
Lumbar Disc Herniation Automatic
Detection in Magnetic Resonance
Imaging Based on Deep Learning
Jen-Yung Tsai1, Isabella Yu-Ju Hung2, Yue Leon Guo3,4,5, Yih-Kuen Jan6, Chih-Yang Lin7,
Tiffany Ting-Fang Shih8, Bang-Bin Chen8 and Chi-Wen Lung6,9*

1Department of Digital Media Design, Asia University, Taichung, Taiwan, 2Department of Nursing, Chung Hwa University of
Medical Technology, Tainan, Taiwan, 3Environmental and Occupational Medicine, College of Medicine, National Taiwan
University (NTU) and NTU Hospital, Taipei, Taiwan, 4Graduate Institute of Environmental and Occupational Health Sciences,
College of Public Health, National Taiwan University, Taipei, Taiwan, 5National Institute of Environmental Health Sciences, National
Health Research Institutes, Miaoli, Taiwan, 6Rehabilitation Engineering Lab, Department of Kinesiology and Community Health,
University of Illinois at Urbana-Champaign, Champaign, IL, United States, 7Department of Electrical Engineering, Yuan Ze
University, Chung-Li, Taiwan, 8Department of Medical Imaging and Radiology, National Taiwan University (NTU) Hospital and
NTU College of Medicine, Taipei, Taiwan, 9Department of Creative Product Design, Asia University, Taichung, Taiwan

Background: Lumbar disc herniation (LDH) is among the most common causes of lower
back pain and sciatica. The causes of LDH have not been fully elucidated but most likely
involve a complex combination of mechanical and biological processes. Magnetic
resonance imaging (MRI) is a tool most frequently used for LDH because it can show
abnormal soft tissue areas around the spine. Deep learning models may be trained to
recognize images with high speed and accuracy to diagnose LDH. Although the deep
learning model requires huge numbers of image datasets to train and establish the best
model, this study processed enhanced medical image features for training the small-scale
deep learning dataset.

Methods: We propose automatic detection to assist the initial LDH exam for lower
back pain. The subjects were between 20 and 65 years old with at least 6 months of
work experience. The deep learning method employed the YOLOv3 model to train
and detect small object changes such as LDH on MRI. The dataset images were
processed and combined with labeling and annotation from the radiologist’s
diagnosis record.

Results: Our method proves the possibility of using deep learning with a small-scale
dataset with limited medical images. The highest mean average precision (mAP) was
92.4% at 550 images with data augmentation (550-aug), and the YOLOv3 LDH
training was 100% with the best average precision at 550-aug among all datasets.
This study used data augmentation to prevent under- or overfitting in an object
detection model that was trained with the small-scale dataset.

Conclusions: The data augmentation technique plays a crucial role in YOLOv3 training
and detection results. This method displays a high possibility for rapid initial tests and auto-
detection for a limited clinical dataset.
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HIGHLIGHT

1. Auto-detect the location of lumbar disc herniation for MRI
images based on deep learning.

2. The MRI images with data augmentation were successful in
training small-scale deep learning datasets.

3. It provided a solution for medical images with limited cases for
data imbalance.

4. It showed the possibility for initial rapid tests in real time and
auto-detection for clinical diagnosis.

INTRODUCTION

The lumbar disc herniation (LDH) is caused by complex
situations. Excessive pressure on the spinal column
squeezes the intervertebral discs to present lower back
pain, sciatica, or radiating pain symptoms (Amin,
Andrade, and Neuman, 2017; Scheer et al., 1996). Some
reports pointed out that 70–80% of adults have
experienced lower back pain (Paolucci et al., 2019). People
experience lower back discomfort, sudden pain, or
continuous stabbing sensation, and sometimes even more
serious LDH symptoms that affect their daily activities and
working performance. The medical expenses for lumbar
conditions such as medicines and surgery have increased
by 177% from 2004 to 2015 (Martin et al., 2019). These
personal expenditures cause a great burden on social
welfare with its already limited financial resources.

As if this high prevalence was not enough, the number of
pathological findings might be even higher. A study shows 98
asymptomatic subjects were examined using magnetic resonance
imaging (MRI). In magnetic resonance imaging, many of these
asymptomatic subjects presented abnormal discs, 52% of people
presented bulging discs, and 38% of people presented more than
one abnormal intervertebral disk (Jensen et al., 1994). Another
study showed that MRI scans display abnormal images for
lumbar disc herniation in 90% of asymptomatic people at the
L4-L5 and L5-S1 vertebrae (Faur, Patrascu, Haragus, and
Anglitoiu, 2019).

Medical personnel and doctors require long and intensive
training to interpret and analyze biomedical images. The
well-trained radiologist would be able to examine MRIs
with the naked eye and classify the signs of LDH to
bulging, protrusion, extrusion, and sequestration. Due to
the high workload, doctors can be affected by stress and
fatigue from interpreting complex biomedical images. Some
reports indicate the advantage of the existing computing
assistant medical diagnosis and treatment from the
artificial neural network (ANN) to deep learning (Azimi
et al., 2020). The advance of computing procession could
deal with huge data, and complex calculated facts. Although,
it still requires professional adjustment and more advanced
hardware to support.

Deep learning models are trained to recognize images with
high speed and accuracy. Deep learning demonstrates precision
technology to provide better medical quality in a clinical setting.

This could increase the speed of processing and diagnosis as well
as assisting medical personnel and doctors in finding unnoticed
lesions. The deep learning method is applied to high-volume and
repeatable processes to recognize biomedical images. Deep
learning methods use advanced graphic processing units
(GPUs) to calculate the featured figures and auto-classify or
identify the image’s objects (Tsai et al., 2020). At the moment,
there is a shortage of confirmed diagnosis MRI images for the
lumbar vertebrae dataset. Therefore, it is essential to conduct a
deep learning model and enlarge the lumbar MRI data collection
(Zhou, Liu, Chen, Gu, and Sui, 2019).

In addition to image recognition, deep learning is tasked to
quickly or repeatedly find significant objects in the biomedical
image, such as detecting abnormal and suspicious lesions in the
clinical diagnosis process. RCNN (Region-based Convolutional
Neural Network) provides new methods to detect objects in
images. The RCNN algorithm uses a marked object region
proposal method to train CNN and then classify objects.
Although the later version is intended to improve the
processing speed as Fast-RCNN and Faster-RCNN, these
complex object detection methods are still not efficient deep
learning models.

Other studies employed YOU ONLY LOOK ONCE (YOLO)
to train biomedical image detection and prediction in real time,
using the anchor base and intersection over union deep learning
technique (Ozturk et al., 2020; Safdar, Alkobaisi, and Zahra, 2020;
Ünver & Ayan, 2019). The YOLO algorithm utilizes a grid to
anchor the training target and detect and predict the object
images. Varçın et al. used the YOLOv3 algorithm combined
with the MobileNet deep learning model to detect lumbar
spondylolisthesis signs and symptoms (Varçın, Erbay, Çetin,
Çetin, and Kültür, 2021). Ozturk et al. proposed the YOLO
predecessor architecture, DarkNet-19 classifier to focus on
small parts detection on the deeper convolutional layer
(Ozturk et al., 2020).

The deep learning model requires huge numbers of image
datasets to train and establish the best model. In addition to
designing different deep learning architectures, researchers
also pursue better training results. Large numbers of
diagnosed images with pathologies are difficult to obtain
and access for deep learning dataset training. This is a
serious limitation for biomedical image researchers as
collecting and storing images from a multitude of variable
conditions and formats is tedious.

Data augmentation is therefore an important process for
increasing the data scale and reducing the data imbalance error.
The basic data augmentation techniques use biomedical image
photometric and geometric transformation (Hussain et al.,
2017; Perez, Vasconcelos, Avila, and Valle, 2018). Some
studies employ self-designed convolutional layer architecture
to recognize biomedical images in X-rays, computed
tomography, and magnetic resonance imaging (Cai et al.,
2016; Forsberg, Sjöblom, and Sunshine, 2017; Zhou et al.,
2019). These studies show the potential of new models for
constructing different convolutional neural networks to train
in deep learning. Zhou et al. proposed contrasting images
compared to the kernel to the framework’s convolutional
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layer region (Zhou et al., 2019). Forsberg et al. showed the
construction of two pipelines to detect and label within two
convolutional neural networks (CNNs). The target is then
trained and the detected images are output (Forsberg et al.,
2017). They intended to provide different labeling mechanisms
in biomedical image recognition.

This study processes the enhanced medical image features for
training the small-scale deep learning dataset. We propose
automatic detection to assist with the initial lumbar vertebrae
exam for lower back pain. Our dataset presents the relatively
small abnormal lumbar intervertebral disc features distributed in
many locations. The object detection method uses a boundary
box to detect abnormal lumbar intervertebral disc parts in the
region of the first lumbar vertebra (L1), second lumbar vertebra
(L2), third lumbar vertebra (L3), fourth lumbar vertebra (L4),
fifth lumbar vertebra (L5), and first sacral vertebra (S1).

METHODS

Subject and Data Collection
This was a retrospective study. The subjects were recruited from
wholesale market workers and walk-in clinic patients who sought
treatment in the Internal Medicine clinic and were diagnosed with
upper respiratory infections (URIs). Theywere invited to participate
in a study regarding spine and bone health from 2009 to 2011.
Before participating in the study, all participants received written
and oral information regarding the study procedures and potential
adverse effects and signed informed consent. The inclusion and
exclusion criteria of the study were described in detail in another
study (Y. J. Hung et al., 2014). The protocol and consent forms of
the study were reviewed and approved by the National Taiwan
University Hospital Research Ethics Committee. We reviewed the
MRI scans of 168 male participants from the examined data. The
age ranged from 20 to 65 years. Some subjects had amedical history
of lower back pain. The doctor may advise them for further
diagnosis and treatment after the MRI examination (I. Y. Hung,
Shih, Chen, and Guo, 2021).

All participants received a lumbar vertebrae scan using a GE
1.5-T unit (General Electric Medical Systems, Milwaukee,
Wisconsin) with a spine array coil (12.7 × 27.9 cm) at National
Taiwan University Hospital. The lumbar MRI images were stored
as DICOM files (Digital Imaging and Communications in
Medicine). The system set these T2-weighted images to 4 mm
slice thickness, and the sagittal and axial field of view was 28 by
20 cm. Radiologist members of this research team interpreted
these lumbar MRI images and recorded the process during the
standard diagnostic procedure. The radiological diagnostic criteria
for LDH were signs of bulging, protrusion, extrusion, and
sequestration on MRI. They ignored the participants’
occupational status and medical history for a blind
examination in this evaluation process (I. Y. Hung et al., 2021).

Architecture of Deep Learning
This study employed the YOLOv3model to train and detect small
object changes such as LDH onMRI. YOLO’s first algorithm used
grouped grids in the image as the bounding box to improve the

speed and presented great real-time object detection (Redmon,
Divvala, Girshick, and Farhadi, 2016). The earlier version,
YOLOv2, used the anchor boxes and multiscale training to
improve the prediction accuracy. YOLOv3 improved previous
algorithms to deal with higher resolution images and detect small
objects. YOLOv3’s report indicated it was capable of performing
at detecting objects in 2018.

YOLOv3 proposes multiscale prediction with independent
logistic classifiers to replace the Softmax function. In the
multiscale prediction process, the initial image was divided
into an S x S grid cell. It then checks the center of each
located object in each grid area and refers to each bounding
box as “B.” “C” represents the number of predicted classes. The
bounding box and class possibility calculate the confidence score
and then output the box’s predicted image (Eq. 1). The object
detection was calculated using the four bounding box offsets and
one confidence score with the image grid. This was similar to the
feature pyramid networks to extract the image features. The
prediction generates the final output of the tensor with (S x S)
*B * (1 + 4 + C) (Ünver and Ayan, 2019) (Figure 1).

Confidence � Pr(Object) p IoU(pred, truth). (1)

YOLOv3 architecture predicts the LDH location with the
bounding box in MRI. It uses four coordinates of width,
height, offset point x, and y of the bounding box (Figure 2)
(Redmon and Farhadi, 2018). The offset coordinates tx, ty, tw, th
calculate an object classification within the bounding box.
YOLOv3 uses logistic regression to predict the object. It takes
the largest bounding box overlap threshold and ground truth and
ignores the others. YOLOv3 also uses the binary cross-entropy
loss function to replace the classification loss’s mean squared
error to predict the object class with object confidence. It uses
bounding boxes to denote the object as binary classification
predicts.

The YOLOv3 framework builds the convolutional neural
network called DarkNet-53, using the feature extractor with 53
layers and a shortcut route (Table 1). The network layer increases
deeper than 50 layers to solve the learning gradient problem in the
neural network model. Except for the convolution layers deeper
than YOLOv2 Darknet-19, YOLOv3 presents a better prediction
for small object performance through the multiscale detector with
DarkNet-53.

Dataset
Before training the deep learning model, all images must be
normalized, reviewed, and turned into organized data (Zhao,
Zheng, Xu, and Wu, 2019) (Figure 3). This study uses T2-
weighted images for obtaining better darkness and brightness
features from the DICOM raw data. The DICOM images were
reformatted into JPEG images and resized to a resolution of 512 ×
512. These JPG images contain 11 sliced images of the lumbar
vertebrae MRI in sagittal view. Each of the LDH is comprised of
five MRI images symmetrical from the middle to both sides
(Forsberg et al., 2017).

This study included 714 raw images. Then, these images were
divided into three groups consisting of 77, 20, and 3% of the
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images for training, validation, and test of LDHMRI images. For
processing by the deep learning algorithm, we made sets
consisting of 50, 150, 350, and 550 MRI images. This study
further processed the training and validation dataset to combine
with the labeling and annotation from the radiologist’s
diagnosis record. The lumbar vertebrae and disc section label
the MRI images from L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1.
YOLOv3 was trained and predicts small object location such as
LDH on MRI (Figure 4). The PC hardware settings that run
YOLOv3 consist of a CPU Intel Core i7-8700, 16G RAM, and
NVIDIA Geforce RTX 2080 Super GPUs with Windows 10,
64 bits.

Data Augmentation
Many factors affect deep learning, including an insufficient
number of images in the dataset, leading to overfitting or
underfitting. The earlier studies use data augmentation to
prevent data imbalance and reduce overfitting for deep
learning (Abdelhafiz, Yang, Ammar, & Nabavi, 2019). The
typical data augmentation types for deep learning include
Flips, Gaussian Noise, Jittering, Scaling, Powers, Gaussian
Blur, Rotations, and Shears (Hussain et al., 2017).

FIGURE 1 | The sample MRI of YOLOv3 detects lumbar disc herniation (LDH). The first image (A) is divided into S x S grids. The bounding box and class possibility
then calculate (B) (C) into the confidence score to output the predicted image (D) with the bounding box.

FIGURE 2 | The lumbar MRI bounding box YOLOv3 predicted box
image. Note. Cx, Cy, corner: pw, ph, bounding box width and height; bw, bh,
predicted width and height; and σ(tx ), σ(ty ), sigmoid function.

TABLE 1 | Lumbar MRI DarkNet-53 architecture.

Type Filters Size Output

Convolutional 32 3 × 3 512 × 512
Convolutional 64 3 × 3/2 256 × 256
Convolutional 32 1 × 1 –

1X Convolutional 64 3 × 3 –

Shortcut layer 256 × 256
Convolutional 128 3 × 3/2 128 × 128
Convolutional 64 1 × 1 V

2X Convolutional 128 3 × 3 –

Shortcut layer 128 × 128
Convolutional 256 3 × 3/2 64 × 64
Convolutional 128 1 × 1 –

8X Convolutional 256 3 × 3 –

Shortcut layer 64 × 64
Convolutional 256 3 × 3/2 32 × 32
Convolutional 128 1 × 1 –

8X Convolutional 256 3 × 3 –

Shortcut layer 32 × 32
Convolutional 256 3 × 3/2 16 × 16
Convolutional 128 1 × 1/1 –

4X Convolutional 256 3 × 3/1 –

Shortcut layer 16 × 16
Avgpool Connected Softmax – Global 1000 –
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The augmentation changes image pixels and geometry using
blur, rotation, and random crop to increase the image feature for
image recognition (Dao et al., 2019). The skill of augmentation
changes image pixels, shape, and geometry such as image
flipping, rotation, scales size, skew, Gaussian noise, and blur
for increasing the image feature to training. Hussain et al. (2017)
indicated that image flipping, commonly known as mirroring
did not increase distinguishable features in deep learning (Z.
Hussain et al., 2017). Both training and validation accuracies
were higher than 88% when using the image features augmented
by rotation (Z. Hussain et al., 2017). Another report proposed to
change image pixel brightness and contrast to improve the deep
learning training results (Sánchez-Peralta, Picón, Sánchez-
Margallo, and Pagador, 2020). There are many methods of
data augmentation. However, for leading to better results, we
selected the following three types: rotation, brightness, and
contrast.

The image augmentation improves the deep learning model
training results (Dao et al., 2019; Z.; Hussain et al., 2017).
Therefore, this study used MRI image data augmentation such
as rotation, contrast, and brightness to simulate real-life
situations. We use different strategies employed in these
augmentation settings to increase the volume and features
of the images. The rotational changes were used to simulate
different positions of patients during MRI acquisition. In

addition, each LDH image had adjusted contrast and
brightness to simulate different magnetic resonance
machines. These data augmentation strategies provide the
solution to overly homogenous datasets and increase the
image quantity for better results. The MRI scanning also
occurred in the same setting but generated different
contrast results. The YOLOv3 CFG file set the image
rotation angle at 10° ( ±5°) and exposure 2.1 (Perez et al.,
2018; Sadykova, Pernebayeva, Bagheri, and James, 2019)
(Figure 5).

Evaluation
YOLOv3 algorithm uses the confidence score to predict the
object-based bounding box (Eq. 1). It usually uses the average
precision (AP) and the mean average precision (mAP) to
evaluate the training and validate the YOLO results on the
LDH regions from L1-L2, L2-L3, L3-L4, L4-L5, and L5-S1.
However, the LDH cases distribute uneven regions to cause
deep learning imbalanced data problems. This does not seem
suitable for evaluating the model using only AP and mAP.
Therefore, the other evaluation index employed the recall rate
(Recall), F1 score, Dice coefficient (Dice), and Jaccard index
(Jac) to evaluate LDH detection YOLOv3 model training results.
The definitions of the Recall, F1 score, Dice, and Jac are as
follows:

FIGURE 3 | Data normalization process flow for object detection with deep learning.

FIGURE 4 | YOLOv3 detected lumbar disc herniation (LDH) location with MRI at L5-S1. (A) Lumbar MRI show clearly each lumbar disc from L1 to S1. (B) Same
lumbar MRI display LDH boundary box at L5–S1 by YOLOv3. L1, first lumbar vertebra; L2, second lumbar vertebra; L3, third lumbar vertebra; L4, fourth lumbar vertebra;
L5, fifth lumbar vertebra; S1, first sacral vertebra.
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Recall � TP
TP + FN

, (2)

F1 � 2
precision * recall
precision + recall

, (3)

Dice � 2 x TP

(TP + FP) + (TP + FN), (4)

Jac � TP
TP + FN + FP

. (5)

Note: TP, true positive; TN, true negative; FP, false positive;
FN, false negative; Dice, dice coefficient; and Jac, Jaccard index.

RESULTS

TheYOLOv3 training results displayed themAPandAP value of each
lumbar vertebra region with different amounts of images, datasets
including the 50 images with data augmentation (50-aug), 150 images
data with augmentation (150-aug), 350 images data with
augmentation (350-aug), and 550 images data with augmentation
(550-aug). It took 84 h to train each LDH images group. Furthermore,

the detection time in each groupwas less than 1 second for 50-aug and
150-aug, 2 seconds for 350-aug, and 3 seconds for 550-aug. The
highest mAP was 92.4% at the 550-aug, and the second-highest
mAP was 86.6% at 350-aug. The other group of results in this
study displays AP from each lumbar vertebra region (Table 2).

FIGURE 5 | Lumbar images augmentation: original image (A), exposure + 2.1 (B), exposure −2.1 (C), angle +5° (D), angle −5° (E), contrast +1.5 (F), and
contrast −1.5 (G).

TABLE 2 | YOLOv3 training results (%) of lumbar disc herniation (LDH) in different
locations.

Dataset Score Lumbar disc herniation (LDH) locations

L1-L2 L2-L3 L3-L4 L4-L5 L5-S1

AP (%) 50-aug 64.8 23.3 61.9 80.0 86.2 72.5
150-aug 78.1 77.9 69.9 76.6 87.2 78.7
350-aug 86.6 68.5 84.7 93.0 91.2 95.6
550-aug 92.4 100.0 86.2 92.9 88.7 93.9

Precision (%) 50-aug 56.8 13.7 45.1 68.9 79.1 65.3
150-aug 77.0 36.4 80.6 84.2 78.5 82.3
350-aug 86.8 66.7 81.3 90.4 88.6 87.7
550-aug 87.2 69.7 83.0 92.8 87.4 88.0

Note: AP, Average Precision; L1, first lumbar vertebra; L2, second lumbar vertebra; L3,
third lumbar vertebra; L4, fourth lumbar vertebra; L5, fifth lumbar vertebra; and S1, first
sacral vertebra.
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The other dataset groups showed different AP outcomes in
each of the LDH regions. In the LDH region L1-L2, the lowest
AP was 23.3% in the 50-aug dataset, and the highest AP was
100% in the 550-aug. This region showed extreme differences to
all of the dataset groups. The LDH YOLOv3 training displayed
the best AP 100% in the 550-aug among all datasets. The

second-best result was 95.6%, shown in the 350-aug of LDH
group. The AP only falls short of 80% in the 150-aug and 50-aug
datasets.

The YOLOv3 evaluation index shows the list of comparisons
with different groups of LDH datasets (Table 3). The F1 score was
the same at 89% in the 350-aug and 550-aug groups. The highest

TABLE 3 | Evaluation index of YOLOv3 lumbar disc herniation (LDH) (%).

Dataset IoU Precision Recall F1 Accuracy Sensitivity Jac Dice

50-aug 42.8 56.7 91.3 70.0 62.3 91.3 53.8 70.0
150-aug 59.1 76.9 80.6 78.7 69.9 80.6 65.0 78.8
350-aug 70.4 86.8 90.8 88.7 81.1 90.8 79.8 88.8
550-aug 73.6 87.2 91.7 89.4 81.1 91.7 80.8 89.4

Note: intersection over union (IoU), recall rate (Recall), Jaccard index (Jac), Dice coefficient (Dice).

FIGURE 6 | (A) LDH cases in different lumbar vertebrae regions. (B) LDH cases and average precision (AP) related trend in different lumbar vertebrae regions. L1,
first lumbar vertebra; L2, second lumbar vertebra; L3, third lumbar vertebra; L4, fourth lumbar vertebra; L5, fifth lumbar vertebra; S1, first sacral vertebra.
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Jaccard index was 93.0% in the 350-aug group. The recall rate was
92% in the 550-aug group.

DISCUSSION

This study proves the possibility of using deep learning with a
small-scale dataset with limited medical images. We used the
image process technique to increase the LDH images deep
learning feature using data augmentation. The YOLOv3
detection results were impressive in detecting the LDH region.
The results are consistent with the hypothesis of this study.

In our method, the model displays the small-scale dataset
training performance with the YOLOv3 algorithm. Among the
four dataset groups, the highest mAP was 92.4% in the 500-aug
group (Table 2). Compared with other datasets, the second-
highest mAP was 86.6% in the 350-aug set. The detection results
indicate that each mAP value increases with the different dataset
changes from 50-aug to 550-aug with the data augmentation
technique. In addition to mAP, each lumbar level also shows the
precision related to the case quantities in Figure 6A. For example,
the lowest precision, 13.7% in 50-aug located at L1-L2 for training
with 20 cases and the highest precision of 92.8% in 550-aug at L3-
L4 for training with 144 cases.

The Intersection over Union (IoU) defines the value to divide
the area of overlap by union with a bounding box and ground
truth. To evaluate the YOLOv3 performance, we calculated the
detection results with the number of true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN) as the
evaluation index metrics (Eq. 2–5). From the precision aspect,
both 500-aug and 350-aug groups were the same at 87%, which
means the model was trained well to detect LDH inMRI. It shows
a recall rate of 92 and 91% in reference to the correct detection.

The highest achieved recall rate in 550-aug was 92%, and both
350-aug and 50-aug obtained the same recall rate of 91%.
Although the recall rate was 91%, the 50-aug yielded the
lowest precision at 57%. This proves that 50-aug was not
suitable as a trainable dataset. The YOLOv3 training results
point to the amount of LDH cases. The increasing amount of
augmented dataset images shows an apparent increase in LDH
detection in these four datasets in their specific regions. There
were 443 LDH cases separated from L1 to L5 at 20, 62, 112, 144,
and 105 (Figure 6A). Our datasets were consistent with the LDH
findings from other reports (Faur et al., 2019). The region with
the lowest number of LDH was L1-L2 and while the highest
symptom occurrence was at L4-L5. L4-L5 was more distinguished
in showing the AP value trend than the number of LDH for each
lumbar vertebrae region.

From the training results, we can see in each LDH region that
the number of symptoms affects deep learning, as shown in
Figure 6B. There were only 20 cases of L1-L2, and the AP after
training with 50-aug was 23.3%, but with 550-aug AP is the
highest at 100%. It shows the limited detection because of deep
learning underfitting and overfitting with the small dataset’s
insufficient image number. These results were shown
practically by the 50-aug AP at 61.9% and the 550-aug at
86.2% in the L2-L3 region with 60 cases of LDH.

This study contributes to the minimum size dataset method to
indicate the possibility of training YOLO or other deep learning
models. The mAP of the 550-aug group was the highest at 92.4%.
However, it shows 550-aug and 350-aug group results through
deep learning at each lumbar region. The F1 score was the same at
89%, but the Dice coefficient was 89.4% in the 550-aug group. It
displayed the possibility to train the small-scale datasets via the
YOLO algorithm.

The LDH case’s uneven distribution indicates that insufficient
data volume affects the training and analysis of small-scale
datasets. Therefore, data augmentation is one solution to train
the deep learning model (Safdar et al., 2020). This study utilizes
three methods to augment the datasets, image rotation, contrast,
and image exposure to train the algorithm (Figure 5). The MRI
image is set to 8-bit grayscale JPEG format. It can control the
brightness and darkness to show or hide the image details
(Shorten and Khoshgoftaar, 2019). The LDH MRI shows more
information and edges such as cauda equina, dural sac, and
intervertebral disc from the sagittal view. Except for the 50-
aug dataset in the L1-L2 region, this study uses data enhancement
processing techniques to diagram the training results. This
displayed the trends towards smoother AP in every lumbar
region with all of the datasets.

This study compares to other related studies to evaluate the
LDH MRI detection performance based on the lumbar spine
range (Table 4). Even though, they use different methods and
frameworks to research lumbar-related problems, such as Cai
et al. (2016) using the converted deep convolutional network
(TDCN) and Zhou et al. (2019) with the Siam network to
identify and name the lumbar images, Varçın et al.’s (2021)
research has better performance for lumbar image recognition
regarding precision, accuracy, sensitivity, specificity using
YOLOv3.

This deep learning model applies the YOLOv3 algorithm to
detect lumbar location using the data augmentation with a small-
scale lumbar MRI dataset. It has been proven that this method
acquires an effective object detection model with YOLOv3.
Compared with other studies, Cai et al. (2016) used 60
volumes of MRI, and 90 volumes of CT to 2D scanning
images, and Zhou et al. (2019) used 2,739 images to train for
deep learning. They used more than a thousand images in the
dataset. This study used only 550 images of lumbar MRI to train
YOLOv3. These results show the competitiveness of this study
with the other studies in the limited amounts of images.

There are two limitations to this study. The first limitation is
using a specific version of the YOLO model but not the latest
algorithm. As time progressed YOLO v4 and v5 utilize several
new features. YOLOv3 still presents a mature method of object
detection for medical image detection (Safdar et al., 2020; Ünver
& Ayan, 2019; Varçın et al., 2021). Additionally, the latest YOLO
model forked into two new versions named v5s and v5m with
different concepts to train, validate, and test the YAML files and
additional new augmentation skills to improve performance
(Malta, Mendes, and Farinha, 2021).

Moreover, the second limitation is that the definition of this
study detects the sagittal view regions of LDH. Although the other
report uses U-net architecture to classified lumbar axial viewMRI
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(Mbarki et al., 2020). We used the object detection method with
the dataset of sagittal view LDH images as a preliminary study.
Despite LDH covering the most common clinic cases of lumbar
disc bulging, protrusion, and extrusion (Y. J. Hung et al., 2014),
this study focuses on the detection of LDH regions rather than the
prediction of symptoms with YOLOv3. Some reports showed an
association among disc morphology, disc bulging, and protrusion
at the L3-L4, L4-L5, and L5-S1 levels (Breton, 1991; I. Y. Hung
et al., 2021). Many asymptomatic people over 40 years old show
disc bulging and protrusion (Brinjikji et al., 2015). The
introduction of severe LDH symptoms was insufficient to
support deep learning in this study. The subjects were from
market labor and general outpatients, presenting primarily
lumbar bulging and protruding, to a lesser degree extrusion
and sequestration.

Therefore, YOLOv3 trains the object detection model with
the lumbar disc regions from L1 to L5 associated with disc
morphology features at the lumbar disc. It could be the reason
for the results of high mAP and AP in this section. This result
shows the future utility of this technology as well as
possibilities to affect clinical workflow. From our point of
view, this form of deep learning detection does not aim to
replace any medical personnel but provide support in clinical
decision-making through giving quickly accessible, additional
information to speed initial investigation, and helping to focus
on areas of interest. This will increase diagnosis speed and
certainty before the team interdisciplinarily arrives at a
decision regarding future operation or treatment (Yang
et al., 2021).

For further study, we will reinforce the research team and
recruit surgeons specialized in spinal pathology and anatomy.We
warrant the performance of the different versions of YOLO object
detection models to select the most suitable for fine-tuning on the
regions of the LDH dataset. Furthermore, we would explore more
cases with various LDH characteristics, such as the height of
vertebrae discs alignment and the curvature of the spine, and even
use lumbar axial view MRI, applying numerous and advanced
deep learning methods.

CONCLUSION

This study proposed a method for deep learning training with
small-scale MRI datasets for biomedical images. The data
augmentation technique plays a key role in YOLOv3 training
and detection results. It presents a high score in deep learning
model performance with a small-scale dataset. The best results
show the mAP of 92.4%, F1 score of 89%, and Jaccard index of

92.9 by training 550 lumbar vertebrae MRI images. The
proposed method presents the ability to detect lumbar disc
herniation and predict abnormal locations automatically. This
method displays the high possibility of initial rapid tests in real-
time and auto-detection of the lesion for the clinical diagnosis.
This study employed YOLOv3 to detect small part object
problems as LDH MRI with a limited dataset of 50–550
images. The results of this study show good competition
ability with other tasks for spinal injuries. It also offers the
possibility for real-time detection and clinical assistance
applications.
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