 Runtime comparison with existing methods by varying
network size

In this section, undirected networks of varying size from 100 to
858 and directed networks of varying size from 100 to 539 are
generated from a real PPI network of Saccharomyces cerevisiae
(Sce) and transcription regulatory network of Escherichia coli
(Eco), respectively. The node set is selected in random order, and
10 sets are prepared for each size. The number of nodes and the
average number of interactions is shown in Tables 3 and 4 for
undirected and directed networks, respectively. The average
runtime is reported for each subnetwork obtained by repeating the

Table 1 Number of significant motifs in transcription regulatory network of Escherichia coli (Eco) and protein–protein
interaction network of Saccharomyces cerevisiae (Sce) and Human herpesvirus-8 (Hhv8)
Motif size 3 4 5 6 7 8 9 11 13 15
Eco 2 7 12 46 107 759 2932 6025 7516 8327
Sce 0 4 9 38 92 588 2209 5218 6581 7916
Hhv8 1 6 10 52 104 685 2861 5914 7096 8152
 

Fig. 21 Motif of 10 nodes in the left found in the PPI network of Human herpesvirus-8 [22] and a motif of 15 nodes in the right found in the PPI network of
S. cerevisiae [31]

 
Table 2 z-scores that represent the significance of the most abundant motif against 100 random networks in each specified
network using seven motif sizes
Motif size 3 5 7 9 11 13 15
Eco 2.32 3.56 5.29 6.63 6.24 5.10 7.21
Sce 2.73 4.31 4.45 8.22 6.54 7.58 9.29
Hhv8 4.91 6.12 5.24 7.25 9.47 8.58 10.27
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experiment ten times, once for each set. The simulation results
indicate that the proposed method is reliable and computationally
feasible for the large network. The runtime of the proposed method
for motif sizes 8, 10 and 12 is observed by varying network size, as

shown in Tables 3 and 4. The measured runtime is compared with
MFinder, ESU, Grochow–Kellis, and MODA as applicable. The
results obtained are shown in Figs. 25–30. The results indicate that
the proposed method is scalable as compared to existing methods.

Fig. 22 Runtime of MFinder, ESU, Grochow–Kellis, MODA and pattern-join method on a real network of Escherichia coli (Eco). The x-axis indicates the
motif size and the y-axis shows the runtime in seconds

 

Fig. 23 Runtime of MFinder, ESU, Grochow–Kellis, MODA and pattern-join method on a real network of Saccharomyces cerevisiae (Sce). The x-axis
indicates the motif size and the y-axis shows the runtime in seconds

 

Fig. 24 Runtime of MFinder, ESU, Grochow–Kellis, MODA and pattern-join method on a real network of Human herpesvirus-8 (Hhv8). The x-axis indicates
the motif size and the y-axis shows the runtime in seconds

 
Table 3 Each column represents a subset real PPI network of Saccharomyces cerevisiae (Sce)
number of nodes 100 200 300 400 500 600 700 800 858
number of interactions 97 219 384 580 807 981 1224 1653 1815
 

Table 4 Each column represents a subset of the transcription regulatory network of Escherichia coli (Eco)
number of nodes 100 200 300 400 500 539
number of interactions 87 192 294 407 523 578
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5Conclusion
In this paper, a motif discovery algorithm using pattern join
method is proposed. The proposed method discovers the edge-
disjoint embeddings of frequent patterns in two steps. Initially, it

finds the embeddings of a pattern by joining its parent pattern with
the basic building pattern. Finally, the edge-disjoint embeddings
are obtained by applying the MIS finding algorithm. Isomorphic
check through canonical representation significantly reduced the
computational time of the proposed algorithm. Irrespective of the

Fig. 25 Runtime of MFinder, ESU, Grochow–Kellis, MODA, and pattern-join for PPI sub-network of Saccharomyces cerevisiae (Sce). Network size is varied
along the x-axis from 100 to 858. Runtime is measured in seconds. Motif size is taken as 8

 

Fig. 26 Runtime of ESU, Grochow–Kellis, MODA, and pattern-join for PPI sub-network of Saccharomyces cerevisiae (Sce). Network size is varied along the
x-axis from 100 to 858. Runtime is measured in seconds. Motif size is taken as 10

 

Fig. 27 Runtime of Grochow–Kellis, MODA, and pattern-join for PPI sub-network of Saccharomyces cerevisiae (Sce). Network size is varied along the x-axis
from 100 to 858. Runtime is measured in seconds. Motif size is taken as 12

 

Fig. 28 Runtime of MFinder, ESU, Grochow–Kellis, MODA, and pattern-join for PPI sub-network of Escherichia coli (Eco). Network size is varied along the
x-axis from 100 to 539. Runtime is measured in seconds. Motif size is taken as 8
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exponential growth of the number of patterns concerning size, this
algorithm does not expand too much in the successive iteration as
most of the patterns failed to cross the threshold frequency and not
consider for the next iteration. Hence the runtime does not increase
exponentially. The runtime of the proposed algorithm is evaluated
by varying motif size and network size. Our implementation results
indicate that the proposed algorithm is significantly faster than the
existing motif discovery algorithms, and it can able to discover
large motifs up to size-15 within a few hours. In this proposed
method, the F2 frequency measure is used to find edge-disjoint
subgraphs. A similar approach can be used to find completely
disjoint subgraphs by using the F3 frequency measure, which is
taken as a future work of this paper.
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