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Abstract
β-Hydroxy-β-methylbutyrate (HMB) is a popular ergogenic aid used by human athletes and as a supplement to sport horses, because of its
ability to aid muscle recovery, improve performance and body composition. Recent findings suggest that HMB may stimulate satellite cells and
affect expressions of genes regulating skeletal muscle cell growth. Despite the scientific data showing benefits of HMB supplementation in
horses, no previous study has explained the mechanism of action of HMB in this species. The aim of this study was to reveal the molecular
background of HMB action on equine skeletal muscle by investigating the transcriptomic profile changes induced by HMB in equine satellite
cells in vitro. Upon isolation from the semitendinosus muscle, equine satellite cells were cultured until the 2nd day of differentiation.
Differentiating cells were incubated with HMB for 24 h. Total cellular RNA was isolated, amplified, labelled and hybridised to microarray
slides. Microarray data validation was performed with real-time quantitative PCR. HMB induced differential expressions of 361 genes.
Functional analysis revealed that the main biological processes influenced by HMB in equine satellite cells were related to muscle organ
development, protein metabolism, energy homoeostasis and lipid metabolism. In conclusion, this study demonstrated for the first time that
HMB has the potential to influence equine satellite cells by controlling global gene expression. Genes and biological processes targeted
by HMB in equine satellite cells may support HMB utility in improving growth and regeneration of equine skeletal muscle; however, the
overall role of HMB in horses remains equivocal and requires further proteomic, biochemical and pharmacokinetic studies.
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The domestic horse, Equus Caballus, is an evolutionary
successor of grazing herbivores, whose survival was closely
related to the speed and endurance necessary to escape
predators and search for food. Since its domestication, man has
used selective breeding to enhance performance capabilities of
equids, so that they can fulfil their important role in human
civilisation(1). This has made the horse a valuable animal model
for studying exercise physiology.
In modern days, the horse has become an extraordinary

‘athlete’, exercised for a broad range of sporting activities
(racing, endurance rides, show jumping, dressage, 3-d eventing,
heavy draught work, polo, reining, cutting and competitive
driving, as well as pleasure riding)(1), which may be associated
with serious muscle overloading and an increased risk of
injuries. This concerns especially the top-level competitors
that are exposed to maximal training loads to achieve even
a tiny increase in performance; however, even this small edge
over competitors may result in winning the competition(2).

This explains the growing demand for alternative treatments
that may help improve equine muscle performance and avoid
injury. One of these is supplementation with β-hydroxy-
β-methylbutyrate (HMB), a metabolite of the essential
branched-chain amino acid leucine(3). The benefits of HMB
supplementation on muscle metabolism have been demon-
strated in various species, under physiological as well as
pathological conditions(3,4). Previous studies have indicated that
HMB may affect muscle metabolism and growth by at least six
different mechanisms of action, including attenuation of protein
degradation(5), increased protein synthesis(6), protection of
sarcolemma(7), inhibition of apoptosis(8), enhancement of
somatotrophic axis function(9) and myogenic cell activation(10).
Recent evidence has indicated additional benefits of HMB
supplementation related to energy metabolism, including
improved aerobic performance(11) as well as increased fat loss
with exercise(12); however, the underlying mechanisms are
poorly understood.

Abbreviations: AB, antibiotics; Abca1, ATP-binding cassette, sub-family A, member 1; DAVID, Database for Annotation, Visualization and Integrated Discovery;
DEG, differentially expressed genes; ESC, equine satellite cells; Mapk14, mitogen-activated protein kinase 14; Prkab2, protein kinase, AMP-activated, β2 non-
catalytic subunit; SC, satellite cells; Trim63, muscle-specific RING finger protein 1.
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Despite the large amount of literature linked to HMB,
only two reports have supported anecdotal data showing
HMB’s benefits in thoroughbred racing horses. In one of them,
exercising thoroughbred race horses receiving daily 15 g Ca salt
of HMB during a 16-week training season showed a significant
decrease in post-exercise blood creatinine phosphokinase and
lactate levels over both training and racing seasons(13). Miller
et al.(14) observed similar results when supplementing racing
horses with 10 g of HMB daily, with a significantly improved
win rate after the 1st month of racing. Taken together, the
present experiment meets the demand for more detailed
studies concerning HMB’s effectiveness in horses.
In adult skeletal muscle, regeneration and hypertrophy

depend on the activation of mononucleated, muscle precursor
cells called satellite cells (SC)(15), embedded between the
sarcolemma and the basement membrane of muscle fibres.
Previous in vitro and in vivo studies indicate that HMB may
activate SC(8,10,16,17), but the mechanism underlying this action
remains unclear. Some evidence suggests that HMB regulates
the expression of myogenesis-related genes(8); however, until
now, no one has demonstrated any effect of HMB on global
gene expression.
The horse is a valuable animal model for studying exercise

physiology. Gene expression determines most of the pheno-
type; therefore, the present study focused on revealing the
molecular background of HMB action in equine skeletal muscle
by investigating the impact of HMB on global gene expression
in differentiating equine satellite cells (ESC) in vitro. To our
knowledge, this is the first study where HMB’s trancriptomic
profile was described. This in vitro model can help identify and
better understand the potential therapeutic options to promote
muscle regeneration and energy metabolism in horses and
other mammals.

Methods

Cell culture

Media and reagents. The following materials were used during
cell culture: the Ca salt (monohydrate) of HMB (Ca-HMB) was
purchased from Metabolic Technologies; Dulbecco’s Modified
Eagle Medium (DMEM) (1×) with glutamax, fetal bovine serum
(FBS), horse serum (HS) and antibiotics (AB) – penicillin–
streptomycin and fungizone – were purchased from Gibco, Life
Technologies; penicillium crystalicum (AB) was purchased from
Polfa Tarchomin; PBS, protease from Streptomyces griseus and
DMSO were purchased from Sigma Aldrich. Tissue culture
flasks Primaria (25, 75 cm2) and Collagen I Cellware six-well
plates were purchased from Becton Dickinson. Ca-HMB was
transformed to the acid form by acidification with 1N-HCl. HMB
was then extracted four times with diethyl ether. The pooled
organic layer was dried under vacuum for 24 h at 38 °C. The
resulting free acid was 99% HMB as assessed by HPLC.

Muscle sampling and satellite cells isolation. Semitendinosus
muscle samples were collected ex vivo from six horses
(6-month-old, healthy colts). Muscle sampling and ESC isolation
are described in detail by Szcześniak et al.(18). In brief,

semitendinosus muscle samples were dissected free of
surrounding tissues, sliced, washed in PBS with decreasing
antibiotics concentration, suspended in FBS with 10% DMSO,
cooled to −80°C and stored in liquid N2. Before isolation, the
samples were thawed, centrifuged and washed three times with
PBS along with antibiotics. Samples were incubated with DMEM/
AB/protease from S. griseus and sieved in order to separate tissue
debris. The filtrates were centrifuged three times, re-suspended
in proliferation medium (10%FBS/10%HS/DMEM/AB) and
transferred to polypropylene Petri culture disks. One-and-a-half
hours of preplating was performed to minimise possible fibro-
blast contamination. Subsequently, the supernatant containing
ESC was transferred to Primaria culture flasks.

Cell culture and experimental design. The experimental
design is presented in Fig. 1. Upon isolation, samples of ESC
(n 6) were incubated for 10 d in Primaria culture flasks. The
proliferation medium was changed every 2 d. On the 10th day,
cells were trypsinised, and 30 000 cells (counted by Scepter Cell
Counter; Merck Millipore) from each flask were transferred to
the respective wells of two six-well plates. One plate was
dedicated to HMB treatment and one served as the control.
After obtaining 80% of confluence, the proliferation medium
was replaced with a differentiation medium (2% HS/DMEM/
AB). Immediately after 48 h of differentiation, the medium from
one plate was replaced by a differentiation medium containing
50 µM of HMB, whereas in the second plate the standard dif-
ferentiation medium was used as a control. After 24 h, the
medium from each plate was discarded, plates were washed
with PBS and stored at −80°C until further analysis. The
concentration of HMB was based on the available literature
values and cell viability colourimetric assay test with
3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide
(data not shown).

Microarray analysis and real-time quantitative PCR
validation

RNA isolation, validation, labelling hybridisation and
microarray analysis. Total RNA from HMB and control cells
was isolated according to the protocol supplied with the miR-
Neasy Mini Kit (Qiagen). RNA quantity was measured spectro-
photometrically using NanoDrop (NanoDrop Technologies).
The analysis of final RNA quality and integrity was performed
with BioAnalyzer 2100 (Agilent Technologies). To ensure
optimal microarray data quality, only samples with the highest
RNA integrity number (RIN)≥ 9·2 were included in the analysis.

Analysis of gene expression profiles was performed using
Horse Gene Expression Microarray, 4×44K (Agilent Techno-
logies). Low Input Quick Amp Labeling Kit (Agilent Technologies)
was used to amplify and label total RNA (100ng) to generate
complementary RNA (cRNA). On each two-colour microarray,
825ng of cRNA from HMB-exposed cells (labelled by Cy5, n 4)
and 825ng of cRNA from control cells (labelled by Cy3, n 4) were
hybridised to the arrays (Gene Expression Hybridization Kit;
Agilent Technologies) according to the manufacturer’s protocol.

RNA Spike-In Kit (Agilent Technologies) was used as an
internal control to efficiently monitor microarray workflow for
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linearity, sensitivity and accuracy. Acquisition and analysis of
hybridisation intensities were performed using the DNA micro-
array scanner (Agilent Technologies) and Feature Extraction
software 10.7.3.1 according to the standard manufacturer’s
procedures. Linear Lowess was applied for data normalisation and
Cy5/Cy3 dye bias compensation.

Statistical analysis

Statistical analysis was performed using Gene Spring 13
software (Agilent Technologies) with the default setting for
two-colour microarrays. The estimated significance level
(P value) was corrected for multiple hypotheses testing using
the Benjamini and Hochberg false discovery rate (FDR)
adjustment. mRNA with FDR≤ 0·05 were selected as
significantly differentially expressed genes (DEG).
The microarray experiment was performed according to

Minimum information about a microarray experiment (MIAME)
guidelines(19). The data discussed in this publication have been
deposited in National Center for Biotechnology Information’s
(NCBI’s) Gene Expression Omnibus (GEO)(20) and are acces-
sible through GEO Series accession number GSE74495 (http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE74495).

Complementary DNA synthesis and real-time quantitative
PCR. To independently assess expression changes for a selec-
ted group of genes obtained from the microarray data, the
real-time quantitative PCR (RT-qPCR) method was applied. The
sequences of verified genes, complementary to those on
microarrays, were obtained from Ensembl database. Primers
were designed using Primer-Blast software (NCBI database)
and then checked for secondary structures using the Oligo
Calculator (http://www.basic.northwestern.edu/biotools/oligo-
calc.html). The secondary structures of the amplicon were
examined using m-fold Web Server (http://mfold.rna.albany.
edu/?q=mfold). The sequences of primers are listed in Table 1.
The primers were purchased from Oligo IBB (Polish Academy
of Science). Each primer pair was quality tested to ensure that
a single product was amplified (dissociation curve analysis)
and that there was no primer–dimer coupling.
A quantity of 1 µg of total RNA from HMB-treated and control

cells (n 6) was reverse transcribed using a Transcription First
Strand cDNA Synthesis Kit (Agilent Technologies). All analyses
were performed on individual samples of total RNA using a
SensiFAST SYBR lo-ROX Kit (Blirt, Bioline) following the manu-
facturer’s protocol. Assays for each gene were conducted in
duplicate in a Stratagene Mx3005p thermal cycler (Agilent
Technologies) according to the following protocol: pre-incubation

for 2min at 95°C and amplification (forty cycles), with dena-
turation at 95°C for 5 s and annealing at the temperatures speci-
fied in Table 1 for 15 s. The dissociation curve setting was as
follows: denaturation at 95°C for 0 s, annealing (at the tempera-
tures specified in Table 1), continuous melting up to 95°C for
0 s (slope= 0·1°C/s) and cooling at 40°C for 30 s. Glyceraldehyde
3-phosphate dehydrogenase (Gapdh) was used as a reference
gene. The relative expression of the target gene was calculated
according to the following formula:

ΔΔCT =ΔCT sampleð Þ�ΔCT controlð Þ;

where ΔCT is the difference in CT between the targeted gene and
the reference control. Results were calculated as 2�ΔΔCT using
GenEx 6.0 (MultiD Analyses)(21). The amplification efficiency
(E= 10(−1/slope)–1) was determined using a comparative quanti-
tation standard curve and was >0·9 for each target gene and the
reference gene. Standard curves were generated using a four-
point 1:10 dilution series starting with cDNA representing 10ng of
input total RNA. RT-qPCR analysis was conducted according to a
standardised approach(22).

Functional analysis

The list of DEG was examined by the Functional Analysis tool in
the Database for Annotation, Visualization and Integrated Dis-
covery (DAVID version 6.7) to assign them to gene ontology
(GO) terms and KEGG pathways (Kyoto Encyclopedia of Genes
and Genomes)(23). Human background was used for this analysis,
because far more human genes are annotated and more infor-
mation in databases is available for humans than for horses.
Enrichment of DEG was calculated by EASE score (modified
Fisher exact test). For further analysis and visualisation of data, the
Pathway Studio Web Mammalian was used. This database of
functional relationships between mammalian proteins is compiled
using Med Scan technology from over twenty-four million
PubMed abstracts and over 3·5 million Elsevier full-text papers. All
identified relations were filtered by reference count (≥2) to
ensure maximal confidence levels, which means that the number
of publications confirming each relationship was ≥2.

Results

Microarray analysis

Analysis of gene expression between HMB-treated and control
cells revealed statistically significant (FDR≤ 0·05) differences in
the case of 627 records. Within them were 361 unduplicated,
identified transcript ID including 159 up- and 202 down-

ESC isolation

Proliferation

80 % confluency

Differentiation 48 h

HMB-treated ESC

lncubation 24 h

Control ESC

RNA
isolation

RNA
isolation

Fig. 1. Experiment design. Equine satellite cells (ESC) were cultured until they reached 80% confluence; next, the proliferation medium was replaced with a
differentiation medium. After the 2nd day of differentiation, cells were incubated for 24 h with β-hydroxy-β-methylbutyrate (HMB). Following the HMB treatment,
differentiating cells were scraped and stored at −80°C until further analysis.
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regulated DEG, in the HMB v. the control group. All array data
are plotted and shown in the online Supplementary Material S1.
Table 2 presents genes selected for discussion, presumably
involved in HMB action on ESC.

Real-time quantitative PCR

According to the ontological classification and the literature, six
genes – Cfl2 (coffilin 2, muscle), Myf5 (myogenic factor 5),
Rbfox (RNA binding protein, fox-1 homolog C. elegans), S1pp1
(secreted phosphoprotein 1), Tgfb2 (transforming growth
factor, β2) and Trim63 (muscle-specific RING finger protein 1)
involved in the skeletal muscle development – were selected
for RT-qPCR validation. Expression changes from RT-qPCR data
overlapped microarray results and are presented in Fig. 2.

Functional analysis

DAVID functional analysis assigned DEG to seventy-five
biological processes (BP), eleven cellular components and ten

molecular functions as well as four KEGG pathways (EASE
score P< 0·05). All GO considered significant are shown in the
online Supplementary Material S2. KEGG pathways and the
most significantly enriched (EASE score <0·01) GO retrieved
from DAVID are presented in Table 3, providing a compre-
hensive overview of important processes, most likely induced
by HMB in differentiating ESC.

Using Pathway Studio Web Mammalin Build Pathway Wizard
Find Direct Links, we depicted all genes discussed in the
present study that can directly or indirectly affect skeletal
muscle cell functions (Fig. 3). Moreover, Pathway Studio Web
Mammalian Build Pathway Wizard Find Common Targets
algorithm allowed us to identify cell processes regulated by at
least two of the DEG according to literature data. This resulted
in fifty-six identified targets; among these, the twelve regulated
by the highest number of genes were considered to be the
most important for the HMB effect on ESC. A chart presenting
these processes is presented in Fig. 4. From all targeted cell
processes, we selected the most important relationships and are
presented in Fig. 5. The online Supplementary Material S3

Table 1. Sequences of primers used for real-time quantitative PCR

No. Gene symbol Forward primer Reverse primer Annealing temperature (ºC) Product lenght

1 Cfl2 CCCGCAGAGTTGACACAATA TGTGGCATCGTACAAAGCAT 60 282
2 Myf5 GGAGACGCCTGAAGAAAGTC CCGGCAGGCTGTAGTAATTC 60 171
3 Rbfox GAACCAGGAGGGATCTTCCA TTGCCATACACAGGCTCTTG 60 213
4 S1pp1 CCCAAGTCAGTCCAACGAAA GGCACAGCTGGTGTAAAAAC 60 143
5 Tgfb2 AGTACTACGCCAAGGAGGTT TAGGCGGGATGGCATTTTCC 60 72
6 Trim63 AAGGAGGCAGCCAGGTAGAG CACGGACACTGAGCCACTTC 62 220
7 Gapdh GTTTGTGATGGGCGTGAACC GTCTTCTGGGTGGCAGTGAT 60 198

Cfl2, coffilin 2; Myf5, myogenic factor 5; Rbfox, RNA binding protein, fox-1 homolog C. elegans; S1pp1, secreted phosphoprotein 1; Tgfb2, transforming growth factor, β2; Trim63,
muscle-specific RING finger protein 1; Gapdh, glyceraldehyde 3-phosphate dehydrogenase.

Table 2. List of selected differentially expressed genes in β-hydroxy-β-methylbutyrate-treated v. control equine satellite cells (false discovery rate≤0·05, n 4)

No. Gene symbol Fold change Description False discovery rate (corrected p-value)

1 Nos2 −2·43 Inducible nitric oxide synthase (NM_001081769) 4·34E–2
2 Myf5 −2·09 Myogenic factor 5 (ENSECAT00000021416) 4·63E–2
3 Dmd −2·06 Dystrophin (ENSECAT00000023688) 3·18E–2
4 Trim63 −2·02 Tripartite motif containing 63, E3 ubiquitin protein ligase

(ENSECAT00000026380)
4·96E–2

5 Itgb1bp2 −1·94 Integrin β 1 binding protein (melusin) 2 (ENSECAT00000016364) 4·52E–2
6 Saa1 −1·88 Serum amyloid A1 (ENSECAT00000013971) 4·96E–2
7 Tagln3 −1·80 Transgelin 3 (ENSECAT00000010210) 4·73E–2
8 Tgfb2 −1·75 Transforming growth factor, β2 (XM_003364564·2) 3 31E–2
9 Murc −1·69 Muscle-related coiled-coil protein (ENSECAT00000006670) 4·76E–2
10 Svil −1·66 Supervillin (XM_014737013·1) 4·88E–2
11 Lama2 −1·60 Laminin, α5 (XM_014735356·1) 3·18E–2
12 Mef2c −1·56 Myocyte enhancer factor 2 C (XM_014857076·1) 3·56E–2
13 Lama2 −1·42 Laminin, α2 (ENSECAT00000025657) 3·96E–2
14 Prkab2 −1·42 Protein kinase, AMP-activated, β2 non-catalytic subunit (XM_008509324·1) 4·65E–2
15 Mef2a −1·32 Myocyte enhancer factor 2A (XM_011521571·1) 4·76E–2
16 Ppargc1b −1·22 PPAR-γ coactivator (ENSECAT00000021080) 4·75E–2
17 Cul3 −1·17 Cullin 3 (ENSECAT00000012128) 4·67E–2
18 Esrra −1·13 Oestrogen-related receptor α (ENSECAT00000016651) 4·31E–2
19 Zfp91 −1·10 Zinc finger protein 91 homolog (XM_005598160) 3·95E–2
20 Abca1 1·79 ATP-binding cassette, sub-family A, member 1 (XM_001493790) 3·87E–2
21 Mapk14 1·75 Mitogen-activated protein kinase 14 (XM_005604060) 4·89E–2
22 F2rl2 1·65 Coagulation factor II (thrombin) receptor-like 2 (ENSECAT00000010830) 4·49E–2
23 Fads1 1·33 Fatty acid desaturase 1 (XM_008510001) 4·96E–2
24 Abhd5 1·24 Anhydrolase domain containing 5 (ENSECAT00000023610) 3·96E–2
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contains details of all identified relationships between DEG and
cell processes.

Discussion

The objective of the present study was to identify the molecular
background of HMB action on equine skeletal muscle. In order to
cover all the salient points of functional analysis, only relations
significant in DAVID and possessing the highest reference number
in Pathway Studio analysis were considered to be important. To
date, no official genome nomenclature has been established for the
horse. According to the guidelines published by The International
Society for Animal Genetics, for all genes with human orthologues,
official human gene symbols (Human Genome Organisation
(HUGO) Gene Nomenclature Committee) are applied.
We decided to use a primary SC model because of its stem cell

potential. SC are able to differentiate into multiple mesenchymal
lineages(24) and to self-renew(25), because of which they maintain
extraordinary regenerative properties of skeletal muscles. How-
ever, the capacity of SC to proliferate and differentiate may vary
depending on the origin of the muscle(26), cell surface markers
expression(27), myogenic regulatory factors (MRF) expression(28)

and muscle fibre type(29). In our study, all samples of ESC were
isolated from semitendinosusmuscle, which in horses is composed
mainly of type II fast-twitch fibre muscle(30). SC originating from
this type of muscle may have less adipogenic properties compared
with SC from type I fibres(29). Heterogeneity of the SC could limit
in vivo significance of the data obtained in the present study.
In general, the present analysis underlined the role of

HMB as a global regulator, which is shown by the strong
over-representation of genes linked to the BP: ‘regulation of
developmental process’ and ‘positive regulation of BP’. More-
over, functional analysis revealed significant enrichment in
ontology terms associated with cellular responses (Table 3).
The three main cellular processes include cell proliferation,
apoptosis and differentiation, which suggest that HMB is an
important cell growth regulator (Fig. 4 and 5).

In adult skeletal muscle, extracellular matrix proteins anchor
SC between the basal lamina and the apical sarcolemma, which
create a specialised micro-environment called a stem cell
niche. It is able to produce factors controlling stem cell
behaviour(31). Impaired adhesion of SC to their niche can
stimulate proliferation(32). Thereby, enrichment of the terms
‘regulation of cell adhesion’ and ‘cellular localisation’ may
suggest HMB’s ability to indirectly control ESC proliferation by
affecting their localisation in the niche.

Muscle development

The term ‘muscle organ development’ is the most significantly
enriched annotation among genes regulated in ESC exposed to
HMB (Table 3). This indicates that at least at the mRNA level
HMB may affect muscle development (summarised on Fig. 3).
A total of fourteen DEG were annotated to this term; however,
among them, Mapk14 (mitogen-activated protein kinase 14)
possessed the highest potential to regulate other genes and cell
processes (Fig. 3 and 5). Mapk14 is activated by extracellular
stimuli such as pro-inflammatory cytokines or physical stress,
leading to direct activation of multiple cellular processes such
as proliferation, differentiation, apoptosis and transcription
regulation(33). In SC, phosphorylation of MAPK14 may induce
initiation(34,35) or withdrawal(36) from the cell cycle. The second
can lead either to terminal differentiation or to programmed
cell death(37) depending on the nature of the stimulant and
cell type. In vitro studies suggest that the two isoforms of
Mapk14, p38α and p38β, appear to have different effects on
cardiomyocyte hypertrophy: p38β seems to be more potent in
inducing hypertrophy, whereas p38α appears to be more
important in apoptosis(38). The contribution of Mapk14 in
cellular responses to HMB has already been reported by
Kornasio et al.(8), who suggested that the MAPK/ERK
pathways mediate HMB’s effects on myoblast proliferation.
HMB-related increase in phosphorylation of MAPK14 was
also observed in dexamethasone-induced muscle atrophy in
rats(39).

Except for its ability to influence multiple cell processes,
Mapk14 was reported to regulate many other genes from the
analysis. One of them is Nos2 (nitric oxid synthase 2, inducible),
interesting because of its lowest expression among all genes.
Nos2 gene expression may be activated by Mapk14; however,
it is assigned to shock signalling in inflammatory cells(40)

and its biological meaning in ESC remains unclear. Down-
regulation of this gene by HMB has already been presented by
Mitsutaka et al.(41) in lipopolysaccharide-treated murine mac-
rophages. This considered together may suggest an anti-
inflammatory component of HMB action. Mapk14-dependent
phosphorylation of transcription factors Mef2a and Mef2c
(myocyte enhancer factor 2a and 2c) has been implicated in
stress activation of immune, skeletal and cardiac muscle
cells(42,43). Among genes identified in our study, Mapk14
posseses two upstream promoters, Saa1 (serum amyloid A1)
and F2r (coagulation factor II, thrombin receptor-like 2);
however, so far, only the second gene has been implicated
in striated muscle tissue development(44,45), which means that
F2r may link HMB and Mapk14 (Fig. 3 and 5).
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Fig. 2. Genes selected for real-time quantitative PCR (RT-qPCR) validation of
microarray results: Cfl2 (coffilin 2, muscle), Myf5 (myogenic factor 5), Rbfox
(RNA binding protein, fox-1 homolog C. elegans), S1pp1 (secreted
phosphoprotein 1), Tgfb2 (transforming growth factor, β2) and Trim63
(muscle-specific RING finger protein 1). Expression changes from RT-qPCR
data overlapped microarray results. * P≤ 0·05, ** P≤ 0·01, *** P≤ 0·001 are
significant (n 6). , β-hydroxy-β-methylbutyrate (HMB); , Ctrl.
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Table 3. Functional analysis of differentially expressed genes*

GO

Categories Term Count % P Genes

Biological process GO:0007517 – muscle organ development 14 4·12 2·31E–4 Mef2c, Mef2a, Myf5, Tagln3, Tgfb2, Lama2, Zfp91, Murc, Lama5, Mapk14, Svil, Dmd,
Itgb1bp2, F2r

Cellular component GO:0005829 – cytosol 46 13·53 3 84E–4 Bcat1, Alad, Ggct, Tnfrsf25, Abhd5, Kcnip3, Rps3, Cep70, Zfp91, Rps26, Bag1, Slmap, Hnrnpd,
Gucy1a3, Eif3i, Nos2, Rpia, Psmd6, Plcb1, Gchfr…

Biological process GO:0009987 – cellular process 227 66·76 5·32E–4 Mef2c,Mef2a, Alad, Tars2, Fst, Gfer, Lpar2, Edil3, Rest, Tpd52, Prkg1, S1pr2, Cul3, Zfp91, Hmcn1,
Kifap3, Sfrs9, Scd5, Nsmaf, Rpp21…

Biological process GO:0048518 – positive regulation of biological process 58 17·06 1·94E–3 Mef2c, Fosl2, Fst, Tlr1, Lpar2, Pmaip1, Edil3, Gli1, Tgfb2, Rps3, Cul3, S1pr2, Zfp91, Mll5, Ang,
Saa1, Kifap3, Gucy1a3, Nos2, Psmd6…

Biological process GO:0050793 – regulation of developmental process 25 7·35 2·80E–3 Gna12, Fst, Abca1, Rest, Gli1, Tgfb2, Zfp91, Cdc42ep3, Nkx2-2, Spp1, B4galt1, Esrra, Foxj1,
Fads1, Smad5, Mgp, Ski, Smad1, Sod2, Lama2…

Biological process GO:0044267 – cellular protein metabolic process 64 18·82 3·37E–3 Gnptg, Cdk19, Ilkap, Tars2, Kiaa0368, Lpar2, Prkg1, Ttll1, Tgfb2, Rps3, S1pr2, Cul3, Mll5, Hmcn1,
Pak3, Map1lc3b, Aak1, Slmap, St3gal6, Stk39…

Biological process GO:0030278 – regulation of ossification 7 2·06 3·90E–3 Esrra, Smad5, Mgp, Gdf10, Ski, Smad1, Tgfb2
Biological process GO:0051239 – regulation of multicellular organismal process 31 9·12 4·27E–3 Tlr1, Fst, Rest, Tpm3, Kcnmb2, Tgfb2, Gli1, Zfp91, chd7, Saa1, Arg2, Gucy1a3, Nos2, Kcnq1,

Nkx2-2, Spp1, B4galt1, Esrra, Foxj1, Smad5…
Biological process GO:0030155 – regulation of cell adhesion 9 2·65 5·05E–3 Lama2, Cytip, Saa1, Lama5, Kifap3, Myf5, Edil3, Spp1, Tgfb2
Biological process GO:0048522 – positive regulation of cellular process 51 15·00 7·59E–3 Mef2c, Fosl2, Tlr1, Lpar2, Pmaip1, Edil3, Tgfb2, Gli1, Rps3, Cul3, S1pr2, Zfp91, Mll5, Saa1,

Ang, Kifap3, Gucy1a3, Psmd6, Samd4a, Ip6k2
Biological process GO:0051345 – positive regulation of hydrolase activity 10 2·94 7·94E–3 Uaca, Ang, Gnb1, Foxj1, Abhd5, Arhgap27, Lpar2, Pmaip1, Rps3, F2r
Biological process GO:0009891 – positive regulation of biosynthetic process 24 7·06 8·19E–3 Mef2c, Esrra, Tp53bp1, Myf5, Smad5, Tlr1, Abca1, Smad1, Ppargc1b, Sod2, Gli1, Tgfb2, Murc,

Mll5, Mapk14, Gucy1a3, Prkaa1, Hoxb9, Rnf10, Smarca2, Nfatc3, Nkx2-2, Samd4a, F2r…
Cellular component GO:0022627 – cytosolic small ribosomal subunit 5 1·47 8·49E–3 Rps26, Rps18, Rps14, Rps12, Rps3
Biological process GO:0060341 – regulation of cellular localisation 12 3·53 8·78E–3 B4galt1, Zfp91, Uaca, Chd7, Saa1, Ang, Pkig, Fst, Nos2, Kcnq1, Calm1, Tgfb2
Cellular component GO:0015935 – small ribosomal subunit 6 1·76 8·88E–3 Rps26, Rps18, Rps14, Mrps24, Rps12, Rps3
Molecular functions GO:0030145 – manganese ion binding 9 2·65 9·69E–3 B4galt1, Ilkap, B4galt3, Arg2, Smg1, Ppp1cc, B4galt7, Galnt12, Sod2

KEGG pathways

Terms Count % P Genes

hsa01040: biosynthesis of unsaturated fatty acids 4 1·18 1·0E–2 Acot7, Fads1, Hacd1, Scd5
hsa00601: glycosphingolipid biosynthesis 4 1·18 2·0E–2 B4galt1, B4galt3, B3gnt5, St3gal6
hsa04270: vascular smooth muscle contraction 7 2·06 4·0E–2 Gna12, Gucy1a3, Prkg1, Ppp1cc, Plcb1, Calm1, Kcnmb2
hsa05410: hypertrophic cardiomyopathy 6 1·76 4·0E–2 Lama2, Dmd, Prkab2, Prkaa1, Tgfb2, Tpm3

GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; Aak1, AP2 associated kinase 1; Abca1, ATP-binding cassette, sub-family A, member 1; Abhd5, abhydrolase domain containing 5; Acot7, acyl-CoA thioesterase 7; Alad, aminolevulinate
dehydratase; Ang, angiogenin, ribonuclease, RNase A family, 5; Arg2, arg2; Arhgap27, rho GTPase activating protein 27; B3gnt5, β-1,3-N-acetylglucosaminyltransferase 5; B4galt1, β-1,4-galactosyltransferase 1; B4galt3, β-1,4-galactosyltransferase 3; B4galt7,
β-1,4-galactosyltransferase 7; Bag1, BCL2 associated athanogene 1; Bcat1, branched chain amino acid transaminase 1; Calm1, calmodulin 1 (phosphorylase kinase, delta); Cdc42ep3, CDC42 effector protein 3; Cdk19, cyclin-dependent kinase 19; Cep70,
centrosomal protein 70; Chd7, chromodomain helicase DNA binding protein 7; Cul3, cullin 3; Cytip, cytohesin 1 interacting protein; Dmd, dystrophin; Edil3, EGF Like repeats and discoidin domains 3; Eif3i, eukaryotic translation initiation factor 3 subunit I; Esrra,
estrogen related receptor α; F2r, coagulation factor II thrombin receptor; Fads1, fatty acid desaturase 1; Fosl2, FOS like antigen 2; Foxj1, forkhead box J1; Fst, follistatin; Galnt12, polypeptide N-acetylgalactosaminyltransferase 12; Gchfr, GTP cyclohydrolase I
feedback regulator; Gdf10, growth differentiation factor 10; Gfer, growth factor, augmenter of liver regeneration; Ggct, γ-glutamylcyclotransferase; Gli1, GLI family zinc finger 1; Gna12, G protein subunit α 12; Gnb1, G protein subunit β 1; Gnptg, N-
acetylglucosamine-1-phosphate transferase γ subunit; Gucy1a3, guanylate cyclase 1, soluble, α 3; Hmcn1, hemicentin 1; Hnrnpd, heterogeneous nuclear ribonucleoprotein D; Hoxb9, homeobox B9; Ilkap, ILK associated serine/threonine phosphatase; Ip6k2,
inositol hexakisphosphate kinase 2; Itgb1bp2, integrin subunit β 1 binding protein 2; Kcnip3, potassium voltage-gated channel interacting protein 3; Kcnmb2, potassium calcium-activated channel subfamily M regulatory β subunit 2; Kcnq1, potassium voltage-
gated channel subfamily Q member 1; Kiaa0368, ECM29 homolog, proteasome accessory protein; Kifap3, kinesin associated protein 3; Lama2; laminin subunit α 2; Lama5, laminin subunit α 5; Lpar2, lysophosphatidic acid receptor 2; Map1lc3b, microtubule
associated protein 1 light chain 3 β; Mapk14, mitogen-activated protein kinase 14; Mef2a, myocyte enhancer factor 2A; Mef2c, myocyte enhancer factor 2C; Mgp, matrix Gla protein; Mll5, lysine methyltransferase 2E; Mrps24, mitochondrial ribosomal protein
S24; Murc, muscle related coiled-coil protein; Myf5, myogenic factor 5; Nfatc3, nuclear factor of activated T-cells 3; Nkx2-2, NK2 homeobox 2; Nos2, nitric oxide synthase 2; Nsmaf, neutral sphingomyelinase activation associated factor; Pak3, P21 protein
(Cdc42/Rac)-activated kinase 3; Pkig, protein kinase (CAMP-dependent, catalytic) inhibitor γ; Plcb1, phospholipase C β 1; Pmaip1, phorbol-12-myristate-13-acetate-induced protein 1; Ppargc1b, PPARG coactivator 1 β; Ppp1cc, protein phosphatase 1 catalytic
subunit γ; Prkaa1, protein kinase AMP-activated catalytic subunit α 1; Prkab2, protein kinase AMP-activated non-catalytic subunit β 2; Prkg1, protein kinase, CGMP-dependent, type I; Psmd6, proteasome 26S Subunit, Non-ATPase 6; Ptpla, 3-hydroxyacyl-CoA
dehydratase 1; Rest, RE1 silencing transcription factor; Rnf10, ring finger protein 10; Rpia, ribose 5-phosphate isomerase A; Rpp21, ribonuclease P/MRP subunit P21; Rps12, ribosomal protein S12; Rps14, ribosomal protein S14; Rps18, ribosomal protein
S18; Rps26, ribosomal protein S26; Rps3, ribosomal protein S3; S1pr2, sphingosine-1-phosphate receptor 2; Saa1, serum amyloid A1; Samd4a, sterile αmotif domain containing 4A; Scd5, stearoyl-CoA desaturase 5; Sfrs9, serine/arginine-rich splicing factor 9;
Ski, SKI proto-oncogene; Slmap, sarcolemma associated protein; Smad1, SMAD family member 1; Smad5, SMAD family member 5; Smarca2, SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2; Smg1, SMG1
phosphatidylinositol 3-kinase-related kinase; Sod2, superoxide dismutase 2, mitochondrial; Spp1, secreted phosphoprotein 1; St3gal6, ST3 β-galactoside α-2,3-sialyltransferase 6; Stk39, serine/threonine kinase 39; Svil, supervillin; Tagln3, transgelin 3; Tars2,
threonyl-TRNA synthetase 2, mitochondrial (putative); Tgfb2, transforming growth factor β 2; Tlr1, toll like.

* Most significantly enriched ontologies (P<0·01) and KEGG pathways are presented.



Another gene of particular importance to the ‘muscle organ
development’ term is Myf5, belonging to the MRF family
of transcription regulators(46). The high expression of Myf5 in

adult skeletal muscle features committed SC and decreases
when differentiation to myotubes occurs(46,47). Accordingly,
decreased expression levels of Myf5 in ESC at the beginning of
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differentiation may indicate that HMB enhanced withdrawal
of equine myoblasts from the cell cycle, compared with
control cells. This finding is accompanied by previous reports
presenting an HMB-dependent increase in mRNA and protein
levels of muscle differentiation markers such as MyoD and
myogenin(8,16). However, at the time of our analysis, none of
the differentiation markers reached significance criteria in ESC,
which may emphasise the need for time-course studies in the
future. Another down-regulated gene in HMB-treated cells was
Tgf-β2. Activity of Tgf-β2 has been recently linked with
increased proliferation and delayed differentiation in C2C12(48);
thus, its down-regulation may confirm HMB-mediated
enhancement of differentiation in ESC.
Other ‘muscle organ development’ annotated genes such as

Dmd (dystrophin), Lama2 and Lama5 (laminins) encode pro-
tein complexes located in muscle sarcolemma and the basal
lamina, respectively, protecting sarcolemma from mechanical
damage during muscle contraction(49,50) and, as described
above, contribute to SC anchor in their niche(31). This could be
linked to HMB’s ability to decrease post-exercise muscle cell
damage in vivo(13,14); however, in cultured ESC, its expression
was decreased. The remaining genes annotated to the ‘muscle
organ development’ term by DAVID include the following:
Zfp91 (zinc finger protein 91 homolog), acting as an activator
of the non-canonical NF-κB pathway(33); Itgb1bp2 (integrin
β-1-binding protein 2, melusin 2)(33); Svil (supervilin),
involved in myosin II assembly, cell migration and focal

adhesions(33); Murc (muscle-related coiled-coil protein) con-
trolling myofibrillar organisation(33); and Tagln3 (actin cross-
linking/gelling protein) involved in contractile properties and
early cell differentiation(33).

Muscle protein metabolism

One of the first described mechanisms of HMB action was
the effect on muscle protein metabolism. Preliminary studies
suggest that HMB protects the skeletal muscle by inhibiting
protein degradation(5) and by stimulating protein synthesis(6);
however, this issue is subjected to constant research(17). Func-
tional analyses have demonstrated significant DEG enrichment
of terms associated with cellular protein maintenance (Table 3,
Fig. 4). The three most important genes of this group are Cul3
(cullin 3), Trim63 and Mapk14 (Fig. 5). Cul3 is a scaffold pro-
tein of E3 ubiquitin-protein ligase complexes, which mediate
the ubiquitination and subsequent proteasomal degradation of
target proteins. Cul3 also interacts with Kelch family proteins,
and disturbances in functioning of this complex are implicated
in muscle myopathies(51). E3 Ubiquitin ligase produced by
Trim63 regulates the proteasomal degradation of muscle pro-
teins and inhibits de novo skeletal muscle protein synthesis
under amino acid starvation, consequently leading to muscle
atrophy(52). As observed in the present study, down-expression
of Trim63 mediated by HMB confirms the results obtained by
Aversa et al.(39) in a dexamethasone-induced muscle atrophy
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model; however, in two most recent studies, the authors failed
to demonstrate a similar effect on Trim63 expression upon
fasting in human and pig muscles(17,53). This indicates that the
effect of HMB on this gene expression could be species and/or
condition related. Multiple studies suggest that Mapk14
signalling may be involved in HMB-mediated stimulation of
protein synthesis in catabolic conditions(8,39,54), which may be
confirmed by the up-regulation of this gene in HMB-treated ESC.

Lipid metabolism and energy homoeostasis

Recent studies have revealed that HMB supplementation may
alter metabolism, as evidenced by improved aerobic perfor-
mance and increased fat loss during exercise(11,12). This is
confirmed in our study, which showed influence of DEG on cell
processes such as ‘energy homoeostasis’, ‘lipid metabolism’,
‘glucose import’, ‘fatty acid oxidation’ and ‘gluconeogenesis’
(Fig. 4 and 5). An extensive amount of research describing the
positive role of Mapk14 on glucose uptake(55) and gluconeo-
genesis(56) has been published. Thereby, we postulate that
apart from the established role of Mapk14 in HMB-dependent
influence on protein metabolism and cell growth it can mediate
HMB influence on energy homoeostasis as well. The rate of
post-exercise muscle glycogen synthesis is 2–3-fold slower in
horses compared with other mammals(1); therefore, the positive
impact of HMB on glucose uptake could enhance this process
in equine skeletal muscles. This is an interesting aspect of our
study, which deserves more attention in future investigations.
Another salient point of HMB influence on metabolism may be
the transcription factor Esrra (oestrogen-related receptor α),
controlling vast gene networks involved in all aspects of energy
homoeostasis, including lipid and glucose metabolism as well
as mitochondrial biogenesis and function(57). Common targets
algorithm showed its strong association with ‘fatty acid oxida-
tion’ and ‘lipid metabolism’ (Fig. 5). Essra is targeted by
Ppargc1b (peroxisome proliferator-activated receptor γ, coac-
tivator 1 β) (PPAR-γ coactivator), a well-established regulator of
β-oxidation of fatty acids and oxidative phosphorylation in
mitochondria, which is highly induced during myogenic dif-
ferentiation(58). Prkab2 (protein kinase, AMP-activated, β2 non-
catalytic subunit) is essential for the regulation of a multitude of
metabolic processes maintaining energy homoeostasis, espe-
cially in tissues with high metabolic rates, such as skeletal
muscle(59). Bruckbauer et al.(12) reported that HMB increases
the activity of Prkab2 in adipocytes and muscle cells; however,
our results showed that HMB slightly decreased its expression
in ESC at the time of the analysis. Prkab2 senses cellular energy
levels. In response to low cellular ATP levels, Prkab2 switches
off ATP-consuming anabolic pathways (mechanistic target of
rapamycin (mTOR) kinase pathway), which results in inhibition
of cell growth, proliferation and macromolecules synthesis,
and at the same time Prkab2 switches on catabolic pathways
that generate ATP (e.g. glucose uptake, glycolysis, fatty acid
oxidation)(59).
In regulation of the cellular process ‘lipid metabolism’, two

genes appear to take the lead – Abca1 (ATP-binding cassette,
sub-family A, member 1), encoding a membrane-associated
protein belonging to the ATP-binding cassette transporters

superfamily and Abhd5 (abhydrolase domain-containing
protein 5). The analysis indicated up-regulation of both
in ESC. The latter encodes a co-activator of adipose triglyceride
lipase, thereby enhancing adipocyte and muscle lipolysis(60).
Abca1 is a key regulator of the reverse cholesterol transport
process and HDL biogenesis. Increased Abca1 expression was
demonstrated in skeletal and cardiac muscles in response to
training(61), which indicates the role of Abca1 in the reduction
of CVD risk by physical exercise.

Several reports have established HMB’s role in supporting
muscle cell membrane integrity during exercise(13,14). However,
as already mentioned, our analysis showed that at least at
mRNA levels HMB decreased the expressions of genes
encoding sarcolemmal scaffold proteins (Dmd, Lama2,
Lama5). Alternatively, functional analysis enrichment of terms
associated with lipid maintenance, as well as KEGG pathways
‘biosynthesis of unsaturated fatty acids’ and ‘glicosphingolipids
biosynthesis’, may indicate HMB’s ability to support cell mem-
brane integrity by decreasing its rigidity(62). Moreover, this may
have an indirect impact on the inflammatory processes, signal
transduction and myoblast differentiation(62,63) (Fig. 3).

Conclusions

The results presented in this study suggest the capability of
HMB to influence ESC proliferation, differentiation and apop-
tosis as well as inflammatory response, protein anabolism,
sarcolemma integrity, and cell energy utilisation and storage. As
we have summarised in Fig. 5, most of the above-mentioned
processes could be controlled by the Mapk14 gene, which
suggests that at least at the mRNA level HMB triggers its cellular
responses by stress signalling pathways. It should be noted that
in vivo response of ESC to HMB may differ from the presented
results because of the heterogeneity of the SC population and
undefined postprandial HMB concentrations in equine skeletal
muscle. Moreover, transcription is only one step in the regu-
latory pathway that leads to functional protein synthesis,
therefore, further research on the proteomic, biochemical and
pharmacodynamic level is highly recommended.

In conclusion, this study demonstrated for the first time that
HMB has the potential to influence ESC by controlling its global
gene expression. Transcriptomic profile analysis identified
valuable gene targets of HMB in ESC, which may support
the role of HMB in improving skeletal muscle growth and
regeneration in horses; however, the overall role of HMB in
equine skeletal muscle remains equivocal and requires
further research.
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