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The extent of shared and distinct neural mechanisms underlying major depressive disor-
der (MDD), anxiety, and stress-related disorders is still unclear. We compared the neu-
ral signatures of these disorders in 5,405 UK Biobank patients and 21,727 healthy
controls. We found the greatest case–control differences in resting-state functional con-
nectivity and cortical thickness in MDD, followed by anxiety and stress-related disor-
ders. Neural signatures for MDD and anxiety disorders were highly concordant,
whereas stress-related disorders showed a distinct pattern. Controlling for cross-
disorder genetic risk somewhat decreased the similarity between functional neural sig-
natures of stress-related disorders and both MDD and anxiety disorders. Among cases
and healthy controls, reduced within-network and increased between-network fronto-
parietal and default mode connectivity were associated with poorer cognitive perfor-
mance (processing speed, attention, associative learning, and fluid intelligence). These
results provide evidence for distinct neural circuit function impairments in MDD and
anxiety disorders compared to stress disorders, yet cognitive impairment appears unre-
lated to diagnosis and varies with circuit function.

major depressive disorder j anxiety j stress-related disorders j cognitive function j
functional connectivity

Major depressive disorder (MDD) and anxiety disorders (i.e., generalized anxiety disor-
der and panic disorder without agoraphobia) are highly comorbid psychiatric disorders
(1–3), with shared epidemiologic, developmental, and genetic features (4, 5), and are
among the leading causes of disability worldwide (6). Depression and anxiety are often
triggered by stressful life events, thus sharing the etiology of stress-related disorders that
are defined by occurrence of a severe stressor or trauma (7). More specifically, posttrau-
matic stress disorder (PTSD) is characterized by hyperarousal states during recurring
flashbacks to the stressful event, while stress adjustment disorder is characterized by
depressive symptoms in response to a severe stressor (7). Unlike MDD and anxiety dis-
orders, which are recurrent or chronic, stress adjustment disorder resolves within 6 mo
after termination of the stressor. While considerable neurobiological research has been
conducted at a disorder-specific level, few studies have investigated a broad spectrum of
MDD, anxiety, and stress disorders to examine shared and distinct neural correlates.
Task-based functional MRI (fMRI) findings point to disrupted emotional processing

and executive dysfunction, exemplified by disrupted cognitive control (8, 9), across a
variety of disorders, including but not limited to MDD and anxiety disorders. Simi-
larly, gray matter reductions have been shown in the insular and anterior cingulate cor-
tices across mood, anxiety, and other disorders (10, 11). Many of these similarities in
brain structure have been shown to be partially attributable to similarities in common
variant architectures (12), encouraging the consideration of genetic risk measures in
studies of intermediate imaging phenotypes for psychiatric illness. Polygenic liability
for psychiatric disorders can be quantified using polygenic risk scores (PRSs), which
are predictive of disease progression (13) and often transdiagnostically informative
(14, 15). Therefore, parsing transdiagnostic phenotypes that capture the shared and
distinct genetic, neurobiological, and cognitive basis of symptoms presenting across
disorders could have utility in improving psychiatric nosology (16).
Inferior prefrontal and insular cortex, the inferior parietal lobule, and the putamen are

hypoactivated in task-based fMRI paradigms across MDD, anxiety disorders, and stress-
related disorders (17), implicating inhibitory control and salience processing as shared
neural phenotypes underlying these disorders. Impairments in executive functions such as
inhibitory control over emotional reactivity and negative mood may capture a transdiag-
nostic dimension of psychopathology (18, 19). Executive function is also impaired by anx-
iety, which reduces cognitive flexibility, working memory (20), and attentional control
(21). While some evidence also supports executive dysfunction in PTSD (22, 23),
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psychological theories of posttraumatic stress typically emphasize
the effects of the traumatic event on memory (24, 25). Executive
dysfunction may be linked to both dysregulated mood in MDD
and heightened emotional reactivity in anxiety disorders (26) and
thus provides a promising transdiagnostic treatment target.
Here we leveraged multimodal data from the UK Biobank to

determine unique and shared features of brain structure and
function in MDD, anxiety disorders (ANX), and stress-related
disorders (STR), as well as the relationship of such neuroimaging
measures to several aspects of cognitive function across these dis-
orders. The UK Biobank includes midlife and older adults and is
thus also suitable for investigating cognition in the context of
aging with and without MDD, anxiety, and stress-related disor-
ders. We selected trail making performance (27), digit–symbol
substitution (28), fluid intelligence (29), and paired associate
learning (PAL) (30) to measure key domains of cognitive func-
tion, expecting executive function and processing speed impair-
ments in MDD and anxiety disorders and memory deficits in
stress-related disorders. We used second-order statistical compari-
sons to investigate genetic and environmental contributions to
disorder similarity. We expected to find default mode and fron-
tostriatal connectivity differences in MDD (31) and anxiety dis-
orders (32, 33), resulting in shared neural signatures. We also
hypothesized reduced cortical thickness of the frontoparietal
regions in both MDD and anxiety disorders (34–36) and a sepa-
rate neural signature of stress-related disorders focused on the
hippocampal regions (37). Given varying degrees of shared
genetic liability for our selected disorders and our interest in dis-
entangling their overlapping vs. discrete neural signatures, we
anticipated that controlling for disease-specific PRS would impact
the correlation of cross-disorder neural signatures, providing

insight into nature vs. nurture components of these intermediate
phenotypes. Finally, we expected connectivity of frontoparietal
(FPN), attention, and default mode networks (DMN) to underlie
cognitive performance across disorders.

Results

Demographic and clinical information for all included UK Bio-
bank (UKB) participants is summarized in Table 1. Clinical,
neuroimaging, cognitive, and genetic data from five nonover-
lapping groups (MDD-, ANX-, MDD + ANX, STR-, and
healthy controls) were integrated, with additional information
available in SI Appendix.

Effects of Diagnosis on Neuroimaging and Cognitive Outcomes.
In order to compare neuroimaging signatures of MDD, anxiety,
and stress-related disorders, we first calculated the case–control
brain maps. Compared to healthy controls, cortical thickness was
reduced across many prefrontal, parietal, and temporal regions in
the MDD- and MDD + ANX group (Fig. 1E and SI Appendix,
Table 3). These differences were also captured in the comparison
of all cases vs. controls (Fig. 1A) as the case–control map for all
cases was very similar to the case–control map for MDD-, ANX-,
and MDD + ANX (Fig. 1 C and E). In contrast, only select tem-
poral and parietal regions showed a significant decrease in cortical
thickness in the ANX- group including middle temporal and
supramarginal regions. Significantly reduced cortical thickness
was also found in the parahippocampal and ventral medial visual
regions of the STR- group when compared to controls.

In individual comparisons of each diagnostic group to
healthy controls, we identified widespread differences in resting
state connectivity (Fig. 2D). The largest number of significant

Table 1. Demographic and clinical sample characteristics

All control
Matched
control MDD- ANX-

MDD and
ANX STR-

Group
effect P value

N 21,727 5,405 3,233 664 676 832
Age at MRI 63.8(7.5) 62.5(7.4) 62.4(7.5) 63.5(7.2) 62.5(7.7) 62.3(7.1) 3.26 0.011
No. female 10,894(50%) 3,440(64%) 2,064(64%) 409(62%) 447(66%) 520(62%) 3.5 0.474
PHQ-2 ≥2 1,705(8%) 456(8%) 977(30%) 104(16%) 231(34%) 103(12%) 818.7 <0.0001
Restlessness ≥2 3,275(15%) 872(16%) 1,182(37%) 198(30%) 306(45%) 195(23%) 630.9 <0.0001
Tiredness ≥2 8,620(40%) 2,280(42%) 2,116(65%) 354(53%) 455(67%) 423(51%) 530.5 <0.0001
Age of first MDE — — 34.4(14.2) — 33.2(14.9) — —

Age of last MDE 51.6(11.3) 54.6(9.9)
Age Dx first reported 43.3(14.1) 54.9(11.8) 44.5(14.8) 49.4(9.5)
No. of MDEs — — 2.44(1.8) — 2.89(2.0) — —

MDD PRS �0.03(0.99) �0.02(1.00) 0.15(1.01) 0.09(0.99) 0.18(1.03) �0.04(0.98) 15.3 <0.0001
ANX PRS �0.004(1.00) �0.006(0.99) 0.04(1.00) 0.003(0.95) 0.11(0.99) �0.04(0.96) 2.5 0.04
PTSD PRS �0.001(1.01) 0.005(1.00) 0.002(0.96) 0.000(0.92) �0.004(1.03) �0.09(1.06) 1.2 0.31
Head motion 0.11(0.05) 0.11(0.05) 0.13(0.06) 0.13(0.07) 0.13(0.07) 0.12(0.06) 37.4 <0.0001
Medication (N)
SSRI/SARI 471 134 891 228 353 175 1872.4 <0.0001
SNRI/NRI 46 15 119 22 74 18 357.9 <0.0001
TCA 792 207 485 164 194 180 752.2 <0.0001
MAO-I 0 0 4 0 2 1 11.6 0.02
NaSSA 23 3 107 24 70 16 354.4 <0.0001

Lifetime diagnosis of MDD (F32/F33), anxiety (F41), and stress-related disorders (F43) was used to define the groups. Control participants matched for age and sex were included in
case-control comparisons, whereas all control participants were included in brain-cognition analyses. Ages of first and last MDD episodes (MDE) are derived from self-report measures.
Self-reported age of first MDD episode precedes the age of the first reported ICD diagnosis of MDD. Mean ages, mean PRSs, and mean head motion (±SD) are shown. Group effects
were assessed using a one-way analysis of variance (F test) for age and PRSs and χ2 goodness-of-fit tests for categorical comparisons. Case groups were compared with the matched
control group. The PHQ-2 with a cutoff score of 2 or greater was used to test for presence of depressed mood in participants at the time of scanning and cognitive testing. This
threshold has high PHQ-2 sensitivity (0.91) and specificity (0.67) for diagnosis made using a semistructured interview (38). We show the total numbers of participants with lifetime use
of medication falling into five categories: SSRI, selective serotonin reuptake inhibitor and SARI, serotonin antagonist and reuptake inhibitors; SNRI, selective noradrenaline reuptake
inhibitor; TCA, tricyclic antidepressants; MAO-I, monoamine oxidase inhibitors; and NaSSA, noradrenergic and specific serotonergic antidepressants. Shown are MDD-, ANX-, MDD +
ANX, and STR-. More information on the medications in each category can be found in SI Appendix, Table S4. More details on the sample sizes are available in SI Appendix, Fig. S14.
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differences was found between the control and MDD- or
MDD + ANX groups, whereas smaller differences were found
between the control and ANX- or STR- groups. Specifically,
independent component (IC)–12 (presupplementary and supple-
mentary motor areas) showed decreased connectivity with other
motor areas (IC-17, superior temporal gyrus) and increased con-
nectivity with the striatal IC-18 across MDD-, MDD + ANX,
and ANX- groups but not STR-. A comparison of all cases to
controls (Fig. 2A) showed that the pattern of differences across all
cases was very similar to the differences observed specifically in
MDD-, ANX-, and MDD + ANX (Fig. 2B).
Case–control differences in cognitive function are summarized

in Table 2 and SI Appendix. Compared to the control group, the
four diagnostic groups showed significant impairments in all
domains of cognitive function, except for visuospatial processing
(trail-making test [TMT]), which was not significantly impaired
in STR-, and PAL, which was not significantly impaired in
MDD-, MDD + ANX, or STR-. Notably, we found impaired
fluid intelligence and digit–symbol substitution performance in
all case groups, suggesting a transdiagnostic pattern of impair-
ments among these aspects of cognitive function.

Similarity of Diagnosis-Specific Neural Signatures. After con-
structing diagnosis-specific case–control neural signatures, we
evaluated the pairwise similarities in their spatial distributions
and component effect sizes. A large degree of overlap was found
between MDD-, ANX-, and MDD + ANX groups in both
functional connectivity and cortical thickness case–control asso-
ciations (Fig. 2 B and C). On the other hand, the STR- group
showed a different spatial pattern of associations that did not
resemble the other disorders (PPERM > 0.01).
The similarities of neural signatures of the disorders represent

the shared influences of both heritable and environmental fac-
tors. To determine the degree to which these similarities were
moderated by interindividual differences in heritable risk for
each of these comorbid disorders, we performed the same analy-
sis again but this time including PRS for all three diagnoses as

covariates. After controlling for these genetic risk profiles, corre-
lations between diagnostic neural signatures for the MDD-,
ANX-, MDD + ANX, and STR- groups were slightly reduced
for both functional and structural measures (Figs. 1D and 2C).
The correlations between STR- and all other diagnostic groups
were affected to the greatest degree compared to other groups.

Sensitivity Analyses. A comparison of active MDD with the
other disorder groups revealed a highly similar pattern of
case–control differences to the analysis of the full sample (SI
Appendix). Therefore, restricting the sample to active MDD
did not alter the disorder similarity matrices. Focusing on non-
medicated participants also did not substantially alter the
results, suggesting that our main findings are likely driven by
the presence of lifetime diagnosis rather than medication.

Neural Correlates of Cognitive Function in MDD-, ANX-, MDD +
ANX, and STR-. Given the substantial, albeit variable, overlap in
functional neural signatures between the diagnostic groups, we
aimed to uncover those circuits specifically related to worse
executive function and verbal memory across all disorders (n =
3,216) after regressing out age, sex, site, and motion confounds.
Partial least squares (PLS) regression identified three latent vari-
ables that explained 3.1%, 1.5%, and 1.3% of variance in the
four cognitive function tests (TMT, fluid intelligence [GF],
PAL, and digit–symbol substitution task [DSST]). Permutation
testing showed that these latent variables together explained a
significant amount of variance in cognitive performance (PPERM
< 0.001; Fig. 3A).

The first latent variable (PLS1) representing functional connec-
tivity, which was optimally associated with cognitive performance,
captured the most variance in the outcome variables (Fig. 3A) and
was associated with worse performance on all four cognitive tests.
We found 11 connectivities with normalized PLS1 weights of
Z > 3 (significant and positive) and 8 connectivities with normal-
ized PLS1 weights with Z < �3 (significant and negative) (Fig. 3
B and C). Functional correlates of worse cognitive performance

Fig. 1. Case–control differences in cortical thickness (A) in all cases, and in MDD, anxiety disorders, MDD + ANX, and STR- (E). Distributions of cortical thick-
ness values for each case group vs. controls for an example region of interest are plotted in E. Regions where a significant effect of both MDD- and ANX-
groups was found are shown in blue in B. Effects of polygenic risk were not included as a covariate in the analysis of the full sample. Case–control t statistics
of t12,203 = 5 correspond to an effect size d = 0.09 and t12,203 = 2.5 to d = 0.045. Disorder similarity matrices for the full sample (C) and for the unrelated
White British sample (D) were largely consistent. Covarying for polygenic risk (PRS) slightly reduced disorder similarity (D). The disorder similarity matrices
represent Pearson’s correlations of case–control statistics from the 360 regional cortical thicknesses. Significant correlations at PPERM < 0.01 are shown in
bold and underlined.
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included connectivities of the frontoparietal, default mode, and
attention networks. Increased DMN–FPN connectivities were
also associated with worse cognitive function (e.g., IC-6 with
IC-14 or IC-20 with IC-6). Decreased within-DMN (IC-20 with
IC-14 or IC-7 with IC-9) and within-FPN (IC-5 with IC-21 or
IC-5 with IC-16) connectivities were associated with worse cogni-
tive function.
The second latent variable (PLS2) captured some variance

in fluid intelligence and PAL (SI Appendix, Fig. S10). We
found four connectivities with significant positive loadings on
PLS2 (Z > 3) and one weight with significant negative loading

(Z < �3). Higher connectivity of IC-21 (FPN/DMN) with
IC-5 (FPN) and IC-1 (DMN) and higher connectivity of the
striatal component (IC-18) with the superior temporal gyrus
(IC-17) predicted better fluid intelligence and associative
learning. Lower connectivity of IC-21 (FPN/DMN) with IC-6
(FPN) predicted lower fluid intelligence and associative learn-
ing scores. Although the third latent variable (PLS3) was sig-
nificant at permutation testing, there were no PLS3 weights
jZj > 3.

To contrast transdiagnostic signatures with diagnosis-specific
signatures, we repeated the PLS regression in each case group
separately. We found significant brain–cognition relationships
in MDD- and in ANX- but not in MDD + ANX or STR-
(Fig. 4 A and B and SI Appendix), suggesting that former two
groups drive the associations across all cases. We found a dis-
tinct pattern of brain–cognition relationships in MDD- and
ANX-. While components from the FPN and DMN played a
major role in brain–cognition relationships in each case group,
different connectivities among different components of these
networks were implicated in MDD- and ANX-. Many compo-
nents that were significant (jZj > 3) in MDD- and ANX- sepa-
rately were also significant in the PLS regression across all cases.

In order to directly compare brain–cognition associations in
MDD- and ANX- post hoc, we used univariate Pearson’s corre-
lations between functional connectivities and the first principal
component capturing the largest amount of variance in Y
(46%). We found several connectivities that were significantly
different between MDD- and ANX-, each of which was signifi-
cantly associated with cognitive function in one group but not
in the other group (Fig. 4 C and D).

Fig. 2. Case–control differences in functional connectivity (A) in all cases, and in MDD, anxiety disorders, MDD + ANX and stress-related disorders (D). Con-
nectivities that showed significant differences from the control group in both MDD- and ANX- are highlighted with red asterisks (D). Lower half of the correla-
tion matrix is left blank. Effects of polygenic risk were not included as a covariate in the analysis of the full sample. Disorder similarity matrices for the full
sample (B) and for the unrelated White British sample (C) were highly consistent. Covarying for polygenic risk (PRS) slightly reduced disorder similarity (C).
Disorder similarity matrices represent Pearson’s correlations of case–control statistics from the 210 connectivities between pairs of ICs. Significant correla-
tions at PPERM < 0.01 are shown in bold and underlined.

Table 2. Cognitive performance in MDD-, ANX-, MDD +
ANX, and STR-

Cognitive
test Statistic MDD- ANX- MDD + ANX STR-

TMT Standard β 0.06 0.12 0.19 0.06
T-stat 2.33 2.70 3.98 1.33

Gf Standard β 20.05 20.14 20.16 20.08
T-stat 22.33 23.56 24.03 22.29

PAL Standard β �0.04 20.13 �0.05 �0.06
T-stat �1.54 22.91 �1.09 �1.51

DSST Standard β 20.12 20.11 20.28 20.09
T-stat 25.20 22.61 26.18 22.30

TMT, visuospatial processing; Gf, fluid intelligence. Standardized beta-coefficients are
shown. For instance, DSST performance in the MDD + ANX group was 0.28 SD below the
performance of the control group. Higher scores on TMT indicate worse performance
due to longer times to complete the task. Significant effects are shown in bold (FDR-
corrected P < 0.05).
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Neural Correlates of Cognitive Function in the Control Group.
We repeated the PLS analysis in the control group. Briefly, the
PLS model explained 3.6% of variance in the cognitive out-
comes (PPERM < 0.001; SI Appendix). PLS1 was also linked to
worse general cognition in healthy controls. PLS1 weights
included ICs from the DMN, FPN, and dorsal/ventral atten-
tion [DA/VA] network (SI Appendix, Figs. S11 and S12). PLS2
was also linked to worse cognition, similarly to PLS2 in the
case group PLS.

Discussion

In a multimodal investigation of functional connectivity, brain
structure, cognitive function, and genetic risk, we found that sig-
natures of MDD and anxiety disorders were highly concordant
and distinct from stress-related disorders. Shared polygenic risk
explained a small proportion of the similarity in brain connectiv-
ity and structure between MDD, anxiety, and stress-related disor-
ders. We further identified impairments in processing speed,
attention, and fluid intelligence shared across MDD, anxiety, and
stress-related disorders. A dimensional analysis cutting across
these disorders identified increased between-network and
decreased within-network connectivity of the frontoparietal-
default mode networks as a neural correlate of poorer cognitive
function.

Case–Control Differences. The MDD- and MDD + ANX
groups showed cortical thickness differences from the control

group that were consistent with previous meta-analyses of brain
structure in MDD (34, 35), with notable thinning of the parie-
tal and prefrontal cortex (insula, anterior cingulate, inferior
frontal, superior frontal and middle frontal gyri, and anterior
temporal lobe). Comorbid MDD and anxiety are typically asso-
ciated with greater symptom severity and more limited level of
daily functioning (39, 40). Consistent with the expectation of
greater disorder severity in comorbid MDD and anxiety disor-
ders, we found additional thinning in the medial temporal
regions (parahippocampal area), suggesting a more profound
impact of the comorbid disorders on brain structure. The
ANX- group showed localized patterns of cortical thinning in
the middle temporal gyri, which is in line with previous evi-
dence of reduced volumes of these regions in anxiety disorders
without comorbid MDD (11). Unlike studies of active anxiety
disorders, we did not find significant differences in the anterior
cingulate or insular cortices in our ANX- group. This may be
explained by the possible time gap between diagnosis and imag-
ing data. In the UKB, lifetime diagnosis is recorded, and many
participants may not be experiencing clinical symptoms at the
time of scanning. One possibility is that brain volumes may
have recovered since the time of formal psychiatric diagnosis.
Finally, the STR- group showed few significant differences
from controls, characterized primarily by localized cortical thin-
ning in the parahippocampal area. Parahippocampal cortex is
critical to memory formation and retrieval, and medial tempo-
ral areas have been emphasized in studies of PTSD (41, 42).
Further, the hippocampus has been shown to regulate stress

Fig. 3. Brain–cognition relationships between functional connectivity (FC) and cognitive function from a PLS regression in participants with major depres-
sion, anxiety, or stress-related disorders. The model explained a significantly larger amount of variance (P < 0.001) than expected by chance (A). PLS latent
variable 1 (PLS1) accounted for the largest amount of variance in cognitive tests (D). PLS1 scores for MDD- are shown in blue, MDD+ANX in red, and ANX- in
black (D). Higher PLS1 FC scores (XS) were associated with worse cognitive performance on all four tests (E), characterized by longer times to complete the
TMT, lower number of correct reasoning questions in the fluid intelligence test (Gf), lower number of word pairs recalled on the PAL test, and lower number
of digits being filled in in the DSST. Thresholded PLS1 weights (Z > 3 and Z < �3) implicated pairwise connectivities between independent components (ICs)
corresponding to the default mode, frontoparietal, and dorsal/ventral attention networks (B). Blue connections between network components suggest that
higher connectivity of those components was associated with worse cognitive performance. Red connections between network components suggest that
higher connectivity of those components predicted better cognitive performance. The PLS model was able to predict the variability in cognitive function in
held-out data (C). Other network labels: CRB, cerebellum; STR, striatum.
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response by influencing the hypothalamic–pituitary–adrenal
function (37). Therefore, our findings in the STR- group are
consistent with existing theories of stress regulation in the
medial temporal lobe.
Significant resting-state connectivity deviations in people

with MDD and MDD with comorbid anxiety were similar and
encompassed a variety of regions that were part of the default
mode and frontoparietal but also subcortical (striatal), cerebel-
lar, and visual networks. Deviations in connectivity within the
motor network and between motor and striatal networks were
common across the MDD, anxiety disorders, and MDD
comorbid with anxiety groups. Our findings are consistent with
previously reported alterations in frontoparietal and default
mode connectivity in MDD (31) and in anxiety disorders (32,
33). Connectivity between striatal and cortical regions is known
to be impaired in MDD (43) and was also altered in both our
MDD groups. Importantly, functional connectivity was signifi-
cantly different between the anxiety disorders and the control
group but not in stress-related disorders, reinforcing the differ-
ences in neural signatures of this group. Although the effect
sizes of case–control differences were relatively small (0.05 <
d < 0.15), they were slightly larger than effects previously
reported in large-scale studies of psychiatric disorders (44, 45).
It has been shown that small effect sizes in large-scale samples
examining brain–behavior relationships tend to be reproduc-
ible, compared to larger effects in smaller n studies (46). While
it is possible that studying more ill patients might lead to larger
effect sizes or different findings, our analyses focused on
actively ill patients were similar to our overall results. Effect
sizes found in the UKB likely reflect the heterogeneity of this
large-scale community-recruited sample and support the inves-
tigation of neurobiological dimensions underlying this variabil-
ity consistent with the research domain criteria approach (16).
Substantial evidence shows that scanner type and site are two

of the most important confounds in multicenter studies (47–50).
Correcting for such confounds can be challenging (47) and can
decrease the effect of diagnosis. Site effects also present a

challenge in the UKB data (51). Approaches used by UKB and
in our analyses may have mitigated site and scanner effects. First,
UKB uses identical scanner hardware and software in all three
sites, although subtle differences, e.g., in the same coil equipment
cannot be ruled out (51). Second, IC analysis-based denoising of
resting-state fMRI data used in UKB diminishes site scan differ-
ences (52), potentially improving the power of our fMRI analy-
ses. Third, we controlled for linear effects of site in all analyses
and were able to detect moderate but robust effects.

Similarity of Neural Disorder Signatures. The strong similarity
of the neural signatures of the MDD and anxiety disorders
groups supports previous studies of shared neural signatures of
mental disorders (12). Controlling for polygenic risk somewhat
reduced the similarity between MDD, anxiety disorders, and
stress-related disorders. High genetic correlation between
MDD and anxiety disorders (5, 53) could instead account for
phenotypic and clinical similarities between the disorders, and
not all genetic similarity may be captured by PRSs. By contrast,
stress-related disorders show less genetic similarity to MDD or
anxiety disorders (5). Further, the STR- group showed very few
differences from healthy controls, suggesting lack of effects
rather than a different pattern of neural changes relative to con-
trols is distinguishing STR- from MDD- and ANX-.

Several neurocognitive processes may underlie the overlap in
neural signatures of MDD and anxiety disorders, including execu-
tive functioning (19). A shared neural mechanism could be found
in prefrontal regulation of the default mode and limbic circuits
responsible for mood and emotional processing. Stress-related dis-
orders, on the other hand, showed differences in the parahippo-
campal structure and default mode connectivity that may be
linked to maladaptive stress response and memory formation.

Transdiagnostic Association of Cognitive Function with Neural
Signatures. We identified impairments in different aspects of cog-
nitive performance, including executive function in the four diag-
nostic groups, consistent with previous literature suggesting that

Fig. 4. Brain–cognition relationships between functional connectivity and cognitive function from a PLS regression in MDD-, ANX-, or STR- groups. Repeat-
ing the PLS regressions in each case group separately revealed that the brain–cognition relationships were driven by MDD- and ANX- groups, with no signifi-
cant relationships found in MDD + ANX or STR-. (A) Permutation distributions of percent of variance in cognitive function explained by the respective PLS
model is shown in gray, with the observed value shown in red. (B) The associations between PLS1 scores in MDD- (Upper) and in ANX- (Lower) with the four
cognitive function tests. (D) Connectivities associated with cognitive function (jZj > 3) in MDD- and ANX- and significant differences (jZj>1.96, uncorrected P <
0.05) between these two groups in connectivities associated with cognitive function identified in univariate analyses. (C) For instance, higher connectivity of
IC-3 with IC-5 was associated with worse cognitive function measured by the first principal component of variance in the four cognitive scores in MDD-. This
association was in the opposite direction and was not robust in ANX-, resulting in a significant group difference in the association between IC-3–IC-5 connec-
tivity and cognitive function.
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executive dysfunction may be a transdiagnostic dimension of cogni-
tive impairment (16, 54, 55). Executive function impairments are
not unique to mental disorders as physical problems, acute stress, or
social isolation can also impact executive performance (56).
While much is known about neural correlates of executive

function (57–61), lack of replication and small samples call for
large-scale data (>2,000 individuals) to uncover reproducible
brain-wide associations with cognition (46). In our large UKB
sample, we found a specific functional connectivity profile
between nodes of the frontoparietal, default mode, and
salience/attention networks and the cerebellum as underlying
worse processing speed, spatial attention, fluid intelligence, and
PAL. We showed that reduced within-network and increased
between-network connectivity of the frontoparietal and default
mode networks predicted worse executive function and related
cognitive impairments in MDD, anxiety, and stress-related dis-
orders. A similar pattern of brain–cognition relationships was
found in the healthy control sample. These findings are consis-
tent with previous multimodal metaanalyses showing that neu-
ral correlates of executive function in clinical populations
encompass frontal, parietal, and cerebellar regions (60) and pre-
vious large-scale analysis relating frontoparietal and default
mode connectivity to worse verbal-numerical reasoning (61) in
UKB. Successful executive functioning relies on dynamic
switching between frontoparietal and default mode networks
initiated by cinguloopercular attentional networks (59, 61).
Self-referential processing in the default mode network is bal-
anced with goal-oriented solving of complex problems (execu-
tive function) and influenced by salient events that can trigger
the switching by attention networks.
Executive function itself is multidimensional, with processing

speed, cognitive flexibility, fluid intelligence, working memory,
planning, attention, and inhibitory control serving as interre-
lated subdimensions (56). The second latent variable identified
in our PLS analysis (PLS2) uncovered functional correlates of
poorer performance in fluid intelligence and associative learn-
ing. In addition to connectivity pairs already identified as
related to general cognitive function by the first PLS latent vari-
able, PLS2 showed that higher connectivity of striatal areas
with superior temporal gyri predicted better fluid intelligence
and associative learning specifically. Identifying robust neural
correlates of cognitive function using resting-state connectivity
has been challenging due to the limitations of the sample sizes
(46) and the interindividual variability in brain function and its
relation to cognitive performance (62, 63). Here we identify
robust brain–cognition relationships that are replicable in a
healthy population, furnishing evidence for existing theories of
how functional organization of the brain is associated with cog-
nitive dysfunction, including executive impairments.
We did not find that brain–cognition relationships identified

across all diagnostic groups were necessarily present in each of
the groups separately. Only MDD- and ANX- showed signifi-
cant associations between cognitive performance on all four
cognitive tests and functional connectivity captured by the first
latent PLS variable. A comparison of the univariate correlations
showed that some of the brain–cognition associations were dis-
tinct between these two groups. Higher striato–default mode
connectivity and lower within-default mode connectivity was
associated with worse cognitive function in ANX- but not in
MDD-. On the other hand, higher between-network connec-
tivity (e.g., between attention and frontoparietal components)
was associated with worse cognitive function in MDD- but not
in ANX-. These findings suggest that brain–cognition relation-
ships may not be uniform across MDD and anxiety disorders.

Instead, different aspects of frontoparietal and default mode
interactions may underlie cognitive dysfunction in MDD and
anxiety disorders.

Limitations and Conclusions. The cross-sectional nature of the
data does not allow us to disambiguate whether the neural sig-
natures are the consequence of or a marker of vulnerability to
the respective disorder. Although diagnostic groups were
defined by lifetime diagnosis, we found that approximately
one-third of participants in our MDD or MDD with comorbid
anxiety groups had some current depressive symptoms based on
the two-item patient health questionnaire (PHQ-2) (38) at the
time of cognitive and MRI assessment. We show that our
results did not change when restricting the sample to active
MDD. PHQ-2 with a threshold of 2 has a high sensitivity but
moderate specificity of 0.67 (38) as a screening tool for depres-
sion, and many individuals in the active MDD group showed
only mild symptoms. Given that the PHQ-2 was generally
designed as a screening tool maximizing sensitivity at the
expense of specificity, we are less able to draw inference about
active illness and conclude that our findings appear to be driven
by lifetime diagnosis. Restricting the sample to unmedicated
participants also produced consistent findings to the full sam-
ple. However, chronicity of the psychiatric disorders may differ
given that the diagnosis of MDD- was reported at a younger
age compared to ANX- or STR-. Further, diagnoses were ascer-
tained using electronic health records that may show some
heterogeneity (64).

While our analysis showed a similar signature of brain struc-
ture and function deviations across MDD and anxiety disor-
ders, there are limitations to the degree of overlap between the
disorders. No significant deviations in cortical thickness were
seen in anxiety disorders, while the effects on cortical thickness
seen in MDD and in the comorbid group were much larger
and reached statistical significance. Interestingly, neuroimaging
correlations accounted for less than 50% of variance in the dis-
order brain maps, suggesting that there are disorder-specific
abnormalities in brain function and structure (65).

In conclusion, we found a high degree of similarity in the
neural signatures of MDD and anxiety disorders (alone and in
comorbidity) that was distinct from stress-related disorders.
Our findings are consistent with the diagnostic categorization
of MDD and anxiety disorders as internalizing disorders (7).
Stress-related disorders showed a very similar profile of execu-
tive dysfunction to MDD and anxiety disorders, yet their neu-
ral signatures showed less similarity, especially in the domain of
cortical thickness. While the comorbidity across disorders is
viewed as a therapeutic challenge, the identified neurobiological
substrate of connectivity within and between default mode and
frontoparietal networks subserves cognitive dysfunction and
could provide a promising target for specific interventions.

Methods

Data.
Healthy controls. Participants were recruited through the UKB. The overall num-
ber of people with UKB preprocessed MRI outputs was 40,669. Healthy control
group was defined by excluding participants who had any one of over 143 Inter-
national Classification of Diseases (ICD-10) codes related to conditions that could
affect neural connectivity and structure such as epilepsy and Alzheimer’s disease,
thus resulting in 21,727 healthy controls (SI Appendix).
Patients.We used linked health record data available from inpatient and primary
care information. ICD-10 codes F32 (a major depressive episode; UKB data field
130895), F33 (recurrent major depressive episodes, UKB data field 130897), F41
(generalized anxiety disorder, panic disorder without agoraphobia, other mixed,
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specified, and unspecified nonphobic anxiety disorders; data field 130907), and
F43 (reaction to severe stress such as PTSD, and stress adjustment disorders; UKB
data field 130911) were used to define four mutually exclusive patient groups.
These groups included participants with lifetime diagnoses of 1) MDD but not
anxiety or stress-related disorders (MDD-), 2) nonphobic anxiety disorders but
not MDD or stress-related disorders (ANX-), 3) comorbid MDD and anxiety but not
stress-related disorders (MDD + ANX), and finally, 4) stress-related disorders but
not MDD or anxiety (STR-). Case definition was based on lifetime diagnoses as we
wanted to investigate the neural and genetic signatures of vulnerability for and
consequences of the psychiatric disorders.

Depression symptoms at the time of MRI scan were assessed using a cutoff
score of 2 on the PHQ-2 (38) (UKB data fields 2050 and 2060); self-reported
restlessness and tiredness indices were also included (data fields 2070 and
2080, respectively).
Neuroimaging data acquisition. Briefly, MRI data were collected on Siemens
3T Skyra and 32-channel receive head coil (T1-weighted structural sequence rep-
etition time TR = 2,000 ms, echo time TE = 2.01 ms, inversion time TI = 880
ms, flip angle = 8°, resolution = 1 mm3). Multiband gradient echo planar
imaging sequence (length = 6 min, field of view = 210 mm, slices = 64, TR =
735 ms, TE = 39 ms, resolution = 2.4 mm3) was used to acquire resting-state
fMRI scans. More detail on the imaging protocols can be found in ref. 66. Struc-
tural images were processed using Freesurfer (67, 68), while functional images
were processed using FMRIB’s Multivariate Exploratory Linear Optimized Decom-
position into Independent Components (MELODIC) and FSLnets tools (66, 69). If
images were flagged as unusable by UKB’s automated quality control pipeline,
they were excluded from analysis.
Neuroimaging processing. Two neuroimaging modalities were included:
resting-state functional connectivity and cortical thickness. We used 210
resting-state connectivity features comprising all pairs of partial correlations
among the 21 ICs identified by the UKB preprocessing pipeline in an IC analy-
sis (data field 25752). We mapped 19 of the 21 ICs that were primarily located
in the neocortex to Yeo7 networks (70) by comparing the proportions of voxels
in each component (thresholded at z > 3) that fell into each of the seven net-
works (SI Appendix, Table S1). One component primarily encompassed the cer-
ebellum, while another component encompassed subcortical regions (notably
the striatum).

We also used UKB-provided Freesurfer outputs (data field 20227) to derive
cortical thickness values for the 360 regions in the HCP parcellation (71). HCP
labels were first registered from fsaverage space to subject space (mri_label2la-
bel), and summary statistics for each label were generated (mri_segstats). These
derivatives will be made available through the UKB Returns Catalogue (https://
biobank.ctsu.ox.ac.uk/crystal/docs.cgi?id=1, Project ID 61530).
Cognitive data.We used four cognitive tests assessing executive function, proc-
essing speed, and learning: time to complete the alphanumeric path of the TMT
(data fields 6350 and 6351) as a proxy for visuospatial processing speed and
executive function (72); fluid intelligence (data field 20016); PAL (data field
20197) as a measure of memory and associative learning (73); and the DSST
(data field 23324) as a measure of attention, visuoperceptual speed, and associa-
tive learning (74). In addition to testing cognitive function, TMT and DSST also
tap into participants’ motor speed as participants with worse ability to write and
draw will be at a disadvantage. Cognitive test data were collected during the
same visit as the MRI scan. More information can be found in SI Appendix.
Genetic data. PRSs were derived from public genome-wide association study
(GWAS) summary statistics using a standard “prune and threshold” approach. All
PRS analyses were performed on a subset of participants of unrelated White Brit-
ish ancestry, defined using the same criteria as a previous study (75). Summary
statistics for MDD (76) and PTSD (77) were obtained from the Psychiatric Geno-
mics Consortium (https://www.med.unc.edu/pgc/download-results), while those
for ANX were obtained from the Integrative Psychiatric Research consortium (78)
(https://ipsych.dk/fileadmin/ipsych.dk/Downloads/daner_woautism_ad_sd8-sd6_
woautismad_cleaned.gz). To avoid sample overlap with the UKB, a version of the
MDD summary statistics with participants from the UKB removed (daner_pgc_
mdd_meta_w2_no23andMe_rmUKBB.gz) was used; ANX and PTSD summary
statistics did not have any sample overlap with the UKB.

PRSs were calculated using a previously described computational pipeline
(15). Briefly, the UKB’s imputed genotypes were first quality controlled using ver-
sion 2.00 of the plink GWAS analysis software (79) by filtering to autosomal,

nonduplicate single-nucleotide variants with imputation information (INFO) score
> 0.8, and with Hardy–Weinberg equilibrium P > 10�10, missingness < 5%,
and minor allele frequency > 0.1% across self-reported White participants.
Summary statistics were harmonized with these quality-controlled UKB imputed
genotypes with respect to reference/alternate allele and strand using the allele
harmonization framework from munge_sumstats.py in the ldsc software package
(80), then thresholded to P < 0.05 and pruned to r2 < 0.5 using frequency-
informed linkage disequilibrium pruning with a 500-kb sliding window. The
remaining variants constituted the trait’s PRS, with the variants’ effect sizes (log
odds) constituting the weights of the PRS. Finally, PRSs were scored on each
individual in the cohort by summing, across the variants in the PRS, the variant’s
weight times the individual’s number of effect alleles of that variant; missing
genotypes were mean-imputed. PRSs were standardized to zero mean and unit
variance across all unrelated White British participants in the UK Biobank.

Before computing associations between PRSs and MRI-derived features, the
first 10 genotype principal components were regressed out of the PRS.

Statistical Analysis.
Effect of diagnosis and polygenic risk on neuroimaging and cognition. We
tested for case–control differences in partial correlations between functional ICs
as well as regional cortical thickness using separate general linear models (fitlm,
anova, MATLAB R2016a). Sex, age, age2, age × sex, average head motion dur-
ing the resting-state fMRI run, and UKB imaging acquisition site were included
as covariates. These models were specified as follows:

Pairwise connectivity ∼ groupDx þ ageþ age2 þ age × sexþ sexþ
head motionþ site;

Regional cortical thickness ∼ groupDx þ ageþ age2 þ age × sexþ
sexþ site:

We reanalyzed the data using linear models including PRS for MDD, anxiety dis-
orders, and PTSD as covariates. This analysis allowed us to estimate the effect of
heritable MDD, ANX, and PTSD risk on functional connectivity and cortical thick-
ness measures. These models were specified as follows:

Pairwise connectivity ∼ groupDx þ PRSMDDþPRSANXþPRSPTSD þ ageþ
age2 þ age × sexþ sexþ head motionþ site;

Regional cortical thickness ∼ groupDx þ PRSMDDþPRSANXþPRSPTSDþ
ageþ age2 þ age × sexþ sexþ site:

Permutation testing (n = 1,000, PPERM < 0.05) was used to test whether diag-
nostic group had a significant effect (F test) on functional connectivity and corti-
cal thickness. We permuted each outcome variable (pairwise connectivity or
regional cortical thickness) and repeated the linear model with the shuffled out-
come variable. A significant group effect was present when the observed F value
was higher than 95% of the F values obtained from permutation models. When
a significant group effect was found, each of the case groups was compared to
the healthy control group. We used Bonferroni correction for the post hoc tests
(P < 0.0125) to assess significance in addition to the permutation testing of the
main effect of group.

Further, we used linear models to test for an effect of group on the cognitive
function variables while covarying for sex, age, age2, age × sex, and testing cen-
ter. Standardized beta coefficients were obtained by z-scoring cognitive data
before analysis. To correct for four group comparisons across 10 tests, false dis-
covery rate with the Benjamini–Hochberg method (q < 0.05) was used (81). For
greater interpretability, we converted the resulting t statistics to standardized
effect sizes (Cohen’s ds) via the following transformation (44):

d ¼ 2 � tffiffiffiffi
df

p :

Since the control group was nearly four times larger than all cases combined, we
selected a random subset of healthy controls such that there was an equal sam-
ple size of cases and controls in each of the above analyses. The resulting control
group was matched for sex and age to the combined case group. For each case
participant, the matching algorithm first identified a pool of controls of the same
sex and age, then excluded candidates in the pool who had already been
included in the matched control group. Finally, a control participant was selected
at random from the resulting pool of candidates. We repeated the case–control
analyses comparing all cases combined in one group to controls.
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Disorder similarity. For each case–control comparison (i.e., all cases, MDD- vs.
control, ANX- vs. control, MDD + ANX vs. control, and STR- vs. control), the
above-mentioned linear models generated 210 + 360 t statistics, one for each
functional connectivity and cortical thickness feature. To assess the degree of
cross-disorder concordance in MRI signatures, we computed Pearson’s correla-
tions between each pair of disorders across the 210 functional connectivity t sta-
tistics and, separately, across the 360 regional cortical thickness t statistics. The
statistical significance of these correlations was assessed via permutation testing:
random distributions of case–control t statistics were generated by rerunning the
linear models with permuted outcome variables and generating a random distri-
bution of correlations between these t statistics (all code available at https://
github.com/peterzhukovsky/ukb_transdiagnostic). We compared disorder simi-
larity matrices generated from the 1) case–control t statistics for the full sample;
2) t statistics for White British participants; and 3) t statistics for White British par-
ticipants while covarying for their polygenic risk for MDD, anxiety, and PTSD.
Sensitivity analyses. We repeated the main disorder similarity analysis first,
only in active MDD and second, only in unmedicated participants to determine
whether these findings held independently of illness state or medication status.
Neural correlates of cognitive function. PLS regression was used to assess the
relationship between functional connectivity and cognitive function at the time
of the imaging visit. A separate PLS regression was used to test for multivariate
associations between regional cortical thickness and cognitive performance (SI
Appendix). Model significance was tested using permutation testing following
previous studies (82). In these analyses, we focused on participants in all case
groups with no missing cognitive data (n = 3,216). We regressed out age, sex,
and site from both neuroimaging and cognitive variables; we also regressed out
average head motion from the fMRI data. We used z-scored residuals from these
regressions to form the predictor matrix X (3,216 × 210) and the outcome
matrix Y (3,216 × 4). We repeated the PLS regression exploring brain–cognition
associations in healthy controls (n = 14,199) and in each of the four case groups
separately (SI Appendix).

PLS returns a set of components that attempt to maximize the covariance
between the PLS scores summarizing X and Y. PLS scores are a linear combina-
tion of the predictor variables (X) and component loadings. We used bootstrap-
ping (n = 5,000) to identify which predictors showed robust contributions to the
PLS latent variable. A threshold of jZj > 3 was chosen to identify the most robust
connectivities associated with cognitive performance (82).
Robustness analysis in hold-out data. In order to evaluate the robustness of
PLS performance in all cases, we have split these participants into four subsam-
ples. In four PLS analyses, we used three of these subsamples as training data
(75%, n = 2,412) and the remaining subsample as test data (25%, n = 804).
We then applied the PLS beta regression coefficients obtained in the training
sample to the test sample and correlated the observed cognitive data with the
predicted cognitive data to assess PLS performance in predicting cognitive func-
tion in held-out data. This approach was repeated in all controls to assess robust-
ness in hold-out data.
Directly comparing brain–cognition associations. In order to directly compare
the brain–cognition associations, we first extracted the first principal component
of variance in the four cognitive tests in MDD- and ANX- using a principal compo-
nent analysis (PCA), effectively reducing the Y matrix to the first principal compo-
nent scores, which are comparable across groups. We then computed Pearson’s
correlations between each of the 210 functional connectivities and the first prin-
cipal component representing cognitive outcomes in the ANX- and MDD- groups

separately. We compared the r-to-z transformed Pearson’s correlations between
MDD- and ANX-. Significance was determined as follows:

Zobserved ¼
zMDD � zANXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nMDD�3 þ 1

nANX�3

q ,

where zMDD and zANX refers to the r-to-z transformed Pearson’s correlation
between a pairwise connectivity and the cognitive function PCA score and nMDD
and nANX refer to sample sizes in MDD- and ANX-, respectively. When jZobservedj >
1.96, the univariate correlations between functional connectivity and cognition
are significantly different (uncorrected P < 0.05).

Data Availability. The data analyzed here are from the UK Biobank, which is a
uniquely powerful biomedical database. It aims to facilitate research in life
sciences by providing multiscale data for a large number of participants. The UK
Biobank legally binds the researchers using the data not to publicly share UK
Biobank data. Therefore, we are unable to share the data in a public repository.
However, all data used here can be accessed by making a request with the
UK Biobank. The UK Biobank has a dedicated portal for applying for data
access here: https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access.
The use of UK Biobank data is not entirely free, but the data access costs are
accessible to researchers. We share all code used in the manuscript on GitHub
(https://github.com/peterzhukovsky/ukb_transdiagnostic).
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