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This paper introduces a self-tuning mechanism for capturing rapid adaptation to
changing visual stimuli by a population of neurons. Building upon the principles of
efficient sensory encoding, we show how neural tuning curve parameters can be
continually updated to optimally encode a time-varying distribution of recently detected
stimulus values. We implemented this mechanism in a neural model that produces
human-like estimates of self-motion direction (i.e., heading) based on optic flow.
The parameters of speed-sensitive units were dynamically tuned in accordance with
efficient sensory encoding such that the network remained sensitive as the distribution
of optic flow speeds varied. In two simulation experiments, we found that model
performance with dynamic tuning yielded more accurate, shorter latency heading
estimates compared to the model with static tuning. We conclude that dynamic efficient
sensory encoding offers a plausible approach for capturing adaptation to varying visual
environments in biological visual systems and neural models alike.

Keywords: efficient coding, adaptation, neural modeling, optic flow, visual processing

INTRODUCTION

Biological visual systems are remarkably adaptive to a wide range of visual environments
and rapidly varying conditions, enabling animals to maintain perceptual contact with their
surroundings regardless of whether they are familiar or novel, static or fluctuating. Although
biological agents often encounter dramatic shifts in stimulus values as they move from one
context to another, they rarely experience meaningful degradation in perception or performance.
Understanding the principles and mechanisms that allow for such robustness is critical for both
advancing our theoretical understanding of the visual system and informing the development of
computational neural models of biological vision. The aim of this study is to explore and evaluate
the idea that adaptation can be modeled as continuous changes in the mapping of neuronal inputs
to outputs. We tie this mapping to changes in the distribution of a stimulus variable in accordance
with the principles of efficient sensory encoding (Ganguli and Simoncelli, 2014), extending an
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approach that was originally envisioned as a “set-it-and-forget-
it” method for static parameter tuning to scenarios that demand
rapid adaptation in real-time.

Visual adaptation encompasses a broad set of phenomena that
extend across multiple timescales (Wainwright, 1999): the visual
system is broadly shaped by its environment via evolutionary
processes (Attneave, 1954; Barlow, 1961), it is attuned to local
natural scene statistics through experience (Simoncelli and
Olshausen, 2001; Simoncelli, 2003), and it rapidly adapts to
current stimuli (Werblin, 1974; Webster, 2015). Adaptation has
been studied extensively at both the perceptual and neural
levels. The perceptual consequences of such adaptation include
aftereffects, which are perceptual vestiges of adaptation to
recently presented stimuli, as well as decreases in discrimination
thresholds for recently experienced stimuli. At the neural level,
adaptation is reflected in shifts in the firing rates of cells in
response to prolonged exposure to a constant stimulus. Such
effects have been observed across a variety of stimulus properties,
including motion (Addams, 1834; Bartlett et al., 2018), light
intensity, and orientation (Carandini et al., 1998; Müller et al.,
1999; Dragoi et al., 2000; Gutnisky and Dragoi, 2008), and in both
human and non-human animals (Shapley and Enroth-Cugell,
1984; Howard et al., 1987; Laughlin, 1989).

Adaptation in the visual system can be understood as
a consequence of optimal information transmission, which
captures how neural connections adjust to more efficiently
encode relevant sensory variables (Laughlin, 1989; Barlow, 1990;
Wainwright, 1999; Brenner et al., 2000). One highly influential
theory that ties these concepts together is the efficient coding
hypothesis (Attneave, 1954; Barlow, 1961), which is rooted in the
idea that the information available to early sensory neurons is
highly redundant and that such neurons distill from the flood of
information the most relevant perceptual properties (Olshausen
and Field, 1997). As the agent moves and its surroundings
change, the statistics of naturally occurring stimuli undergo
variations, which in turn require neural systems to adapt in order
to maintain efficiency. Indeed, a static mapping from input to
output is necessarily less efficient at extracting and encoding a
signal than a dynamic mapping that adapts to new conditions.

Such adaptation to changing stimuli has long been predicted
to have perceptual consequences, as sensitivity to more relevant
information increases at the cost of lower sensitivity to
less relevant information (Laughlin, 1989). Neurophysiological
studies have found that post-adaption changes in neural activity
that reflect coding efficiency are correlated with perceptual
adaptation, for example in macaques viewing variously oriented
gratings (Gutnisky and Dragoi, 2008). This has also been borne
out in behavioral studies where humans have exhibited improved
discrimination to recently encountered optic flow and degraded
discrimination to older flow patterns (Durgin and Gigone, 2007).
It is in this sense that some forms of adaptation can be understood
as a consequence of coding efficiency.

The Present Study
The goal of this study is to explore a principled mechanism
by which neural models may automatically regulate sensitivity
when processing sensory information under a wide range of

conditions. Our solution extends efficient sensory encoding
(Ganguli and Simoncelli, 2014) which is itself built upon the
efficient coding hypothesis (Attneave, 1954; Barlow, 1961).
Efficient sensory encoding offers a principled approach to
defining the parameters of tuning curves for N neurons such that
they optimally encode a given distribution of stimulus values.
In Ganguli and Simoncelli’s formulation, this distribution was
based on the values of stimulus variables found in the agent’s
environment. Their approach provides a mathematically precise
means of codifying and optimizing tuning curve selection such
that the neural population produces activity and discrimination
thresholds similar to those seen in previous studies. However,
it also assumes a static distribution of stimulus variables, which
yields a static neural tuning.

We introduce dynamic efficient sensory encoding (DESE)
as a mechanism for adaptive neural tuning to rapidly shifting
distributions of stimulus variables. DESE extends the approach
to tuning curve selection introduced by Ganguli and Simoncelli
(2014) to define attunement based on recently detected
sensory information, dynamically adapting with changes in the
distribution of stimulus values. This provides a mathematical
basis for continually and automatically adjusting the tuning
curves of early visual neurons to optimize the encoding of target
variables from stimuli the agent recently encountered, instead
of the statistical average for the environment. Such patterns
of adaptation of early sensory neurons have been observed in
the H1 neuron in flies (Brenner et al., 2000). DESE could be
especially useful to modelers who build computational neural
models of vision and aspire to efficiently simulate the behavior
of a large number of units with finite computing resources.
Dynamic attunement also has the advantage of allowing for
adaptation to the current sensory environment without modeler
intervention, which is important both for avoiding overfitting
and for practical applications where manual parameter selection
is both unprincipled and time consuming.

We explore this solution in the context of an existing neural
model, which provides us with a concrete example and allows
for performance comparison of DESE against previous static
approaches. Specifically, we discuss the dynamic tuning of
speed-sensitive cells in the middle temporal (MT) area of the
competitive dynamics (CD) model of optic flow processing in
the primate dorsal stream (Layton and Fajen, 2016a,c). In the
next few sections, we briefly introduce the reader to the topic
of heading perception, summarize the CD model, and explain
how we implemented dynamic efficient sensory encoding within
the CD model. We then report the results of a set of simulation
experiments that explore the improvement in heading estimation
when dynamically attuning to the stimulus distribution.

Optic Flow and the Perception of
Heading
Humans routinely navigate complex and dynamic environments
without colliding with the other inhabitants and structures. By
most accounts, the ability to successfully avoid obstacles and
reach goals relies on sensitivity to one’s direction of self-motion
or heading (Li and Cheng, 2011). Although multiple sensory
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modalities contribute to the perception of self-motion (Greenlee
et al., 2016; Cullen, 2019), the ability to perceive where one is
headed relative to potential goals and obstacles is predominantly
driven by vision. In particular, heading perception is based on
the structured patterns of optical motion that are induced by
self-motion and known as optic flow (Gibson, 1950; Warren
et al., 2001; Browning and Raudies, 2015). When the agent is
traveling along a linear path through a static environment, the
global optical motion radiates from a single point called the focus
of expansion (FoE) that specifies the direction of self-motion.
Humans can perceive their heading direction from optic flow
with an accuracy of 1–2◦ of horizontal visual angle (Warren et al.,
1988). Neurons that respond to global optic flow patterns and
exhibit heading tuning have been found in various regions of the
primate visual system, including MSTd (Duffy and Wurtz, 1991;
Gu et al., 2006) and VIP (Britten, 2008; Chen et al., 2011).

Competitive Dynamics Model
Research on the neural mechanisms involved in the processing
of optic flow in the primate visual system has informed
the development of computational neural models of heading
perception (Lappe and Rauschecker, 1994; Beintema and Van
den Berg, 1998; Royden, 2002; Browning et al., 2009; Perrone,
2012; Beyeler et al., 2016), including the CD model (Layton
and Fajen, 2016b) used in the present study. The CD model
comprises stages that correspond to areas along the dorsal
stream of the primate brain (e.g., V1, MT, MST; see Figure 1).
Activity in model area V1 encodes optic flow estimated from
video stimuli. Model area MT consists of units tuned to specific
ranges of optic flow speeds and directions. At each region
of the visual field, there is an identical population of MT
units (a “macrocolumn”) with different speed and directional
sensitivities but the same receptive field location. The activity
of the units in a macrocolumn encodes the optic flow at
that location. Model area MSTd consists of “template cells”
sensitive to large radially expanding patterns of optic flow
associated with forward translation toward the center of the
pattern, the focus of expansion (FoE). At each position in a
64 × 64 grid that spanned the visual field, there is an MSTd
radial cell whose FoE is located at that position in the grid.
Together, these units possessed sensitivity to forward heading
directions throughout the visual field with a resolution of∼1.40◦
of visual angle (assuming a 90◦ × 90◦ field of view). We
defined the heading estimate of the CD model as the heading
preference of the maximally active MSTd cell. Previous work
has shown this decoding strategy is sufficient for capturing
human heading judgements (Royden, 2002; Browning et al., 2009;
Layton et al., 2012).

Estimates of heading direction generated by the model are
consistent with those of humans across a variety of scenarios,
including in the presence of locally and globally discrepant optic
flow resulting from factors such as independently moving objects
and blowing snow, respectively (Layton and Fajen, 2016b,c,
2017; Steinmetz et al., 2019). Such robustness is largely due to
mechanisms such as spatial pooling and recurrent feedback that
allow the model to make use of the temporally evolving global

flow field rather than relying on an instantaneous snapshot of
optic flow as prior models did (Layton and Fajen, 2016b).

Speed Selectivity in the Competitive
Dynamics Model
In the CD model, as in the primate visual system, the local
optical motion in any small region of the visual field is encoded
in terms of the activity of MT neurons. Each individual unit
exhibits tuning to a range of speeds and directions of motion. The
model population consists of units tuned to all combinations of
24 preferred directions and seven preferred speeds. To study the
effects of adaptive tuning, we used DESE to automatically regulate
the parameters of MT speed tuning curves. We kept each neuron’s
direction tuning curve constant to focus on the effect of DESE
within larger CD model system from a single set of tuning curves.

Our primary goal was to compare and evaluate this
mechanism with other methods for characterizing MT speed
tuning. Taking a naïve approach, we defined each model MT
cell to have a Gaussian-shaped tuning curve with two governing
parameters: the mean (µ) which corresponds to the optic flow
speed that maximally excites the unit, and the standard deviation
(σ) which defines the range of speeds to which the unit responds.
As such, the response of any given MT cell depends on how
closely the optic flow speed matches the cell’s preferred speed,
dropping to zero for speeds above and below the cell’s range
of sensitivity. While the tuning curves satisfied a Gaussian
function for simplicity in the present study, the CD model
could accommodate others, such as log-Gaussian or gamma
distributions (Nover et al., 2005). Because with DESE the tuning
curve parameters adaptively fit the sensory information over
time, we would expect minimal potential benefit in selecting one
of these other tuning curve functions, although this could be
systematically tested in a future study.

The optical speed of an object or surface in the world is a
function of the relative distance, direction, and motion between
the agent and object (Longuet-Higgins and Prazdny, 1980). As
such, during naturalistic self-motion, changes in the motion
of the agent and the structure of the environment cause the
distribution of optic flow speeds that one encounters to vary
across a wide range. Although no single MT cell in the CD model
is sensitive to the entire range of optic flow speeds, variations in
the neuronal sensitivities allow for the population as a whole to
be responsive to a wider range. Ideally, the number of unique
speeds to which MT neurons are tuned would be sufficiently large
to fully sample with fine-grained precision the entire distribution
of optic flow speeds that will be encountered in the world.
Simply adding more units, however, introduces problems for
both biological vision systems and neural models, which must be
efficient in the use of resources. In the CD model, for example,
one model MT macrocolumn consists of 168 units (24 preferred
directions, seven preferred speeds). Increasing the number of
macrocolumns that sample the visual field comes at a substantial
computational cost, as does adding another preferred speed to
each macrocolumn.

The model’s overall sensitivity to motion depends not only on
the number of unique speed preferences, but also on how well
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FIGURE 1 | Diagram of the dorsal stream of the competitive dynamics model. The model takes optic flow as input for an approximation of the V1 feedforward signal.
This optic flow drives area MT+ activity which encodes the optic flow signal within the population at each receptive field location. Model MT+ cells exhibit joint
direction and speed tuning and pool motion inputs within the receptive field. In this figure, MT+ cells of a given color in the direction selectivity diagram have the
speed tuning curve of that same color shown in the speed selectivity diagram. MT+ activity drives the activity of MSTd cells, which are sensitive to various patterns of
flow, e.g., radial, laminar, etc. See Supplementary Video 1 for example speed cell activity.

speed tuning curve parameters match to the input distribution
of optic flow speeds. Because each neuron is only sensitive to
motion within a limited range (see Supplementary Video 1),
selecting model tuning curve parameters that do not capture
the range of speeds present in the optic flow input would result
in regions of poor or absent sensitivity. This is a critical point
because a poorly tuned model will haphazardly use only a portion
of the available optic flow, potentially leading to sub-optimal
performance. Conversely, when the tuning curves are distributed
along the stimulus space according to the likelihood of the
stimuli, the neurons encode the signal more efficiently (Laughlin,
1981; Ganguli and Simoncelli, 2014).

A naïve hypothesis might hold that tuning curves should
uniformly tile the range of stimuli seen, as depicted in Figure 2A.
However, speeds often do not arise with uniform probability in
the optic flow (Figure 2B), and a uniform tiling results in equal
precision between frequently observed stimuli and infrequently
observed stimuli. A more efficient use of resources would be
to recruit more neurons for signaling common stimulus values
so that such stimuli can be encoded more precisely, and fewer
neurons to signaling less common stimulus values (Figure 2D).

Efficient Sensory Encoding
Efficient sensory encoding (Ganguli and Simoncelli, 2014) offers
a principled approach rooted in the efficient coding hypothesis
for calculating the peak locations and widths of the optimal
tuning curve for a given stimulus. More precisely, sensory
variables are encoded to optimize the Fischer information
across the neural population given a stimulus probability
distribution. The derived tuning curves proportionately sample
the stimulus probability distribution, resulting in narrow and
densely packed tuning curves where the probability of that

stimulus is high (e.g., where instances of that optic flow speed
are very common) and broad, sparse tuning curves where the
probability of that stimulus is low. This results in each speed
cell capturing an approximately equal probability mass of the
sensory distribution.

The following procedure describes how the distribution of the
stimulus values in the environment was used to calculate the
parameters (µ and σ) of the Gaussian tuning curves. The density
function, d(s), for a given stimulus magnitude, s, with N neurons
in the speed cell population is defined as

d(s) = N p(s) (1)

where p(s) is the probability distribution of the stimuli (see
Figure 2B for an example). Note that multiplying by N causes
the integral of d(s) to equal N. The peak location of the nth
speed cell’s tuning curve (µn) is determined by evaluating where
the cumulative distribution function (D) of the density function
equals n:

µn = sn where D (sn) = n (2)

This process is illustrated in Figures 2C,D for N = 7 (the number
of unique speed preferences in the model used in the present
study). The full width at half maximum (FWHM) of the nth
tuning curve is equal to the inverse of the density function
evaluated at sn:

FWHMn =
1

d(sn)
(3)

The FWHM is then used to calculate σn as follows (for gaussian
tuning curves):

σn =
FWHMn

2.355
=

1
2.355 · d(sn)

(4)
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FIGURE 2 | (A) A naïve attunement in which speed tuning curves uniformly tile the stimulus range 0–50. Naturalistic flow is rarely uniform, and the distribution of
optic flow speeds present in the input optic flow within the video dataset used in Experiments 1 and 2 of the present study (B) is clearly non-uniform. The uniform
tiling strategy leaves much of the encoding capacity of the uniform tuning wasted on infrequently observed speeds. The tuning curves derived via efficient sensory
encoding (D) allocate neural sensitivities based on the frequency that each speed arises in the stimulus, calculated via the (C) CDF of the probability distribution
multiplied by the number of encoding neurons, N. In this way, encoding capacity (and computational cost) is optimally allocated for encoding this distribution.

For an in-depth derivation of these equations, see Ganguli and
Simoncelli (2014).

Dynamic Efficient Sensory Encoding of
Optic Flow
Efficient sensory encoding defines the ideal attunement for a
given stimulus probability distribution but implicitly assumes
that this attunement is stationary, which can be inefficient for
many dynamic environments. The statistics of optic flow speeds
vary not only across the visual field but also over time as the agent
moves relative to objects and surfaces in the world (Calow and
Lappe, 2007). Self-motion above a flat ground surface produces a
smooth gradient of speeds proportional to the relative depth. By

contrast, self-motion toward a flat wall produces in narrow range
of optic flow speeds. Movement through realistic environments
often produces a combination of constant speeds and gradients
in the optic flow field. This is depicted in Supplementary Video
2, which shows the optic flow generated by self-motion through
a simulated environment (Supplementary Video 2A) alongside a
histogram that shows the distribution of optic flow speeds pooled
across the entire image (Supplementary Video 2B). As the agent
moves, changes in the direction and relative depth of surfaces
as well as in self-motion speed and direction result in dramatic
variations in the shape of the distribution over time.

In this study, we explore how the attunement process
described in the previous section can be implemented on rapid
timescales (<1 s). The model records and stores the distribution
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of optic flow magnitudes across the entire visual field over the
past n frames. This defines the “rolling time horizon” of the
dynamic attunement, within which all flow is considered equally.
The stored distribution of optic flow is then fed into the efficient
sensory encoding equations defined in the previous section,
and the speed cell tuning curves are adjusted according to the
resulting values (Supplementary Video 2C).

MATERIALS AND METHODS

We conducted two simulation experiments to systematically
test the potential benefits of dynamic efficient sensory encoding
and to determine the effects of different time horizons. In
Experiment 1, we compared dynamic tuning based on the
evolving distribution of optic flow speeds observed over the
last 10 frames to two static tunings, which served as control
conditions. The first static tuning was based on a uniform
distribution of optic flow speeds with a range of 0–5.3◦ per frame.
This range was chosen to span the most commonly observed
optic flow reasonably (i.e., the body of the aggregate probability
distribution which contained 96.37% of the observed optic
flow). The second static tuning was based on the distribution
of optic flow speeds aggregated across all frames of the entire
test set of videos (described in the next paragraph). We refer
to these three conditions as the Dynamic, Static—Uniform,
and Static—Aggregate conditions, respectively. Experiment 2
investigated how performance with dynamic tuning depends
on the number of previous frames across which speeds were
aggregated to generate the optic flow distribution (i.e., the time
horizon). Specifically, we compared the time horizon used in
Experiment 1 (10 frames) with shorter (one frame) and longer
time horizons (30 frames).

We tested each tuning method on a set of 60 videos depicting
self-motion through a detailed virtual environment. Examples
of the videos can be seen in Supplementary Video 3. The
videos were generated using Microsoft AirSim in the Unreal
game engine. We selected two distinct environments to provide
a broad sample of natural and human-made scene structures: an
outdoor residential neighborhood (Figure 3A) and the inside of
a warehouse (Figure 3B). The former included houses, parked
cars, trees, and telephone poles with powerlines situated in
residential zones and parks, various ground-surface textures (e.g.,
pavement, concrete, grass), and a blue sky with distant clouds.
Most vantage points exhibited naturalistic depth variation across
the visual field, from nearby structures to distant trees at the
horizon. The warehouse environment was an enclosed space
comprising corridors lined by shelves with boxes and other
items. In general, surfaces were located at closer distances to the
camera and depth varied over a smaller range compared to the
neighborhood environment.

At the start of each video, the camera was positioned in the
simulated environment at a randomly selected height between
1 and 5 m. The camera then traveled along five connected
linear segments each lasting 30 frames. The heading direction
for each segment was determined by selecting a pixel within the
camera image of the scene at random toward which to move (see

Figure 3C). Camera speed was fixed within each segment and
varied randomly across segments between 1 and 20 m/s. Between
segments, the camera rotated to the new heading directions and
accelerated or decelerated to the new speed over three frames.
As a result, each video lasted 162 frames (or equivalently, 5.4 s
at 30 fps). The field of view was 90◦ H × 90◦ V. Videos were
manually reviewed before inclusion in the dataset to ensure that
there were no collisions with objects or the ground.

For both experiments, the resolution of the videos was
512 × 512 pixels and optic flow was estimated using the
Farneback method (Farnebäck, 2003). This method examines the
sequence of images at several different resolutions, using salient
motion at one resolution as a starting point for tracking motion
in another. Unlike sparse optic flow estimation procedures
like (Lucas and Kanade, 1981), Farneback estimation produces
dense optic flow estimates. This estimation contains some noise,
particularly in areas of low visual contrast like the virtual sky,
meaning that the model must be robust to small errors. Model
MT macrocolumns processed this signal in a 256 × 256 non-
overlapping grid akin to an image resolution. The activity of each
MT neuron was the result of convolving a gaussian kernel over
the speed cell activity. This kernel had a sigma of 1.0, resulting
in each model neuron having a receptive field spanning a circle
˜9 pixels across, ˜3.15◦ in diameter. In the present study, area
MT had seven neurons with unique speed preferences at each
region of the visual field; that is, each MT unit could take on one
of seven unique parameter value pairings (µi, σi, i = 1, . . ., 7).
Model area MSTd consisted of a 64 × 64 grid of units tuned to
headings evenly spaced across the visual field, with each neuron
possessing a receptive field that encompassed the entire image.
We found that model performance was generally robust with
this grid size and did not benefit from higher resolutions. The
spatial resolution of each area balances model runtime against
precision of the heading estimate, however, MSTd has a greater
effect, since each unit therein involves a dot product between the
radial motion template and a large number of feedforward signals
from MT. Thus, increasing MSTd resolution rapidly increases
the number of calculations necessary. These parameters were
selected after preliminary pilot testing based on what produced
the optimal heading estimate. It is worth noting that these
values deviate from those observed in neurophysiological studies
of primates, where receptive fields vary in size according to
eccentricity and MT neurons have receptive fields 4–25◦ across
(Felleman and Kaas, 1984).

RESULTS

Experiment 1: Comparing Dynamic and
Static Tuning
Figure 4A shows the mean absolute heading error per frame
averaged across videos for the Dynamic, Static—Uniform,
and Static—Aggregate conditions. Absolute heading error was
measured by calculating the angle in the 2D image plane between
the model estimate and the ground-truth heading direction on
each frame (see Supplementary Video 4). The four sudden
transitions in the heading error time series shown in Figure 4A
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FIGURE 3 | Example screenshots from the (A) Neighborhood and (B) Warehouse environments. For video examples, see Supplementary Video 3. The process of
translational segment selection is shown in (C) with heading indicated by a black square. After an initial heading direction is randomly selected, the camera translates
in that direction for 30 frames. Subsequently, a second random heading is selected, and three interim headings are linearly chosen between the first and second
heading. After the three-frame transition, the camera translates toward the second heading for 30 frames. This process is then repeated for segments 3, 4, and 5 in
each video.

are a consequence of the abrupt shifts in heading direction
between segments. Segments 2 through 5 were preceded by three
transition frames, during which heading was rapidly changing
from the previous direction to the new one. Heading error surged
during the transition period, then gradually dropped due to
temporal dynamics within the CD model. Specifically, the activity
of each MT+ and MSTd unit in the CD model depends not only
on feedforward input at that instant but also on the activation of
that unit and its neighbors on the previous time step. As such,
the model’s heading estimate on each frame is not based entirely
on a snapshot of the optic flow field at that instant. Rather,
heading estimates depend on the temporal evolution of the flow
field, enabling smooth, non-instantaneous changes in estimates
from the previous to current heading even in the face of abrupt
changes in optic flow input (Layton and Fajen, 2016b). To be
clear, model activity was not time-averaged over any temporal
window, but rather activity was dependent on neural dynamics in
the recent time history. The first segment of each video is unique
in that there is no existing neural activity from previous stimuli
for activity due to the new heading to overwhelm, so the heading
estimate quickly stabilizes. For this reason, the first segment was
excluded from the following analyses.

We compared the Dynamic, Static—Uniform, and Static—
Aggregate tunings on two measures of heading estimation, both
of which were extracted from the time series of absolute heading

error. The first measure was the converged heading error, which
was based on the heading error on the final frame of segments
2–5. Dynamic attunement was more accurate than both static
conditions resulting in a mean converged heading error of 4.24◦
[95% CI (3.83, 4.66), n = 240] which was significantly lower
compared to both the Static—Uniform [M = 9.17◦, 95% CI
(7.96, 10.39), n = 240] and Static—Aggregate [M = 5.60◦, 95%
CI (4.88, 6.32), n = 240] conditions (Figure 4B). A one-way
repeated-measures ANOVA with degrees of freedom corrected
for violation of the sphericity assumption (Greenhouse-Geisser
ε = 0.77) revealed a main effect of Tuning Condition
[F(1.54,367.01) = 42.70, p < 0.001] and all pairwise comparisons
with Bonferroni corrections were significant (p < 0.001).
Heading error was also more consistent across segments and
trials in the Dynamic condition. The difference between the three
conditions was even more pronounced earlier in segment (i.e., on
frame 15; see squares in Figure 4B).

Although the accuracy of model heading estimates relative to
human estimates is not directly relevant to the focus of this study,
it is worth noting that with dynamic attunement, model estimates
are only slightly less accurate than those of human subjects
under similar self-motion conditions. During linear translation
through a static environment, human heading judgments are
accurate to within 1–2◦ (Warren et al., 1988; Foulkes et al., 2013),
which is ∼2–3◦ more accurate than model estimates. However,
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FIGURE 4 | (A) Mean absolute heading error across all 60 videos in the Static-Uniform (black), Static-Aggregate (blue), and Dynamic (magenta) conditions. The
shaded regions represent the 95% confidence interval of the mean heading error in each frame. The dashed vertical lines indicate the beginning and end of the
three-frame transition to a new heading prior to the 2nd through 5th segments. (B) Mean heading error at frames 15 and 30 over segments 2–5 (N = 240) with 95%
confidence intervals. (C) Best-fitting logistic curves for the heading error in segments 2–5 of each condition (N = 240), normalized to the magnitude of the heading
shift for that segment; i.e., heading error starts around one regardless of whether the initial heading differed from the previous heading by 1 or 80◦. The vertical
dashed lines indicate the frame at which each curve reaches 98% of its range, which provides a measure of each curve’s convergence onto its final heading
estimate. Note that the best-fitting curve for the dynamic attunement condition converges more quickly to a lower and therefore more accurate heading error than
the static conditions. (D) Mean heading error per frame of segments 2–5 (N = 240) relative to the best-fitting curve of Static-Uniform condition. See Supplementary
Video 4 for example heading activity.
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FIGURE 5 | Graphs calculated in the same manner as Figure 4 based on the model with dynamic tuning using time horizons of 1, 10, and 30 frames. Note the
absence of major differences among these conditions in the converged heading error (A) or frame of convergence (B), although the analysis of normalized heading
error over frames (C) reveals a small difference in the 30-frame time horizon condition on frames 12 through 20. See Supplementary Video 4 for example heading
activity.

in studies of human heading perception, the range of simulated
self-motion directions is typically restricted to central heading
along the horizontal (azimuthal) dimension. This contrasts with
the conditions used in the present study, in which self-motion
direction varied in both azimuth and elevation and the primary
measure of heading accuracy was the angular difference between
the estimated and actual heading in two dimensions. When
heading error is decomposed into its two components, we find

that with dynamic tuning, mean converged heading error at
frame 30 was 2.44◦ [95% CI (2.13, 2.76)] along the azimuth and
2.99◦ [95% CI (2.64, 3.34)] along the elevation axis, which is
within 1◦ of human-level performance. Furthermore, Farneback
optic flow estimation is imperfect, introducing noise into the
model’s estimate. For human observers, adding noise to the
vector directions in the optic flow field resulted in degraded
heading accuracy (Warren et al., 1991).
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The second measure of performance that we considered was
latency, which we defined as the number of frames it took
the model to converge to a stable heading estimate after each
transition. We estimated latency by first normalizing the heading
error time series for each individual segment (excluding the 1st
segment) of each video such that the heading error on the first
frame was 1. This allowed us to parse out the variance due
to differences in the magnitude of the heading shift between
segments, which varied widely from a few degrees of visual angle
up to about 80 degrees. We then fit a logistic curve to each
time series, then averaged the curve parameters to determine the
average logistic curve for each condition. We defined the heading
convergence as the number of frames that was needed for the
best-fitting curve to drop by 98% of the difference between the
upper and lower bounds of the logistic function. We found that
heading error decreased in fewer frames with Dynamic tuning
(14.7 frames) compared to both Static—Aggregate (17.0 frames),
and Static – Uniform (19.1 frames) (see Figure 4C).

To better visualize the differences between the three tuning
conditions, we calculated for each segment the difference between
the actual heading error in each tuning condition and the
best-fitting curve in the Static—Uniform condition. That is, we
subtracted the curve that best fit the heading error time series
(segments 2 through 5 of Figure 4A) in the Static—Uniform
condition from the actual heading error time series on each trial
across conditions. The curves in Figure 4D show the mean and
95% CI of this difference for each frame. This way of representing
the data highlights how the improvement in the heading estimate
due to dynamic tuning evolves over time while controlling for the
size of the heading shift and other sources of variance. Heading
error is similar across tuning conditions for the first 8–10 frames
but then begins to decrease more rapidly in the Dynamic and
Static—Aggregate conditions. By Frame 15, the mean heading
estimate in the Dynamic condition is more accurate than the
heading estimate in the Static—Uniform condition by about
22.4% of the heading shift magnitude, which is considerably
better than the improvement with Static—Aggregate tuning
(∼9.7% on Frame 15). Over frames, the difference between the
three conditions shrinks, suggesting that the primary benefit of
Dynamic tuning is that it allows the model to reach an accurate
heading estimate in fewer frames.

Experiment 2: Comparing Dynamic Time
Horizons
Experiment 1 demonstrated that with dynamic tuning based on
the distribution of optic flow speeds over the past 10 frames, the
model converges toward a more accurate heading estimate in
less time. In Experiment 2, we examined whether the benefits of
dynamic tuning depend on the number of previous frames used
to build the optic flow distribution. Specifically, we compared
model performance with 10 frames against performance with one
frame and 30 frames. As shown in Figure 5, the manipulation
of time horizon with the range that was tested had negligible
effects on converged heading error [F(1.72,407.73) = 1.80, p = 0.16,
with degrees of freedom corrected for violation of sphericity
(Greenhouse-Geisser ε = 0.86)]. Some small differences were

observed in the latency of the heading estimate with a 30-frame
time horizon (Figures 5B,C). On some frames in the single
frame time horizon condition, the derived speed tuning curves
collapsed to identical values as the observed flow was mostly one
value, producing erratic activity in this limit case. These outlier
issues aside, the model performed similarly across the three time
horizon conditions that were tested.

DISCUSSION

Incorporating dynamic efficient sensory encoding into the
competitive dynamics model improved the accuracy and
responsiveness of the heading estimate, bringing the average
error closer to human levels of performance on the realistic video
stimuli. Despite these gains, one might wonder how plausible
such a mechanism is in the human visual system, and how
downstream areas of the visual system might handle tuning that
continually fluctuates based on recently detected stimuli. Here we
address both of these issues in turn.

Biological Plausibility
Although many forms of visual adaptation have been observed
throughout the early visual system, there remains the question
of whether speed cells in MT adapt to recently detected optic
flow as well as whether that adaptation occurs on a timescale
similar to DESE as implemented here. Let us first consider
evidence that the tuning curves of many MT neurons are
dynamic rather than static. Dynamic shifts in the directional
selectivity of MT neurons have been demonstrated to solve
the aperture problem: tuning shifts from the direction of
motion perpendicular to a contour in their receptive field to
encoding the true direction of motion over a 60 ms period
of exposure (Pack and Born, 2001). There is also evidence that
surround modulation of MT neurons is stimulus-dependent,
with some surrounds becoming either excitatory or inhibitory
depending on the stimulus (Huang et al., 2007). Furthermore,
the encoding of direction of motion of multiple transparently
moving stimuli shifts over time from an averaged response
to encoding separate directions (Xiao and Huang, 2015). At the
behavioral level, humans have exhibited improved discrimination
of recently seen optic flow speeds produced by walking and
standing still (Durgin and Gigone, 2007). Taken together, these
findings demonstrate that adaptation to recently presented optic
flow and other visual stimuli occurs at least to some degree in MT.

There is also evidence that adaptation in MT occurs over
periods of time that correspond to the dynamic conditions
tested in the present study. The highest performing condition
from both experiments, the dynamic 10-frame time-horizon
condition, simulates adaptation on a timescale that is dependent
on the framerate of the input video. Assuming video at 30
frames per second, a 10-frame time horizon equates to 333 ms.
Adaptation has been observed in the activity of macaque V1
orientation neurons after a 400 ms period (Gutnisky and Dragoi,
2008). Human adaptation to recently detected optic flow was
produced after exposures to motion patterns for 1.25–1.5 s
(Durgin and Gigone, 2007), comparable to the dynamic 30
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frame time-horizon condition. These findings lend support to the
existence of adaptive mechanisms that operate on timescales like
those simulated in the present study.

Nevertheless, important questions remain about the biological
implementation of DESE. Most notably, in the present study,
MT tuning curve parameters were defined by the cumulative
distribution function (CDF) of recently detected optic flow. This
was intended to be an abstraction. We are not suggesting that
MT has direct access to the distribution of optic flow or even
that the distribution is explicitly represented in the visual system.
Our goal in this study was merely to explore the population-level
effects of adaptation seen in neurophysiological studies, which
could prove useful to modelers focused on the effects of such
adaptation on downstream areas. An important goal for future
work is to develop mechanistic models of this process that capture
how MT tuning curves adapt to recently detected optic flow.

Even if DESE does not simulate the exact, low-level
mechanisms of adaptation in biological organisms, we contend
that it captures the effects of adaptation in a functional
sense. Adaptation serves to improve perceptual discrimination
via efficient encoding of the stimulus distribution, which is
precisely what DESE achieves. In the same way that the
rate model of the neuron does not specify or attempt to
capture the dynamics of neural activity at the lowest level
(Brette, 2015), dynamic application of efficient sensory encoding
provides a means of capturing the consequences of adaptive
mechanisms on the feedforward signal without simulating
the exact mechanism of adaptation. For example, there is
some evidence that MT neurons in fact do not adapt their
sensitivities to recently detected stimuli, but rather that later
brain areas adjust their weighting of various MT neurons as
they become more or less relevant to the current stimulus
(Liu and Pack, 2017). If this were the case, DESE could be
thought of as an approach to simulating in fewer computations
the behavior of many statically tuned neurons. From this
perspective, the tuning curves calculated under DESE are the
subset of neurons from the much larger population that have
the most relevant activity (at that point in time) for the property
being encoded. These tuning curve selections are optimal with
respect to the number of neurons being simulated, assuring
the most efficient encoding given computational constraints
or, alternatively, capturing the properties of the feedforward
signal of a large population of neurons with a small number
of simulated ones. Whether the mechanisms behind perceptual
adaptation lie in MT or beyond, the resulting effects can
be captured using dynamic efficient sensory encoding as an
abstraction of adaptation.

Downstream Interpretability
One intriguing implication of dynamic tuning in MT is that the
signal sent to the downstream model area (i.e., MSTd) reflects not
only changes to the input to MT but also by shifts in the tuning
curves. As such, a particular response from a given speed cell
may result from motion at one speed at one point in time and
a different speed at a later point in time. This raises the question
of how the downstream area makes use of that speed cell’s activity
to generate an accurate heading estimate when that activity could
have resulted from many different inputs.

We hasten to point out that the answer does not require
giving the downstream area (MSTd) access to the adapted tuning
parameters of MT cells. As argued by Hosoya et al. (2005), there
is no need to communicate the current state of adaptation in
one area to downstream areas. The brain does not construct a
perfectly veridical reproduction of light on the retina but instead
detects information that is useful and relevant to behavior. In
the present study, the relevant perceptual variable is heading
direction and the relevant visual information is carried in the
directions rather than the magnitudes of optic flow vectors.
For purely translational self-motion, heading is specified by the
position of the FoE in the global radial flow pattern, which is
invariant over changes in the speed of individual motion vectors.
Indeed, human heading estimates during translational movement
are unaffected by the addition of noise to flow vector magnitudes
but significantly impaired by noise added to vector directions
(Warren et al., 1991). This is adaptive because variations in flow
vector speed could result from variations in depth or self-motion
speed, even if self-motion direction is constant. In contrast, the
direction of motion vectors depends on self-motion direction
alone. Likewise, in this formulation of the CD model, the template
match between the observed optic flow and each radial cell in
MSTd is determined largely by the match in vector directions
while differences in speed have a minimum impact. Just as the
information about heading is largely invariant over flow-vector
magnitude, so is the activity of individual radial cells in MSTd.
Taken together, although dynamic tuning affects the encoding of
optic flow speed in MT, the signals that carry the information
relevant to heading estimation are left intact and the impact on
MSTd cell activity is minimal.

This explains why dynamic tuning does not degrade heading
estimation, but it does not explain why performance improves.
The key insight is that dynamic tuning allows the model to be
more sensitive to all the optic flow vectors present. By continually
shifting tuning curves to detect a larger portion of the current
optic flow, more of the available information about heading
direction can be detected. As such, even if dynamic tuning-
related changes distort the absolute speed signal, the overall
improvement in sensitivity to task-relevant information more
than compensates for the loss.

It is also worth noting that some information about flow vector
speed is preserved in the signal to MSTd. In speed cells governed
by DESE, each unique speed tuning curve captures an equal
portion of the probability mass of the stimulus distribution and
their ordinal relation remains constant. That is, the model unit
that responds to the slowest speeds always encodes the slowest
optic flow speeds, no matter what distribution is being used for
attunement. As such, although the absolute magnitude of optic
flow to which a speed cell is sensitive is continually shifting,
each speed cell always represents a relatively constant percentage
of the stimulus distribution. For example, the activity of the
slowest speed cell might represent the presence of the slowest
10% of speeds in the receptive field of an active neuron. In this
sense, DESE converts the signal from speed cells into relative
units, where the absolute magnitude of the optic flow is lost
but the magnitude relative to recently experienced optic flow is
preserved. This could be useful for estimating properties other
than heading that may rely on the magnitude of optic flow.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 April 2022 | Volume 16 | Article 844289

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-844289 April 1, 2022 Time: 11:9 # 12

Steinmetz et al. Dynamic Efficient Sensory Encoding

In our simulations, all units are either fully dynamic or static,
but it is possible that neural populations may have a mix of
dynamic and static units. In such a scenario, both the relative
speeds and the absolute speeds would be encoded for use by
various downstream populations that serve different purposes. In
this work, we strove to elucidate the effects of dynamic efficient
sensory encoding on the feedforward signal but do not claim that
this is the mechanism used by all speed cells in primate MT. We
found that DESE serves as a useful mechanism for simulating
the effects of neural adaptation on the feedforward signal while
accounting for computational constraints in accordance with the
efficient coding hypothesis. From a modeling perspective, DESE
represents a promising methodology for automatically regulating
tuning curve parameters without modeler intervention.

CONCLUSION

Dynamic efficient sensory encoding offers a principled approach
for capturing adaptation in early visual areas. By adjusting the
tuning curves of simulated neurons based on the distribution
of recently experienced stimuli, DESE produces the optimal
encoding of that distribution by a finite number of neurons which
results in improved sensitivity to task-relevant information.
Implementing this adaptive mechanism in the speed cells of
the competitive dynamics model led to measurable gains in
performance, decreasing the error and shortening the latency
of heading estimates derived from model area MSTd activity.
Although some aspects of the approach are specific to the
model and task used in the present study, dynamic efficient
sensory encoding is more generic and could also be applied to
the encoding of stimulus variables in other domains. Because
it relies only on the distribution of recently experienced
stimulus values, it does not assume prior knowledge of the
statistics of the environment, thereby capturing how biological

systems and neural models alike could rapidly adapt to
unfamiliar environments.
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