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Machine Learning and Network
Analyses Reveal Disease Subtypes
of Pancreatic Cancer and their
Molecular Characteristics

Musalula Sinkala@®*, Nicola Mulder & Darren Martin

Given that the biological processes governing the oncogenesis of pancreatic cancers could present
useful therapeutic targets, there is a pressing need to molecularly distinguish between different
clinically relevant pancreatic cancer subtypes. To address this challenge, we used targeted proteomics
and other molecular data compiled by The Cancer Genome Atlas to reveal that pancreatic tumours can
be broadly segregated into two distinct subtypes. Besides being associated with substantially different
clinical outcomes, tumours belonging to each of these subtypes also display notable differences in
diverse signalling pathways and biological processes. At the proteome level, we show that tumours
belonging to the less severe subtype are characterised by aberrant mTOR signalling, whereas those
belonging to the more severe subtype are characterised by disruptions in SMAD and cell cycle-related
processes. We use machine learning algorithms to define sets of proteins, mMRNAs, miRNAs and DNA
methylation patterns that could serve as biomarkers to accurately differentiate between the two
pancreatic cancer subtypes. Lastly, we confirm the biological relevance of the identified biomarkers by
showing that these can be used together with pattern-recognition algorithms to accurately infer the
drug sensitivity of pancreatic cancer cell lines. Our study shows that integrative profiling of multiple
data types enables a biological and clinical representation of pancreatic cancer that is comprehensive
enough to provide a foundation for future therapeutic strategies.

Pancreatic cancer is a heterogeneous disease that is characterised by poor clinical outcomes and few effective
treatment options. Attempts to define a standard classification for tumours of the pancreas have been ongoing
for decades!=>. In general, the approaches that are currently used for making both outcome predictions and treat-
ment decisions are based on histological subtyping and clinical parameters such as the disease stage, metastasis,
and the resectability of tumours*®. Recently, however, the advent of molecular profiling has laid the foundation
for quantitatively profiling tumours based on their genome-wide gene transcription profiles, protein expression
profiles and/or mutational landscapes®=. These profiling methods promise a more accurate and precise definition
of tumour subtypes and better predictions of how particular tumour types will respond to different treatments.

Further, molecular data that is used to construct the molecular profiles of particular cancers have been used
to identify the perturbances in the cellular regulatory networks that characterize these cancers: often revealing
numerous potential drug targets within various signalling pathways. This molecular data together with the known
molecular profiles of numerous well characterized cancer cell lines can even be leveraged using machine learning
methods to predict the responses of particular patient tumour subtypes to different anticancer drugs'®!’.

A crucial resource for the discovery of useful diagnostic biomarkers and potential anticancer drug targets are
large-scale datasets comprising, among other data types, extensive genomic, transcriptomic and proteomic pro-
files of matched healthy and tumorous tissues. These datasets, which are compiled and maintained by The Cancer
Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) are helping us uncover the
molecular characteristics and signalling pathway perturbations that define specific cancer subtypes'>"°.

Among the cancers that are well represented in these data collections is pancreatic cancer. Molecular profiling
analyses of the pancreatic tumour datasets have identified both distinct pancreatic cancer subtypes, and muta-
tions of the genes, KRAS, TP53, SMAD4 and CDKN2A as potential drivers of pancreatic cancer'*8. Although
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the biomarkers that differentiate between different pancreatic cancer subtypes could eventually inform treatment
decisions, there are as yet no available subtype-specific treatment options for this type of cancer. There is, there-
fore, a pressing need to, firstly, find a set of biomarkers that can be used to accurately and sensitively diagnose pan-
creatic cancer subtypes and, secondly, to identify suitable targets for drug development among these biomarkers.

Definitions of disease subtypes is a perpetual process, with classifiers and cut-offs that differentiate between the
subtypes, essentially needing to be continually re-defined and refined as more molecular data and better molec-
ular profiling tools become available. As classification schemes for pancreatic cancers improve, it is expected that
additional specific molecular correlates of patient survival, responses to anticancer drugs, and tumour aggressive-
ness will be uncovered. Armed with such knowledge, we could develop better prognostic and diagnostic methods,
and select the best drugs to treat specific pancreatic cancer subtypes. Further, more subtype-specific molecular
features could potentially enhance the accuracy with which machine learning methods could predict the drug
response profiles of specific pancreatic tumours, thus leading to improved disease outcomes.

However, it remains technically difficult to effectively leverage the diverse and ever-increasing data relating
to pancreatic tumours'®-?!. These difficulties include, but are not limited to, inconsistent classifications of patient
tumours when the tumours are subtyped using different types of molecular data, and the efficient integration and
analysis of different data types to yield consistent identifications of the causal disruptors of the molecular pro-
cesses that underlie the observed differences between pancreatic cancer subtypes'. Ultimately, these difficulties
undermine efforts to predict the responses of tumours to drugs: an endeavour involving comparisons between
the relevant molecular features of a novel tumour with those of well-characterized tumour subtypes or tumour
cell lines.

With these issues in mind, we attempted to identify clinically relevant subtypes of pancreatic cancer account-
ing for the full spectrum of molecular and clinical data available for pancreatic cancer tumours in the TCGA
dataset. We address the problem of inconsistent tumour classifications that are obtained using different types
of molecular data, by applying an integrative classification approach that considered all the available molecular
data types. As expected, our analyses identified discrepancies between various classification schemes but ulti-
mately supported the existence of two major pancreatic cancer subtypes. Besides uncovering the likely molecular
causes of altered biological processes within the tumours of these two subtypes, we identified biomarker sets
that can be used to accurately and sensitively classify novel pancreatic tumours. Further, in the face of multiple
high-dimensional data types, we show that statistical models that capture the complexity of disease can aid in the
identification of relevant drugs and drug targets that might offer substantial benefits for patients afflicted with
tumours belonging to either of the pancreatic cancer subtypes.

Results

Subtypes of pancreatic cancer and their clinical characteristics. We applied K-means clustering
to the reverse phase protein array (RPPA) determined proteomics data of the 45 high-purity pancreatic cancer
samples that are available in the TCGA database to identify two coherent clusters of patient tumours (Fig. S1A)?.
Then, we compared this clustering of pancreatic cancer samples to other subtypes that are reported in the lit-
erature for various other molecular data types (DNA methylation status, protein expression levels and mRNA/
miRNA transcription levels) and established that the samples clustered differently depending on the specific
molecular data type used (Fig. 1A).

To mitigate this problem, we applied a multi-platform integrative clustering method called similarity network
fusion (SNF). SNF solves the disparate clustering problem by constructing similarity networks of samples for each
available molecular data type and then efficiently fuses these into one network that represents clustering based on
all the underlying data types (Fig. 1B)". Using DNA methylation status, protein expression, mRNA transcription
and miRNA data of the 45 high purity cancer tumour samples available in TCGA, we applied the SNF clustering
method to identify two-cluster and three-cluster clustering solutions (Fig. 1C).

The pancreatic cancer subtypes in the two-cluster solution comprised 25 and 20 tumours, which we provi-
sionally named as subtype-1 and subtype-2, respectively. Interestingly, the SNF clustering solutions were highly
concordant with each of the clustering solutions obtained using individual molecular data types but were most
similar to that obtained using the proteomics data (refer to Fig. 1C).

Next, we sought to understand whether the identified pancreatic cancer subtypes were associated with dif-
ferent clinical outcomes. Indeed, we found that the two groups of patients differed with respect to the overall
percentages of individuals with progressive disease and the percentages of individuals who eventually died. Here
we found that the patients with subtype-1 tumours were more likely to survive than those with subtype-2 tumours
(75% vs 35% survival, respectively; Fig. S1C). We further observed a nearly 50% lower median disease-free sur-
vival (DFS) period for patients with subtype-2 tumours (DFS = 12.42 months) than for patients with subtype-2
tumours (DFS =25.07 months; Fig. S1D). Likewise, the overall survival (OS) periods for the patients with
subtype-2 tumours (OS = 16.05 months) were shorter than those with subtype-1 tumours (OS =23.06 months;
Fig. S1E). However, our analysis of OS and DFS periods using the Kaplan-Meier methods revealed no statistically
significant difference between the pancreatic cancer subtypes; possibly due to the small sample size (Fig. SID,E)*.

Proteomics-based signalling pathway analyses distinguish disease subtypes. For each disease
subtype, we compared the enrichment of KEGG pathways and Gene Ontology (GO) biological process classifi-
cations of proteins that were upregulated within tumour belonging to each of the subtypes using Enrichr?. We
found that whereas certain pathways were differentially altered between tumours belonging to different subtypes,
other pathways were consistently altered (albeit to different extents in some cases) in the tumours of both sub-
types (Fig. 2A, also see Supplementary File 1).

The mTOR signalling pathway was altered in subtype-1 tumours but not in subtype-2 tumours (combined
score = 85, hypergeometric test; p=2.1 x 107). Within the mTOR pathway of subtype-1 tumours, we found
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Figure 1. Classification of pancreatic cancer: (A) Comparison between the proteomics-based subtyping of
pancreatic cancers using unsupervised hierarchical clustering, to other classification schemes from top to
bottom: TCGA’s (Raphael et al., 2017) miRNA, RPPA, and DNA methylation; mRNA-based classification
schemes using the gene biomarkers established by Collosson et al.; Bailey et al.; and Moffitt et al. (B) Illustrative
example of SNF steps: similarity matrices are used to create patient networks from protein, mRNA, miRNA
and DNA methylation data showing patient-to-patient similarities for the 45 pancreatic cancer patients. The
network nodes represent patients. The colours of edges joining nodes indicate the degree of similarity between
pairs of patients. The nodes of the fused network are coloured according to the subtypes to which the patient
tumours were assigned using spectral clustering of the combined patient network. (C) Comparison between the
SNF subtyping using spectral clustering to other classification schemes from top to bottom: TCGA’s™* miRNA,
and DNA methylation classifications; mRNA-based classification schemes®*$; TCGA’s RPPA classification, our
K-means clustering classification; our 3-cluster SNF classification; and our 2-clusters SNF classification.

increased expression of well-documented oncoproteins including MTOR and BRAF: both of which have previ-
ously been linked to pancreatic carcinogenesis (Fig. 2B)*%".

Further, we found that proteins that are involved in the KEGG Cancer Pathways were dysregulated in both
the subtype-1 and subtype-2 tumours; these pathways encompass several known oncoproteins (such as RAD51,
BRAC1, and ERBB2) and tumour suppressor proteins (such as PTEN and CDK2A1)*-% (Fig. 2C). Despite the
upregulation of the KEGG Cancer Pathways in tumours belonging to both subtypes, we found that the cluster-
ing of patients using only proteins within these cancer pathways was concordant with our subtype classification
(Fig. 2D). Such a clustering pattern indicates that even when the same pathways are altered in both subtype-1
and subtype-2 tumours, the exact nature of the alterations within these pathways still differs between the two
tumour subtypes. For example, whereas subtype-1 tumours exhibit hyperactivation of mTOR-associated sig-
nalling, subtype-2 tumours display increased activation of SMAD4-associated signalling. Also, we found that
other proteins involved in mTOR signalling were both more strongly correlated and more highly expressed in
subtype-1 tumours than they were in subtype-2 tumours, indicating the hyperactivation of this pathway requires
the increased expression of most of the mTOR signalling proteins (Fig. 3A). Likewise, SMAD4 signalling pathway
protein expression levels also differed significantly (p=2 x 10*) between these subtypes (Fig. 3B).

We further attempted to identify the kinases that likely phosphorylate substrates within the various signalling
pathways of pancreatic tumour cells. Using kinase enrichment analysis (KEA), we found a subset of kinases that
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Figure 2. Pathway enrichment analyses: (A) KEGG pathways enrichment results of the most significantly
altered pathways in tumours belonging to each of the inferred pancreatic cancer subtypes. Refer to
Supplementary File 1 for the complete list of KEGG pathways enriched based on the proteomics data. (B)
mTOR signalling pathways found to be uniquely altered in subtype-1 tumours. Blue nodes indicate proteins
with expression levels that were either not significantly altered between the subtypes or were not measured by
the TCGA. Red coloured nodes represent proteins with significantly altered expression levels with the degree of
statistical significance being expressed as the negative logarithm of Benjamin-Hochberg adjusted p-values. The
connectivity of network components was extracted from the KEA, ChEA, and UCSC super pathway databases.
(C) KEGG cancer pathways found to be consistently altered in tumours belonging to both pancreatic cancer
subtypes. (D) Clustergram of tumours using only the proteins that are members of the KEGG cancer pathways
ontology.

might drive pancreatic carcinogenesis, including, among others (Supplementary File 1), AKT1 (p=28.2 x 10~%),
MTOR (p=0.011), and RPS6KA1 (p =0.0499) (Fig. 3C)*'. We observed a moderate positive correlation
between proteins involved in mTOR signalling and their phosphorylated forms (Fig. 3D). Further, our results
show that the protein phosphorylation pattern among the two pancreatic cancer subtypes is distinctive. Here,
we found that in subtype-1 tumours various phosphoproteins that participant in mTOR signalling - such as
MTOR-pS2448, GSKB-pS21-S9, PDK-pS241 and growth factor receptors EGFR-pY1068 and ERBB-pY1248 - all
exhibited increased phosphorylation (Fig. 3E)**. These phosphoproteomics analyses support our initial findings
(using dephosphorylated proteins) that subtype-1 tumours display increased mTOR signalling. Conversely, for
subtype-2 tumours, we found elevated phosphorylation levels of proteins such as CDK1-pY15, p27-pT158 and
p27-pT198 (Fig. 3E) which are involved in cell-cycle-associated processes™.

Opverall, our findings suggest that for tumours of the two major pancreatic cancer subtypes, oncogenesis may
be primarily driven by perturbation in either SMAD4 or mTOR signalling.

Pancreatic cancer subtypes exhibit functional differences in mRNA levels and DNA methyla-
tion patterns. We attempted to determine whether any GO molecular functions were enriched for among the
overexpressed genes that differentiated the two pancreatic cancer subtypes. Specifically, we queried Enrichr using
mRNA transcripts that were significantly upregulated across all of the tumours belonging to a particular subtype
(see Supplementary File 2)*%. We found that the over-transcribed genes in subtype-2 tumours were enriched for,
among others, molecular functions associated with transmembrane transporter and G-protein coupled receptor
activities (Fig. 4A, also see Supplementary File 1). Alternatively, the over-transcribed genes in subtype-1 tumours
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Figure 3. (A) Pearson’s correlation values of some proteins involved in mTOR signalling. The plot shows
relatively higher expression levels of these proteins in subtype-1 tumours compared to subtype-2 tumours.

(B) Boxplots show mTOR and SMAD4 protein expression biomarker of the SNF subtypes. (C) Enriched
phosphosites identified by kinase enrichment analysis: the negative logarithm values of the Benjamin-
Hochberg adjusted p-value are plotted on the y-axis while kinases are plotted along the x-axis. The red line
represents the cut-off values at the 10% false discovery rate. (D) Correlation between the phosphorylated and
de-phosphorylated proteins species for proteins involved in the mTOR signalling pathway. (E) Unsupervised
hierarchical clustergram of tumours phosphoproteins showing high concordance with the clustering obtained
from all the proteins (de-phosphorylated and non-phosphorylated protein) profiled by the TCGA. The
clustergram was produced using the Spearman correlation distance metric and the complete linkage.

were enriched for, among others, molecular functions that are associated with phosphoinositide 3-kinase signal-
ling, peptidase enzyme activity and growth factor receptors (Fig. 4A, also see Supplementary File 1).

We explored the enriched KEGG pathways that were differentially expressed between the two pancreatic can-
cer subtypes using lists of genes with methylation profiles and mRNA transcription levels that differed between
the subtypes (see Supplementary File 2). Interestingly, we found that only subtype-1 tumours displayed enrich-
ment for pancreatic secretions (Fig. S2A). These results corroborate both our previously noted enrichment in
subtype-1 tumours of mRNAs involved in transmembrane transport, and published observations that the secre-
tion of compounds from the pancreas and other organs is associated with increased transmembrane transporter
activity™.

Similarly, for both enrichment analyses using differentially expressed mRNA and proteins, we found enrich-
ment for components of the AGE-RAGE signalling pathway in subtype-2 tumours (Figs. 2A and S3A). The
AGE-RAGE system promotes the development of various types of cancers, including those of the pancreas and
prostate, through diminished apoptosis and increased cell viability*®*’. Therefore, targeted inhibition of RAGE
may serve as an effective treatment strategy against subtype-2 tumours.

In addition to these findings, the DNA methylation data revealed that while the methylation landscapes of
subtype-1 and subtype-2 tumours were generally similar, the subtype-1 tumours had some additional genes dis-
playing significantly increased DNA methylation (Supplementary File 2). We noted that these hypermethylated
genes participate in various cellular pathways including focal adhesion, RAP1-signalling, and actin cytoskeleton
regulation (Fig. S2B). Since these DNA methylation alterations are unique to subtype-1 tumours, they could be
associated with reduced pancreatic tumour aggressiveness.

Unexpectedly, we observed no significant differences in mutation distributions and gene copy number alter-
ations for the genes with transcription and translation profiles that differed between the two subtypes (Fig. 4B).
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Figure 4. (A) Network of Gene Ontology (GO) molecular functions found enriched between the two
pancreatic cancer subtypes. Enrichr was used to obtain enriched GO-terms that were visualised in Cytoscape
(refer to the methods section). Each node represents a GO-term with similar nodes clustered together and
connected by edges with the number of shared genes between the nodes being represented by the thickness of
the edges. The size of each node denotes the gene set size of the represented GO-term. The colour of each node
represents the magnitude of the combined enrichment score: red represent enrichment in subtype-1 tumours
and blue represents enrichment in subtype-2 tumours. (B) The integrated plot of clinical and molecular features
of 45 tumour samples ordered by their SNF clustering positions. From top to bottom panels indicate: patient
gender; Age at which a condition or disease was first diagnosed; neoplasm histological grade; SNF subtype of
tumour; SMADA4 protein expression level; mTOR protein expression level; significantly mutated genes: TP53,
SMAD4 and KRAS gene mutations; SMAD4, CDKN2A and BCL2 gene deep deletion (dark blue) and shallow
deletion (pale blue); gene amplification (red) and copy number gain (pink) of multiple genes.

Biomarker genes, proteins and miRNA sets that define the pancreatic cancer subtypes. Given
that different types of molecular data yield different patterns of tumour clustering, we attempted to identify bio-
marker genes, proteins or miRNA sets that best differentiated between the two pancreatic cancer subtypes. It
was anticipated that these sets of biomarker genes might allow for consistent classification of pancreatic cancer
patients using machine learning methods applied to only one category of molecular data.

To extract relevant features for each category of molecular data, we applied the diagonal adaptation of neigh-
bourhood component analysis (NCA) for classification with regularisation®®. NCA learns feature weights for
minimisation of an objective function that measures the average leave-one-out classification loss over the training
data (Fig. S3A,B)%.

Using NCA, we identified biomarker sets comprising 50 mRNAs, 49 methylated genes, 14 proteins, and 20
miRNAs. For these biomarker sets, we separately applied hierarchical clustering to each of the different molecular
data categories to consistently and accurately reproduce the pancreatic cancer subtype classifications (Fig. 5A-D).
Also, we individually applied supervised machine learning methods to the 50 mRNA, and the 49 methylated
gene sets to classify tumours into subtype-1 and subtype-2 categories. For this, we used the K-nearest neigh-
bour (KNN) algorithm for the mRNA expression data and the support vector machines (SVM) classifier (see

SCIENTIFIC REPORTS |

(2020) 10:1212 | https://doi.org/10.1038/s41598-020-58290-2


https://doi.org/10.1038/s41598-020-58290-2

www.nature.com/scientificreports/

Protein

— e

Methylation
et ]

o
®
w ° i © .« © R it o
® 150 ® C:) o ° @. ®
. . .
“17 % ONL ™ ® . ® ° c® o
oo ° o8, NN R
3° e ®a te g ° © o . « z
" RECRE PN - ° © o2 °
- ® o
e 0% ® - ©® o ‘@0 ®
o LI .
° . ° . © 150 ®
® ® 200 ®
o

eceace IIHIRERINAAORNRRREERRNEAUCLOR ERRELRNNERRRACRRTRRRRIRNNERRD L RRRRRRINN! 0y IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII I
ancer stucy |10 000 00000 RT AN

o
tSNE-1

ocation |00 0000 NN RN AR

50 o
SNE-1

2]
Histological Diagnoste || R0 R0 0000000000000 T T T D B B @A
A5 ATRRTERERTRRREERARERRUREENAREERARYRRI Y o
ener X000 0000 EREERARRRRRRERAREERFAREERARETRRARNERUNAD - I oroto [ wato

IIIII {TTLET T PR TR a2 3 4
OETIRRRFONERTRNTHANTRTINTHIY M reoa [l rcee

swrciusters | 1NN ERE IR \III||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| [ snr [l swe2
1O, 0 O O O 0 00 00 0 0 0 A 0~ O
TGFBR2
oo Q0 W11 W0 W T LEE L LI im e =
s ] I 1 I I I nl |l
wor 1| I il T
g oo I i I 11 =N
g we 1] B I 11
2 o 10N0 NI ONAON 1 D0 VARARONOOO SOOI 08 OMAIOR 00 EAARAARAORD 0 TARAARIE 10 100 ARSI - E—
e T T T T I I AT I ~N
T T T 11 I miliing T
el I L A I ol
e L B0 0 S = I
S I T T I M L IO m
o 50 100 150
2

Location: 1 = body; 2 = head; 3 = others; 4 = tails

Hlstologlcal Dlagnosls 1 = Acinar Cell Carclnoma 2 = Intraductal Papillary Mucinous

with invasion; 3 = P: -Other Subtype; 4 = Pancreas-Colloid

Ductal

Figure 5. Clustered heatmap of tumours using the (A) mRNA biomarker gene set, (B) DNA methylation
biomarker gene set, (C) protein biomarker set, and (D) miRNA biomarker set. All the heatmaps (In A-D) were
produced using unsupervised hierarchical clustering with the cosine distance metric and complete linkage. The
coloured bars on each clustergram shows the original subtype classification of each patient’s tumour found by
applying SNF and spectral clustering to all molecular data sets. (E) Supervised classification of cancer patients
using the mRNA biomarker set trained on the KNN-machine learning model. (F) Supervised classification

of cancer patients using the DNA methylation biomarker set trained on an SVM-machine learning model.

For both plots (E,F), t-SNE was used to visualise the tumour classes using the exact algorithm and squared
Euclidean distance metric. Circled points represent newly classified TCGA pancreatic cancer patients, whereas
un-circled points represent the original 45 tumour samples that were used to train the models. Crossed

points represent disagreement between the mRNA-based model and the DNA methylation-based model. (G)
Supervised classification of ICGC cancer patients using the mRNA-based KNN model trained on TCGA data.
Circled points represent newly classified ICGC pancreatic cancer patients, whereas un-circled points represent
the original 45 TCGA tumour samples that were used to train the model. (H) Unsupervised hierarchical
clustering of the ICGC patients using the mRNA biomarker gene. The coloured bar on the clustergram shows
the KNN model predicted class. (I) The integrated plot of clinical and molecular features for the TCGA and
ICGC patient’s data, ordered by their integrative (SNF) clustering. From top to bottom panels indicate primary
tumour location; neoplasm histological type; patient gender; age at diagnosis; neoplasm histological grade;
cancer study; integrative tumour subtypes; non-silent gene mutations. The key to the number coding of tumour
location and histological diagnosis is at the bottom.

methods section) for the DNA methylation data to achieve very accurate subtype classifications of the tumours
(Fig. 5E,F)**0. Specifically, we observed five-fold cross-validation classification accuracies of 99% for the
mRNA-based KNN classifier and 98% for the DNA methylation-based SVM classifier, with an agreement of 97%
(see methods sections).
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Decreasing the number of biomarker genes needed to accurately classify tumours from new pancreatic cancer
patients would improve the utility of these sets in a clinical diagnostic setting. To identify smaller biomarker gene
sets, we used supervised machine learning methods (see methods section) to define a biomarker set of fewer than
ten genes, miRNA or proteins that would minimise incorrect classifications (Fig. S3E). Also, we used these bio-
marker sets to consistently re-classify TCGA pancreatic cancer patients using hierarchical clustering (Fig. S3F-I).
These results imply that smaller gene sets could potentially be useful in a clinical diagnostic setting.

To validate the performance of our 50-mRNA biomarker set, we downloaded pancreatic cancer data from
the ICGC data portal'?. Using the mRNA-based KNN classifier that was trained on TCGA data, we tested the
reproducibility of the two-subtype classification scheme by classifying 96 ICGC pancreatic cancer patients
into subtypes-1 and subtypes-2 (Fig. 5G). We also applied unsupervised hierarchical clustering to the mRNA
biomarker set extracted from the ICGC RNAseq data to reproduce a two-subtype classification analogous to
that obtained fusing the TCGA datasets (Fig. 5H). The grouping of ICGC patients yielded by the supervised
“TCGA classifier” and the unsupervised “ICGC classifier” agreed on the classifications of 94% of the patients.
We observed that 5% of patients with posterior subtype membership probabilities that were less than 0.7, were
more likely to be among the discordant cases, accounting for five out of the seven discordant patients (Fig. 5SH)*..

We examined mutational data for the genes that are frequently altered in pancreatic cancer together with the
clinical features of subtype-1 and subtype-2 tumours from all of the patients represented in the TCGA and ICGC
datasets (Fig. 5I). Here, we found no significant differences in the gene mutations between the tumour subtypes
(see Supplement Table 2). Also, we observed that no genes were consistently altered in all of the tumours belong-
ing to either of the subtypes. Similar to other studies, we discovered that some tumours lack mutations in any of
the frequently mutated genes*>**. This diversity in the mutational landscape of pancreatic cancer tumours is likely
to complicate the discovery of broadly applicable treatment regimens that target driver mutations*.

Concerning histological features of tumours that might be useful for differentiating between the subtypes, we
observed that only subtype-1 tumours displayed evidence of intraductal papillary mucinous neoplasm, whereas
only subtype-2 tumours were categorised by histological inspection as being pancreatic adenocarcinomas
(Fig. 51). Further, we found that subtype-1 tumours tended to be assigned a lower grade than subtype-2 tumours
(x*=10.3,p<0.01).

Subtyping pancreatic cancer cell lines and predicting drug responses. We obtained mRNA
expression and drug response data for 45 pancreatic cancer cell lines from the Cancer Cell Line Encyclopaedia
(CCLE)". We attempted to subtype these cell lines using the biomarker gene set identified using the KNN classi-
fier that we trained on the TCGA mRNA data (Fig. 6A). It is known that cell lines with similar transcription pro-
files are likely to exhibit similar responses to drug perturbations!®4*. It follows, therefore, that the drug response
profiles of cell lines should be predictable based on their gene expression profiles!®4>46,

We predicted the anti-cancer drug responses of the cell lines from the drug response profiles of the cell lines
that are most similar (i.e., the nearest neighbours) to each “query” cell line as determined using an exhaustive
KNN searcher model*”. The Searcher model quantified and stored information concerning similarities between
the transcription profiles of all the cell lines. Next, we retrieved the drug response profile of a “query” cell line
and those of its nearest neighbours based on squared Euclidean distances from the Searcher model. To infer the
drug response of the query cell line, we calculated the median drug response of the retrieved nearest neighbour
cell lines to each of the 24 anticancer drugs that were profiled by the CCLE (Fig. 5B). For example, in Fig. 5B, the
cell lines SU8686 and PANC1005 both have available drug response profiles in the CCLE database, and both are
the nearest neighbours of the cell line, PANC0203. Therefore, we used the mean drug responses of SU8686 and
PANCI1005 to predict the drug responses of PANC0203 (see methods section) (Fig. 5C).

After predicting the drug responses of all the pancreatic cancer cell lines that also had observed drug response
data, we compared the predictions to the observed drug responses. Our drug response predictions displayed sub-
stantial agreement with the actual drug responses in that they yielded an average Kappa statistic of 0.67 (Fig. 5D).

Discussion

We conducted a comprehensive analysis of clinically relevant patterns of mutation, methylation, transcription,
protein expression, and miRNA synthesis within pancreatic cancer tumours. Several pancreatic cancer studies
have previously highlighted the limitations of utilising a single molecular data type to accurately classify pan-
creatic cancers (Fig. 2A)*!448 Here, we attempted to resolve this issue by employing a multidimensional clus-
tering method capable of simultaneously utilising protein expression, mRNA transcription, DNA methylation
and miRNA synthesis data. We found that by integrating across all these molecular data types, pancreatic cancer
tumours could be classified into two clinically distinct subtypes: which we have simply named subtype-1 and
subtype-2.

We observed that subtype-1 tumours were characterised by alterations of the mTOR signalling pathway, and
the expression levels of different mTOR pathway proteins were positively correlated to each other (Fig. 1B-D).
This finding is consistent with previous studies based on analyses of mRNA transcription and mutation data
which also observed alterations of the mTOR pathway in pancreatic cancers*-!. Further, it is well established that
some pancreatic cancer subtypes respond well to drugs which inhibit the mTOR pathway>>>*. Accordingly, we
anticipate that subtype-1 tumours will likely be more responsive to such therapies than will subtype-2 tumours.

Interestingly, subtype-2 tumours display unique alterations to cell cycle pathways (Fig. 1EG). This is consistent
with the observation that subtype-2 tumours are clinically more aggressive than subtype-1 tumours in that an
element of aggressiveness is the hyperactivation of the cell cycle processes that accelerate tumour growth®->7.

We noted that, in addition to differences in patterns of protein expression, the two pancreatic cancer subtypes
differ with respect to patterns of protein phosphorylation, implying that the kinases that are involved in onco-
genic transformation differ between the subtypes. Specifically, whereas subtype-1 tumours show upregulation of
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Figure 6. (A) Supervised classification of CCLE pancreatic cancer cell lines using the mRNA-based KNN-
model trained on TCGA data. t-SNE was used to visualise the tumour classes using the exact algorithm and
squared Euclidean distance metric. Circled points represent classified CCLE cell lines, whereas un-circled points
represent the TCGA samples used to train the models. (B) The t-SNE plot represents the KNN search for the
nearest neighbours of PANCO0203 in the exhaustive searcher model. Refer to the legend at the right bottom of
the figure for interpretation. (C) Drug response prediction: first two lanes represent the ranked drug responses
to the 24 anticancer drugs of the PANC0203 nearest neighbours (PANC1005 and SU8686) for which such data
is available. The last two lanes represent PANCO0203’s predicted drug responses and its actual drug responses.
(D) Kappa scores of all CCLE pancreatic cancer cell lines with drug data. The kappa score was calculated
using the quadratic method by comparing the actual and predicted drug responses of cell lines to the 24 CCLE
anticancer.

mTOR signalling associated kinases (among others, MTOR-pS2448, GSKB-pS21-S9, and PDK-pS241), subtype-2
tumours display upregulation of cell cycle associated kinases (among others, CDK1-pY15, p27-pT158, and
p27-pT198; Fig. 3E). Most of these kinases represent credible targets for small molecule inhibitors that might
prove useful for subtype-specific anticancer therapies. Such small molecule kinase inhibitors are currently either
being tested in clinical trials or are already in use as cancer therapies®”~%.

In addition to displaying alterations in the mTOR signalling pathway, subtype-1 tumours also display evi-
dence of elevated ion channel (Fig. 4A,D) and secretion pathway activities: a phenotype that is likely associated
with increased trans-membrane transport of cell products (Fig. S2A). Changes in the expression patterns of ion
channel proteins are also found in breast and prostate cancers®"%%. In pancreatic cancers, ion channel proteins
likely play crucial roles in cellular processes that are integral to oncogeneses such as cellular proliferation, motil-
ity, tissue invasion, and the excretion of lactic acid produced as a consequence of anaerobic respiration®*, It is
plausible therefore that subtype-1 tumours may be responsive to anti-cancer treatments that target ion channels
and membrane pump proteins®.

Subtype-2 tumours on the other hand display elevated peptidase activities (Fig. 4A,C). Peptidases regulate var-
ious proteins that play essential roles in regulatory signalling networks. As is presently the case for tumours of the
kidney, peptidases may be useful as diagnostic and/or prognostic biomarkers of subtype-2 pancreatic cancers®>°.

We found no significant differences in the mutational landscape between the two pancreatic cancer subtypes,
indicating that the accumulation of similar genetic mutations drives the formation of tumours belonging to both
subtypes. Recently, the paradigm of oncogenesis has been expanded beyond the classical view that oncogenesis
is entirely driven by the accumulation of genetic mutations®”-*®. This paradigm now includes the disruption of
epigenetic regulatory mechanisms and variations in miRNA expression®®-7. Unlike with mutations, we currently
lack adequate conceptual knowledge and the analytical framework needed to identifying putative driver and
passenger changes in epigenetic and miRNA based regulatory processes’~"°.

Nevertheless, we observed several differences between subtype-1 and subtype-2 tumours with respect to
epigenetic (DNA methylation profile) and miRNA signatures. These suggest that epigenetic and/or miRNA
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variations may be primarily drivers of the differences in the transcriptome and proteome profiles of subtype-1
and substype-2 tumours.

In line with other studies that have identified biomarkers to classify tumour subtypes, some of which have
important treatment and prognostic implications, we identified biomarker mRNA, DNA methylation, protein
or miRNA sets that could be used to accurately subtype pancreatic tumours®**77. We are optimistic that any of
these four biomarker sets could be individually used to obtain accurate subtype classifications for new pancreatic
tumours. Nevertheless, the utility of these four biomarkers sets for predicting clinical outcomes and guiding
treatment strategies will need to be evaluated in future studies.

Encouragingly, we were able to demonstrate that, by focusing on just the transcription levels of the mRNA
molecules that are represented in our mRNA biomarker set, we could accurately predict the drug responses of
cancer cell lines based on the drug responses of other cancer cell lines with similar mRNA expression profiles.
Although others have also been able to predict the drug responses of cell lines using similar machine learning
approaches!®11454678 our approach is novel in that it utilizes tumour subtyping based on all available molecular
data to mine for biomarkers that differentiate disease subtypes: biomarkers which are then used to inform our
KNN exhaustive search model with respect to quantifying the similarity of cell lines. What this means is that our
approach is capable of utilizing matched molecular data and drug responses from either cancer patients or cell
lines to predict, with reasonable accuracy, the drug responses of tumours for which we have only information on
the concentrations of the mRNAs, proteins or miRNAs that are included within the biomarker sets which we have
identified. As with other machine learning based inference schemes, the accuracy of the predictions that are made
should improve given additional matched molecular and drug response data”.

Altogether, our analyses have revealed the molecular underpinnings of, and potential treatment strategies for,
two clinically distinct forms of pancreatic cancer. We are optimistic that an approach such as we have used, where
multiple different molecular data types are leveraged to subtype and characterise particular tumour variants,
could yield valuable insights into the management of other difficult to treat cancers such as those of the lungs and
triple negative breast cancer.

Methods

We analysed data from 185 of the pancreatic cancer patients who had contributed samples to the TCGA project".
Data on these patient samples within the TCGA included: reverse phase protein array-based proteomics data
(RPPA; n=45), whole exome sequencing data (n=76), transcriptome data determined using RNAseq (n=76);
DNA copy number and mutation data (n=76), miRNA data (n = 56), and comprehensive clinical data. For our
analyses, we only considered the 76 “high purity” samples for which transcriptome and whole exome sequencing
data was available. Out of these 76 samples only 45 have RPPA data. All data used in our analyses were obtained
from cBioPortal (http://www.cbioportal.org)®.

RPPA-based Classification of Pancreatic Cancer. K-means clustering of proteomic data was performed
to identify subtypes of the 45 high purity TCGA pancreatic tumour datasets with available RPPA data®. To find
the most informative number of clusters, K-means clustering was run over 500 iterations for cluster sizes (K val-
ues) of two, three, four, and five (i.e., K=2 to 5). The average silhouette values for each value of K were compared,
revealing that the two-cluster solution had the highest mean silhouette value and was therefore deemed to be the
most coherent (Fig. S1B). To aid in visualizing the most informative features that differentiated between the two
inferred tumour subtypes, the 112 proteins with the highest entropy values across samples were used to reproduce
the two-cluster K-mean classification using semi-supervised hierarchical clustering (Fig. 1A)®!. The clustering
pattern thus obtained was visualised using a principal component analysis plot (Fig. S1A)%. The clustering of
these 45 pancreatic cancer tumours based on protein, miRNA and DNA methylation data has been previously
published by Raphael ef al.!4, and the results of these clustering analyses were extracted from the supplementary
file of that publication.

Integrative Subtyping of Pancreatic Cancer. Similarity Network Fusion (SNF) is a clustering method
that considers information from multiple molecular profiles. It has previously been used to segregate tumours of
various cancer types based on multiple different sources of molecular data'®. Briefly, standard normalised pro-
tein, mRNA, miRNA, and DNA methylation data derived from the 45 high-purity samples were used to create
patient similarity networks (Fig. 2B). Next, we ran SNF to fuse the similarity networks over 25 iterations, with
hyperparameter settings of 24 and 0.7 for the number of neighbours and alpha value, respectively. Finally, spectral
clustering with two specified as the best number of clusters (identified according to the eigengap) was applied to
the unified similarity network to obtain the final tumour classification (Fig. 2C)".

Patient’s clinical characteristics of the pancreatic cancer subtypes. The Kaplan-Meier method was
used to compare overall survival and the duration of progression-free survival of patients with tumours belonging
to the different pancreatic cancer subtypes®.

Pathways and kinase enrichment analyses. The differentially expressed proteins between the
pancreatic cancer subtypes were identified using the Student ¢-test with unequal variance and with the
Benjamin-Hochberg correction applied to p-values®*34. Further, we queried Enrichr with two lists of 60 and 30
proteins found to be upregulated in subtype-1 and subtype-2 tumours, respectively, to return enriched KEGG
pathways for each subtype (see Supplement File 1)2*%>. The enriched KEGG pathways were compared to iden-
tify pathways that are unique to each of the disease subtypes®. The proteins that participate in pathways that
are uniquely altered in sybtype-1 or subtype-2 tumours were used to construct protein-protein interaction net-
works using known interactions from each of the following databases: the University of California Santa Cruz
Super pathway (101,525 protein-protein interactions), the Kinase Enrichment Analysis (428 kinases and their
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10,792 targets), and Chromatin Immunoprecipitation Enrichment Analysis 2016 (667 transcription factors and
their 464,967 targets)*$7%. We visualised the resulting networks in yEd (Fig. 1B,C). Lastly, Kinase Enrichment
Analysis was used to computationally identify the kinases that are responsible for the observed phosphorylation
patterns in pancreatic cancer’!.

The moderated student ¢-test based on the negative binomial model was used to identify differentially
expressed mRNAs and variations in DNA methylation patterns (see Supplementary File 2)%-°. Additionally,
functional enrichment analyses were performed using lists of differentially expressed mRNA transcripts or altered
DNA methylation patterns associated with each disease subtype. These were used to query Enrichr to return
Gene Ontology (GO) molecular functions and KEGG pathways enriched for each disease subtype (Figs. 4A,
S2A,B, Supplementary File 2). A custom MATLAB script was used to create an enrichment network based on the
enriched GO-molecular function designations. This enrichment network was visualised in Cytoscape(Fig. 4A)°".

Identification and evaluation of biomarker sets. We used various data mining and machine learning
methods to identify biomarker sets of mRNAs, DNA methylation, miRNAs or proteins that individually and con-
sistently best stratified the two pancreatic cancer subtypes. The diagonal adaption of neighbourhood component
analysis (NCA) with regularisation method was used to select the most useful features for each molecular data
type’. Briefly, NCA attached feature weights to each attribute where the feature weights are used to select the
most important attributes for classification. For each molecular biomarker dataset identified using NCA, unsu-
pervised hierarchical clustering was applied to the TCGA datasets to reproduce the two-subtype pancreatic can-
cer classification (Fig. 5A-D). To apply supervised machine learning methods that accurately predict the tumour
subtypes while utilising only one molecular data type, 23 different machine learning classifiers were trained rang-
ing from linear discriminate analysis, support vector machines, decision trees, logistic regression, ensemble trees,
and K-nearest neighbour algorithms. Then, the best performing classifier for each molecular biomarker dataset
was selected based on their 5-fold cross-validation accuracy and area under the receiver operating characteristic
curve. The selected models were the cubic K-nearest neighbour for the mRNA biomarker set (98.7% accuracy),
quadratic SVM for the DNA methylation biomarker set (97.8% accuracy), Ensemble bagged trees for the protein
biomarker set (95.6%), and the course Gaussian SVM for the miRNA biomarker set (93.3% accuracy)®.

To improve the accuracy of these models, the optimal hyperparameters that minimise the five-fold
cross-validation loss were obtained using Bayesian hyperparameter optimisation (Fig. $3C,D)**-°. This improved
the overall classification accuracy of the models on the cross-validation set to 100% for the mRNA-based KNN
model and 99% for the DNA methylation-based SVM model. The trained models were then used to classify 31 other
high-purity pancreatic tumours from the TCGA (Figs. 4F and 5E). Supervised learning models based on the pro-
teomic or miRNA biomarkers datasets were not trained because there were too few other high purity samples pro-
filed by TCGA for these data types. Further, for each molecular data biomarker set, between three and ten features
were selected based on the lowest cross-validation loss of the best performing algorithm (Fig. S3E). These features
were then used to classify TCGA pancreatic cancer samples using unsupervised hierarchical clustering (Figs. S3F-I).

Validating biomarker molecular datasets. To evaluate the performance of the biomarker mRNA on a
different pancreatic cancer dataset, we downloaded pancreatic cancer data from the ICGC data portal'>. From
the initial 50 mRNA biomarker set identified using the TCGA dataset, only 45 had corresponding data in the
ICGC mRNA dataset. Therefore, we extracted the 45 gene biomarker set from both the TCGA and ICGC data.
The mRNA-based KNN model was then re-trained on the TCGA 45 mRNA biomarker set. Here, standard nor-
malisation was applied as a pre-processing step both to avoid platform associated biases, and because it was
previously performed on the data before SNF clustering. Thereafter, the TCGA mRNA-based KNN model was
used to predict the subtype of tumours in the ICGC dataset using a standard normalised mRNA biomarker set
that was extracted from the ICGC RNAseq data (Fig. 5G). Also, unsupervised hierarchical clustering was applied
to the ICGC biomarker gene set (Fig. 5F). Finally, the mutational landscape and clinical characteristics of the two
pancreatic cancer subtypes of both the ICGC and TCGA datasets were compared (Fig. 5I).

Subtype classification of cell lines. mRNA expression data from 45 pancreatic cancer cell lines together
with their response profiles to 24 anticancer drugs were downloaded from the Cancer Cell Line Encyclopaedia'.
The 50-mRNA biomarker set was extracted from the mRNA expression dataset and standard normalised. Then,
the normalised CCLE mRNA biomarker genes were to subtype the cell lines by running the mRNA transcript
levels for these genes through the mRNA-based KNN-model trained on TCGA data. The predicted subtypes of
the CCLE cell lines were visualised using t-distributed stochastic neighbour embedding (t-SNE) (Fig. 6A).

Machine learning method to predict a cell line’s drug response.  An exhaustive nearest neighbour
searcher model was created using standard normalised mRNA biomarker sets of both the CCLE cell lines and
TCGA tumours®. The exhaustive searcher model takes as input the training data (in this case the mRNA bio-
markers), distance metrics, and parameter values of the distance metrics for an exhaustive nearest neighbour
search and can then be used to identify the nearest neighbours to a particular patient tumour or cell line within a
specified radius of the distance matric. Here, the nearest neighbours to a particular cell line suggest similarity at
the molecular level based on mRNA, DNA methylation, protein and miRNA data encoded in the SNF subtyping.
The ten nearest neighbouring cell lines or tumours were determined using a nearest neighbour search algorithm
based on a squared Euclidean distance metric (see Fig. 5B for intuition). After that, the drug response activity
areas of the nearest neighbour cell lines were z-normalized and categorised as sensitive (for z-scored activity
areas > 0.8), intermediate (for z-scored activity areas between 0.8 and —0.8), or resistant (for z-scored activity
areas < —0.8). A simple prediction model was employed where the median responses to a particular drug of the
nearest neighbouring cell lines was used to infer a target cell line’s drug response (Fig. 6B,C). Following this the
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quadratic Cohen’s Kappa score was used to evaluate the goodness of fit between the predicted and the actual drug
response profiles of the cell lines (Fig. 6D)%’.

Statistical analyses. All statistical analyses were performed in MATLAB 2018a except where stated other-
wise. Fisher’s exact tests were used to assess associations between categorical variables. Wilcoxon rank sum tests
or independent sample Student ¢-tests were used for continuous variables where appropriate. Statistical tests were
considered significant at p < 0.05 for single comparisons, and for Benjamini-Hochberg adjusted p-values < 0.05
for multiple comparisons.

Ethics approval. The University of Cape Town; Health Sciences Research Ethics Committee (HREC)
IRB00001938 approved the protocol of this study.
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