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Abstract

Background: Molecular biomarkers that can predict drug efficacy in cancer patients are crucial components for
the advancement of precision medicine. However, identifying these molecular biomarkers remains a laborious
and challenging task. Next-generation sequencing of patients and preclinical models have increasingly led to the
identification of novel gene-mutation-drug relations, and these results have been reported and published in the
scientific literature.

Results: Here, we present two new computational methods that utilize all the PubMed articles as domain
specific background knowledge to assist in the extraction and curation of gene-mutation-drug relations from
the literature. The first method uses the Biomedical Entity Search Tool (BEST) scoring results as some of the
features to train the machine learning classifiers. The second method uses not only the BEST scoring results,
but also word vectors in a deep convolutional neural network model that are constructed from and trained
on numerous documents such as PubMed abstracts and Google News articles. Using the features obtained
from both the BEST search engine scores and word vectors, we extract mutation-gene and mutation-drug
relations from the literature using machine learning classifiers such as random forest and deep convolutional
neural networks.
Our methods achieved better results compared with the state-of-the-art methods. We used our proposed features in a
simple machine learning model, and obtained F1-scores of 0.96 and 0.82 for mutation-gene and mutation-drug
relation classification, respectively. We also developed a deep learning classification model using convolutional neural
networks, BEST scores, and the word embeddings that are pre-trained on PubMed or Google News data. Using deep
learning, the classification accuracy improved, and F1-scores of 0.96 and 0.86 were obtained for the mutation-gene and
mutation-drug relations, respectively.

Conclusion: We believe that our computational methods described in this research could be used as an important
tool in identifying molecular biomarkers that predict drug responses in cancer patients. We also built a database of
these mutation-gene-drug relations that were extracted from all the PubMed abstracts. We believe that our database
can prove to be a valuable resource for precision medicine researchers.
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Background
Precision medicine aims to deliver personalized treat-
ment to individual patients based on their genomic pro-
files. Identifying molecular biomarkers such as genes
with specific mutations to predict the efficacy of a drug
in cancer patients is important for the advancement of
precision medicine. For example, the BRAF V600E
mutation in melanoma patients can be used to predict
response to BRAF inhibitors such as vemurafenib [1].
However, BRAF V600E has no predictive value for BRAF
inhibitors in colorectal cancer patients [2]. Thus, under-
standing the relations between genes, mutations and
drugs in a specific context (e.g. disease) is crucial for the
development of molecular biomarkers.
The systematic characterization of cancer cell lines

using next-generation sequencing coupled with high-
throughput drug screening has generated rich experi-
mental data for pharmacogenomics. Large-scale research
projects such as Genomics of Drug Sensitivity in Cancer
(GDSC) [3], Cancer Cell Line Encyclopedia (CCLE) [4]
and Cancer Therapeutics Response Portal (CTRP) [5]
provide gene-mutation-drug relations for the advance-
ment of personalized medicine. Also, databases such as
ClinVar [6], My Cancer Genome [7], MD Anderson
Personalized Cancer Therapy Knowledgebase [8] contain
gene-mutation-drug relations extracted from manually
curated literature on clinical studies. Unfortunately,
manually curating all gene-mutation-drug relations is in-
feasible due to the large number of on-going sequencing
projects and the fast-growing volume of research articles
reporting new relations. Computational methods that
automatically extract gene-mutation-drug relations from
the literature are urgently needed to assist in the cur-
ation process.
The named entity recognition (NER) process, which is

a necessary process of automated information extraction
methods, involves finding biomedical entities in text.
NER identifies mutations, genes, diseases, and drug
names in text. Many NER tools have been developed to
identify different entities in text; for example, tmVar [9],
EMU [10], and MutationFinder [11] identify mutations;
BANNER [12] and GNormPlus [13] identify genes; and
ChemSpot [14] and tmChem [15] identify drugs. BEST
Biomedical Entity Extractor [16, 17] is a dictionary-based
NER tool that identifies gene, disease, drug and cell line
names. However, identifying the relations between entities
(e.g., gene-mutation, gene-drug, mutation-drug, or gene-
mutation-drug) remains a difficult task in NER.
Efforts have been made to develop methods that can

capture relations between entities based on co-occurrence
information in text [10, 18, 19]. Finding relations using
co-occurrence information usually obtains high recall but
low precision. To fix the low precision problem, some
researchers added additional methods to their co-

occurrence based models. For example, HiPub [19] shows
the relations between entities using not only sentence-
level co-occurrence but also information from external da-
tabases such as PharmGKB [20], DrugBank [21], and so
on. Doughty et al. [10] extracted gene/protein and muta-
tion names from texts and mapped them using a protein
sequence filter in addition to co-occurrence information.
Their gene-filtering tool checks amino acid sequences
from NCBI RefSeq and compares them with wild type
amino-acid information containing mutation names.
However, this gene-filtering tool can find associated gene
names only for amino-acid level mutations (e.g., p.V600E),
and not DNA-level mutations (e.g., c.1799 T > A). Burger
et al. expanded the former result of Doughty et al. by com-
bining the automated relation extraction method with
crowdsourcing [22]; however, crowdsourcing is still ex-
pensive and time consuming compared with fully auto-
mated methods.
The other group of methods used pre-defined rules

with trigger words to find relations between entities.
SNPshot [23] used sentence-level co-occurrence and
pre-defined keywords to identify relations between en-
tities. Mahmood et al. used a series of natural language
processing (NLP) modules with part-of-speech tagging
to find syntactic structures and specific pre-defined key-
words in sentences containing mutations [24]. Using
these features, they made several rules for finding
relations between mutations, genes and diseases at the
sentence level. However, these methods using pre-
defined rules and keywords require the expensive labor
of domain experts to generate rules and to find key-
words that signify relations between entities. Also, the
pre-defined rules have the risk of overfitting and they
may be unsuitable for newly published articles contain-
ing new terms.
To overcome these limitations, some groups used ma-

chine learning to find relations between entities. Mallory
et al. [25] employed DeepDive to extract gene-gene in-
teractions from sentences and achieved reasonable preci-
sion on a large-scale literature test set. Singhal et al. [26]
used a machine learning approach to identify mutation-
gene-disease relations in the literature. They extracted
simple general features such as the distance between a
mutation and a disease, frequency of disease occurrence,
and frequency of co-occurrence of mutation-disease
pairs. They also used the sentiment scores between a
mutation and a disease when they appeared in the same
sentence. Using these features, they trained a decision
tree classifier, and achieved better performance than
state-of-the-art approaches used for finding gene-disease
associations. Moreover, since this approach is independ-
ent of specific sentence structures, it can be used to
identify other associations such as mutation-drug associ-
ations. We used the approach proposed by Singhal et al.
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as the baseline in this research because it not only out-
performs all the other relation extraction methods but
also is the only method that can be applied to the
mutation-drug relation extraction task.
For methods that automatically extract mutation-gene

and mutation-drug relation information, we have re-
cently developed BRONCO which is a manually curated
mutation-gene-disease-drug relation corpus [27]. In the
process of constructing BRONCO, we observed that the
curation accuracy of the domain experts was higher than
that of the non-domain experts. As also shown in the
study by Poux et al., domain experts use their back-
ground knowledge for curation, which helps improve the
accuracy of the curation results [28]. For example, when
domain experts who have extensive knowledge on mel-
anoma annotate a text and see V600E, melanoma (dis-
ease), and BRAF (gene) in the text of an article, they can
easily map V600E to the disease name and gene name.
Domain experts are also very familiar with the descrip-
tive terms that imply the associations between entities
and that help them understand sentences faster and
more accurately. However, if curators have little or no
background knowledge or are unfamiliar with the terms
in a text, it is more difficult for them to identify the rela-
tions in the text and thus have a higher chance of miss-
ing important information. Based on this observation,
we believe automated methods can also perform better
with background domain knowledge.
In this research, we built a machine learning classifica-

tion models combined with two additional novel
methods for using all the PubMed articles as our back-
ground domain knowledge, as domain experts have simi-
larly done.
We used a deep learning classifier as one of the ma-

chine learning models. Text mining using deep learning
has advantages especially in feature generation [29]. To
extract specific information from documents using
traditional text mining methods, an extremely time-
consuming feature engineering process by domain ex-
perts is required in most cases. Furthermore, when the
target information to extract is described in many ways
in documents, it is difficult to select or generate specific
features to extract that information. However, deep
learning based text mining methods do not require any
process or require a simpler feature generation process;
instead, they can automatically extract features. In our
variant-entity relation extraction task, many of the rela-
tions have different forms and some of them are de-
scribed in a complicated way in documents. We thought
a deep learning method would be effective for this task.
We used deep convolutional neural network (CNN)
which is a deep learning technique that uses multiple
layers of neurons and convolutional layers for classifica-
tion. We chose to use CNN for the following two

reasons: 1) recently, good results were obtained in rela-
tion extraction tasks using CNN [30], 2) and CNN could
be more practical than Recurrent neural network (RNN)
from a computational perspective because RNN has
connections that form a cycle which makes it parallel-
processing unfriendly [31].
We used the query result from an entity search engine

built for PubMed abstracts, as features for machine
learning classification. We also used pre-trained word2-
vec [32] word vectors that are constructed using all the
PubMed abstracts for a deep convolutional neural net-
work model. Using the entity search engine, the system
can instantly find existing knowledge in all the articles in
PubMed and utilize the information for curation. Word
vectors are used to obtain information about terms
used in PubMed articles. We demonstrate that our
newly developed deep learning classifier achieves
comparable results in identifying gene-mutation rela-
tions and achieves better results in identifying
mutation-drug relations, compared with the method
(baseline) by Singhal et al.

Methods
Overview
Figure 1 illustrates the overall workflow of the proposed
mutation-entity extraction models using deep learning.
Since the baseline model is based on finding mutation
related entities in a document-level dataset, we designed
two different models: a machine learning model using
features constructed at the document-level, and a deep
convolutional neural network model using features con-
structed at the sentence-level.

Document/sentence level extraction – Problem definitions
We define the problems as document-level and sentence-
level extraction. In document-level extraction, we generate
all the possible combinations of relations between entities
and classify them. For example, in a document, when the
total number of unique mutation is m, and the total num-
ber of drugs (or genes) is n, all the possible m X n rela-
tions are the candidate relations. Our goal is building a
machine learning model that classifies these relations into
true and false groups. If a mutation-entity relation is true
in any part of the document, the relations are considered
as true. In this document-level extraction, even though
the two entities are not in the same sentence, the relations
are still in the candidate set. However, sentence-level ex-
traction focuses on only the relations between entities at
the single sentence level. In sentence-level extraction, we
do not consider the frequency of the entities or the con-
text of the whole text. Since document-level extraction
uses more information, it can more easily classify relations
than sentence-level extraction. However, sentence-level
extraction can be more practical for real world use
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because it directly suggests the sentences that contain
relations. At the sentence-level, when a mutation-entity
relation is mentioned in the sentence, the relation is con-
sidered as true. For mutation-drug relations, both the
drug-sensitive mutation or drug-resistant mutation rela-
tions are considered as true.

Feature construction using BEST
Biomedical entity search tool (BEST)
BEST [16] is a biomedical entity search engine that
works on all PubMed articles. For a user query, BEST
returns a list of biomedical entities that are most related
to the query. When a user inputs a query, BEST searches
its index of all PubMed articles, and retrieves all the
documents that contain the query. BEST also finds bio-
medical entities in the retrieved documents and ranks
them using its scoring method. This returned list of en-
tities with scores reflects how many times the input
query and the entities co-occurred in PubMed articles,
which is a very important clue that can be used to pre-
dict the associations between the query and the returned
entities. For example, when a user inputs mutation
“V600E” as the query, BEST returns “BRAF” and “mel-
anoma” as its top gene and disease category results,
respectively (see Table 1).

Although searching the entire PubMed corpus is chal-
lenging, BEST can instantly return a query result due to
its efficient index structure. BEST uses an automatic up-
date module to update itself daily with newly published
articles in PubMed, which allows it to return the most
up-to-date results. BEST can also process multiple-term
queries to find the relations between the query entities.
For example, as shown in Table 1, when the query is
“T790 M lung carcinoma,” the top drug result returned

Fig. 1 Overall workflow of the proposed methods

Table 1 BEST search result examples

Drug category results

Query Top Result Entity Score

T790 M gefitinib 138.840

T790 M lung carcinoma erlotinib 8.315

T790 M breast carcinoma lapatinib 0.456

Gene category results

Query Top Result Entity Score

T790 M EGFR 530.279

T790 M lung carcinoma EGFR 21.874

V600E BRAF 1589.055

G12D KRAS 190.755
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is “erlotinib.” However, if the query is “T790 M breast
carcinoma,” the top drug result is “lapatinib.” This
multiple-query input enables us to find entities that are
most closely related in a different context. Erlotinib is a
well-known non-small cell lung cancer drug. It is widely
known that patients who have the EGFR T790 M muta-
tion are resistant to erlotinib.
As shown in Table 1, for the same query “T790 M

lung carcinoma,” the score of the top result “erlotinib” is
8.315. However, “lapatinib” which is the top result of the
second query “T790 M breast carcinoma” has a score of
0.456 only. On the other hand, the score of “gefitinib,”
which is the top result of the query “T790 M,” is 138.84.
Based on these results, we can assume that the T790 M
mutation is closely related to gefitinib, and lung carcin-
oma with the T790 M mutation is slightly related to er-
lotinib. However, even though lapatinib is returned from
the query “T790 M breast carcinoma,” the score is very
low, which implies that lapatinib may not be closely re-
lated to T790 M. The details of the BEST scoring
method are available in its online user guide [33].

BEST search engine scores as features
As explained in the previous section, BEST returns a list
of entities with each entities’ search scores as the query
result. We used these scores as features to find
mutation-gene and mutation-drug relations. We used
four different ways of querying BEST to obtain the result
scores. First, we queried using only the normalized mu-
tation name. For example, if BRONCO contains the mu-
tation “Val600Glu,” we change it to “V600E” which is
the most common form used to describe the mutation
in the literature and is also the standard nomenclature
suggested by HGVS [27, 34]. After entering this query,

we obtained the result list of entities with their scores.
This score is called BSSM. The second method uses not
only the mutation itself but also the other biomedical
entities that appear near the mutation to generate the
query. For example, when we enter a query to find the
relation between a mutation and a drug, we check all
the biomedical entities such as gene names, disease
names, and cell line names that appear in the same sen-
tence. It is important to note that we do not use the en-
tities of the same kind as the target entity. For example,
if we are querying to find mutation-drug relations, we
do not use any drug names for the query even though
they appear in the same sentence.
We exclude the entities of the same kind as the target

entity in the query because the same kind of entities adds
noise rather than providing context information. From the
sentence “In a randomized phase III study, dabrafenib
showed prolonged progression-free survival compared
with dacarbazine in patients with BRAF V600E metastatic
melanoma [PMID 24769640],” we generate a query with
V600E, BRAF and melanoma to obtain the score of dabra-
fenib from BEST’s search engine (score 78.427) and evalu-
ate the dabrafenib-V600E relation. In this sentence,
dacarbazine which is a drug, does not provide context in-
formation on the relation between V600E and dabrafenib.
If we include dacarbazine in the query, we obtain a much
lower score for dabrafenib (score 11.052) but a higher
score for dacarbazine (21.550). If we include drugs in
queries, it can distort the strength of target mutation-drug
relations. We used three different methods to generate
multiple entity queries containing “AND” or “OR,” and
combined the results obtained from these multiple entity
queries. Figure 2 illustrates an example of the BEST query
process using these methods.

Fig. 2 Query generation example of finding mutation-drug relations
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Word vectors constructed from PubMed
Using word2vec [32], we constructed 300-dimensional
word vectors trained on the PubMed dataset. Pyysalo et
al. [35] made word vectors trained on PubMed data;
however, multi-token words were not considered in their
work. We believe that “non-small cell lung cancer” needs
to be recognized as an entity rather than a simple list of
four different words. For this reason, we first performed
named-entity recognition on the multiple words and
changed the multiple token biomedical terms to a single
token term. For example, we converted “non-small cell
lung cancer” to “non-small_cell_lung_cancer.” We
trained our word vectors on all the 27 million PubMed
abstracts. We obtained word vectors for more than 5
million words except stop words. We removed words
with a frequency less than five from the word vectors be-
fore training the word vectors. Typically these low fre-
quency words are removed when training word vectors
[32] because they act as noise and require a considerable
amount of time and computational resources. We used
the Python implementation of the word2vec training
method obtained from the Gensim word2vec tutorial
[36]. We also used 300-dimensional word vectors that
were trained on the Google News datasets [37].

Distance and frequency scores as features
Singhal et al. [26] defined six features for determining
the relations between mutations and diseases. Out of the
six features, four of them are based on the distance be-
tween entities and the frequency of the entities. The
Nearness to Target Disease Score (NTDS) represents the
number of co-occurrences of a target disease and a
mutation. The Target Disease Frequency Score (TDFS)
denotes the frequency of the target disease. The Other
Disease Frequency Score (ODFS) represents the fre-
quency of the most frequent disease, except the target
disease, in the document. The same sentence Disease-
mutation Co-occurrence Score (DMCS) is a binary score
that denotes whether a mutation and the disease nearest
to the mutation are mentioned in the same sentence.
We used these features as distance and frequency based
features for our classification models.

Dataset
BRONCO as a document-level evaluation dataset
BRONCO [27] is a biomedical entity relation oncology
corpus that contains 108 full-text articles related to can-
cer and anti-tumor drug screening research. It contains
information on more than 400 mutations and their asso-
ciations with genes, diseases, drugs and cell lines.
BRONCO is available at http://infos.korea.ac.kr/bronco/.
We generated all the possible mapping pairs using the

BRONCO dataset. Given all the mutations in BRONCO,
we found all the genes and drugs that appear in the

same text, and generated all the candidate mutation-
gene and mutation-drug relation pairs. All the gene and
drug names in the text are identified using BEST entity
extractor. Among these candidate relations, pairs in
BRONCO are tagged as true, and others are tagged as
false. By this process, we generated 9615 candidates with
277 positive mutation-gene relations, and 7658 candi-
dates with 297 positive mutation-drug relations. Due to
the imbalance in the positive-negative ratio of the data-
set, we sampled the same number of positive-negative
cases, and used these for our document-level evaluation
dataset.

Mutation-gene relation sentence dataset using ClinVar and
COSMIC
Deep learning requires a large dataset for training a
model. For training, we generated a mutation-gene rela-
tion dataset. We first used PubTator [38] to compile a
list of the PMIDs that contain at least one mutation and
one gene name. PubTator provides the named-entity rec-
ognition results of biomedical entities such as genes, dis-
eases, drugs and mutations in PubMed abstracts. Using
PubTator data, we can find all the PubMed abstracts
containing genes, drugs and mutations. We downloaded
the bulk data from its FTP site and found the list of
PMIDs that contain at least one mutation and one drug
name. This process made it possible to look at only the
abstracts that mutation exists rather than looking at all
the 27 million PubMed abstracts. ClinVar [6] and COS-
MIC [39] provide files of mutation-gene-PMID mapping
data. We used the abstracts obtained from PubTator to
find sentences containing mutation-gene relations in
specific PMIDs. We also used amino-acid sequences of
genes from UniProt to filter erroneous gene-mutation
relations, which is shown in EMU’s SEQ_Filter method
[10]. All the sentences that passed these three steps of
filtering are included for the positive training dataset.
For the negative training dataset, we found sentences
containing mutation-gene pairs that are not contained in
the ClinVar or COSMIC databases; the SEQ_Filter
method defines mutation-gene pairs as erroneous. Using
this method, we obtained 4440 and 165,317 sentences
for the positive and negative training datasets for
mutation-gene relation sentence dataset, respectively.

Mutation-drug relation sentence dataset using PharmGKB
As deep learning requires many training samples, we
collected mutation-drug-PMID triplets from PharmGKB
[20]. PharmGKB provides manually curated mutation-
drug relations with the ID of specific documents
(PMID). Using this information, we collected mutation-
drug relations from specific PubMed abstracts listed in
PharmGKB, and found the sentences that mention both
a mutation and a drug, as curated by PharmGKB. We
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used these sentences as the positive mutation-drug rela-
tion dataset. For the negative dataset, we found all the
sentences that contain both mutation and drug names in
PubMed abstracts. Among these sentences, we removed
the sentences containing known mutation-drug relations
that are contained in PharmGKB or BRONCO. Using
this process, we collected 3133 sentences containing
mutation-drug relations for the positive sentence-level
dataset. We also sampled the same number of sentences
from the pseudo-negative sentence set for the negative
dataset.

Manually curated dataset for additional sentence-level
evaluation
We also manually built and curated a dataset of sen-
tences that contain mutation-gene and mutation-drug
relations. After the list of PMIDs was filtered by PubTa-
tor, which is explained in the previous section, we found
sentences containing at least one mutation and one drug
for the mutation-drug sentence set, and sentences con-
taining one mutation and one gene for mutation-gene
sentence set. We automatically tagged mutations and
gene names using BEST EE and randomly selected sen-
tences from each sentence dataset. The sentence data-
sets were manually checked by two domain experts.
Two curators classified relations as true or false in the
sentence set. If the curators did not agree, the relations
were discarded. The inter-annotator agreement score of
the manual curation process is 68.1%. Finding mutation-
gene relations is simple; however, classifying mutation-
drug relations into binary classes is more complex. All
the sentences in our manually curated evaluation set
were annotated by at least two curators and we selected
only the sentences on which both annotators agreed.
The selected sentences were validated by a domain ex-
pert before they were included in the dataset. After this
process, we collected 200 sentences for each positive
and negative dataset. This dataset is used for the add-
itional evaluation of the deep learning classification
model which is trained on the PharmGKB mutation-
drug sentence dataset.

Dataset from OncoKB actionable variant list for
VarDrugPub evaluation
We collected mutation-drug data from OncoKB [40]
which is a precision oncology knowledgebase that con-
tains manually curated cancer-related mutation-drug re-
lations. We collected only the single drugs with point
mutation relations in the actionable variant list. From a
total of 234 relations between point mutations and single
drugs, we filtered the relations of drugs and mutations
that were not mentioned together at the abstract level
using PubTator. Finally, we collected 113 mutation-drug
relations from OncoKB. We used this data for the

qualitative analysis of our final results, which are com-
bined in the VarDrugPub knowledgebase.

Classification models using machine learning
For each evaluation, we trained machine learning classi-
fiers such as decision trees, random decision forests and
deep convolution neural networks (CNNs). We used
Python version 2.7.10 with scikit-learn 0.17.0 as a deci-
sion tree and a random forest classifier machine learning
tool. For the decision tree classifier, we followed all the
hyper-parameter settings used in the method of Singhal
et al., which is our baseline; otherwise, we used the de-
fault settings. We also used TensorFlow with Python for
building deep learning classifiers.

Decision tree and random forest classifiers
A decision tree is also a well-known supervised-machine
learning method used for classification and regression. It
predicts the value of a target variable by decision rules
using the data features of training data. Algorithms such
as ID3 [41] or C4.5 [42] are widely used to build deci-
sion trees. Also, scikit-learn uses the optimized version
of Classification and Regression Tree (CART) [43],
which is based on C4.5, as its default algorithm to build
decision trees for classification. Random forest is an en-
semble learning method used for classification and con-
structing multiple decision trees in randomly selected
subspaces of the feature space [43]. It can also be used
to solve a decision tree classifier’s problem of overfitting
the training data. In our evaluation, we mainly used a
random forest classifier, which performed the best on
our dataset. We used both the decision tree and random
forest classifiers to evaluate the methods of Singhal et al.
[26]; the authors claimed that the decision tree classifier
worked the best in their evaluation.

Convolutional neural networks
We built a classification model using deep convolutional
neural networks (CNNs). We modified the Tensorflow
version of CNN sentence classification model of Kim
[44, 45] to a CNN relation classification model. Most of
the default settings and hyper parameters were remained
as it was. We added position embedding, type embed-
ding, BEST scores, and other features from the baseline
methods.
The process of sentence-level classification using CNNs

and BEST scores is illustrated in Fig. 3. Each word in the
sentences was embedded using pre-trained word2vec
word vectors. Also, we added a 10-dimensional embed-
ding vector of each word type (e.g., target mutation, target
drug, target gene, genes, drugs and diseases that are not
targets, etc.). We also added 10-dimensional embedding
vectors that specify the relative position of words from
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Fig. 3 Relation classification model using deep convolutional neural networks

Fig. 4 The result of search query “BRAF V600E vemurafenib” in our VarDrugPub database
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each target entity [46]. We used TensorFlow version 0.8.0
for building our deep learning model [47].

Results
Evaluation methods
For the document-level model evaluation, we evaluated
our models on the document-level dataset from BRONCO
using 10-fold cross validation. In the set of document-
level relation candidates, there is a substantial imbalance
between the number of positive and negative data points.
There were 277 positive and 9615 negative mutation-gene
relations in the document-level dataset. There were 297
positive and 7658 negative mutation-drug relations. In
each fold, we sampled the same number of positive and
negative cases for training and testing. Since the number
of positive relations is smaller, negative relations are ran-
domly sampled to balance the ratio between positive and
negative samples. To evaluate the performance of different
methods, we used precision, recall and F1-score as the
evaluation metrics.
In the sentence-level dataset evaluation of deep learning

models, we obtained the average F1 scores after repeated
five times of random sub-sampling validation. We did not
use 10-fold cross validation because of the long training
time of deep learning classifiers, and we wanted to use
large amount of training data possible. For each repetition,
we randomly selected 100 positive and 100 negative sen-
tences as the test set and trained the model without the
test set. Training sets are balanced so they have the same
number of positive and negative cases, like the document-
level dataset. In case there were more than two relations
in the same sentence, we included a sentence only once to
avoid overfitting.

Baseline method
As it obtained the best result, we used the state-of-the-art
method of Singhal et al. [26] as the baseline for
document-level evaluation. Singhal et al. use not only the

four frequency/distance scores introduced in Section 2.4,
but also the two sentiment scores used in their methods.
For the baseline results, we also included those two senti-
ment scores as features in the experiments. We used a
C4.5 decision tree classifier with the same parameter set-
tings that they used in their study. For both kinds of rela-
tions, random forest achieved better results than decision
tree, as explained by the authors. It is important to note
that their work is based on mutation-disease relations.
Since we could not find any other mutation-drug relation
classification model based on feature extraction and ma-
chine learning, we picked their method as our baseline.
SNPshot [23] is designed to extract many relations be-
tween biomedical entities; however, it does not extract
mutation-drug relations. The baseline method also
worked greatly on our evaluation dataset and proved to be
useful in finding mutation-gene and mutation-drug rela-
tions, as shown in Table 2.
We did not compare the sentence-level result with the

baseline models because the baseline models are
designed for document-level extraction and require fea-
tures that can only be extracted at document level. The
baseline models’ performance at the sentence level will
be lower than that at the document level, which makes
the comparison unfair.
To evaluate the amount of “learning” achieved by our

models, we evaluated an additional simple baseline repre-
senting “no learning” case. We performed co-occurrence-
based predictions and report the results in Additional file 1:
Table S2. In this analysis, we assume that when a mutation
and an entity appear in the same text (i.e., sentence or docu-
ment), they are classified as positive. The result of this no
learning case is far inferior to our models, proving that our
models “learn” complex non-linear relations among entities.

Document-level classification
As shown in Table 2, our method for extracting mutation-
gene relations achieved the best F1-score. One reason

Table 2 Results of relation mapping evaluation at the document level

Relation Method* Precision Recall F1-Score

Mutation-Gene Decision Tree
(Baseline features)

0.958 0.880 0.913

Random Forest
(Baseline features)

0.960 0.922 0.939

Random Forest
(Baseline features + search engine scores)

0.961 0.958 0.958

Mutation-Drug Decision Tree
(Baseline features)

0.796 0.787 0.788

Random Forest
(Baseline features)

0.798 0.820 0.806

Random Forest
(Baseline features + search engine scores)

0.830 0.819 0.821

*Baseline features: NTDS, TDFS, ODFS and DMCS from Singhal et al
*Search engine scores: BSSM, BSSA, BSSO and BSSAO
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may be that the mutation-gene relations (e.g., BRAF
V600E, V600E in BRAF) mentioned in text can be easily
recognized by computational methods. Moreover, using
the BEST search engine to find gene names associated
with a mutation is very straightforward, as previously
shown in the examples in Table 1. Mutation-gene rela-
tions are typically 1:1 relations, which means one muta-
tion name is matched to a single gene name and they are
usually mentioned together in an article.
Conversely, identifying mutation-drug relations is a dif-

ferent problem. One mutation can be associated with one
or more drugs or none in an article. Mutation-drug rela-
tions do not have a clear pattern like mutation-gene rela-
tions; therefore, it is more difficult to find relations
between them using traditional methods.
The mutation-gene results obtained by the baseline

method of Singhal et al. were better than the mutation-
drug results. In the BRONCO dataset, each mutation
has only one associated gene; however, many mutation-
drug relations are 1:n relations. In the baseline method,
the three features NTDS, TDFS and ODFS are based on
the closest distance (or the most frequently co-occurred)
between target entities. If the relation is 1:1, we believe
that the features used by the baseline method will work
well as intended; however, if the relation is 1:n, the
classifier might not train well, or only correctly identify
the nearest relation. This may be the reason why the
baseline method does not perform well in identifying
mutation-drug relations.

Sentence-level classification using word vectors, BEST
scores and CNNs
As we have seen the importance of using BEST scores as
classification features at the document-level, we also
combined the scores in our deep learning model. We
compared the classification results with the BEST scores
and the results without the BEST scores for different
word embedding sources. As shown in Table 3, the
models using pre-trained word vectors achieved better
results than models without pre-trained word vectors.
Interestingly, the model using the word vector trained

on Google News achieved the best results. We believe
Google News is a better source for training terms such
as general verbs, general adjectives, and general nouns,
while PubMed is a better source for training biomedical
terms such as gene, disease and drug names. Even
though we used word embeddings of biomedical entities
in our deep learning model, the result of our deep learn-
ing models reflects that the general terms are more im-
portant than the embedding of biomedical entities in
this relation classification task.
As also shown in Table 3, our deep learning model can

use BEST scores as important features for classifying the
relations. The results improved when the BEST scores

were used as features, compared with when they were
not used.
We added Additional file 1: Table S1 which pro-

vides details on the feature contribution analysis and
Additional file 1: Figure S1 which illustrates the
precision-recall curves in the Additonal file.

Evaluation using manually curated sentences
We manually curated sentences containing mutation-
drug relations for evaluation. We evaluated these sen-
tences using the best-performing model which employs
Google News word vectors and BEST scores. We ob-
tained 0.871, 0.610 and 0.718 for precision, recall and
F1-score, respectively. The difference in results of the
two datasets is due to the difference in the guidelines.
After error analysis, we found that in the manually cu-
rated dataset, the positive sentences contain many vague
drug-mutation relations. Human curators classified them
as positive; however, these unclear drug-mutation
relations may not be very helpful for making a reliable
dataset or knowledgebase for precision medicine. Our
method is useful for collecting more definite relations as
it obtains results with good precision.

VarDrugPub: Mutation-gene-drug relation database
Finally, using the suggested deep learning method, we
constructed VarDrugPub, a mutation-gene-drug relation
database (Fig. 4). Utilizing PubTator, we collected all the
PubMed abstracts that include at least one mutation and
one drug name. In this filtered abstract set, we found all
the sentences that contain both a mutation and drug
name. Using our trained deep convolutional neural net-
work model, we classified positive mutation-drug relations
in the sentence set. We also found genes that are related
to all the mutations that are found in this step using our
classification model. Using results, we provide information

Table 3 Results of relation mapping evaluation at the sentence
level with CNN. (The average F1-scores after five times of
random sub-sampling validation)

Relation Word2vec Without BEST Scores With BEST Scores

Mutation-Gene None 0.943 0.947

Google News 0.954 0.955

PubMed
(Token-based)

0.946 0.954

PubMed
(With BEST-EE)

0.941 0.951

Mutation-Drug No word2vec 0.803 0.820

Google News 0.845 0.864

PubMed
(Token-based)

0.829 0.841

PubMed
(With BEST-EE)

0.837 0.856

Lee et al. BMC Bioinformatics  (2018) 19:21 Page 10 of 13



about mutations, genes, drugs and the list of other bio-
medical entities that appear in the same document. It is
possible to search the relations using single gene, drug or
mutation names, and to use multiple terms as a query. All
the identified mutation-gene-drug relations, the statistics
of the data and further details are accessible on our web-
site (http://VarDrugPub.korea.ac.kr).

Evaluation of VarDrugPub using OncoKB dataset
VarDrugPub contains a total of 5712 unique mutation-
drug relations. To qualitatively analyze our knowledge-
base, we compared the mutation-drug relations in Var-
DrugPub with those in the OncoKB Actionable variant
list. We considered only the single drugs with point mu-
tation relations in the actionable variant list and those
relations mentioned at the abstract level. Out of the 113
point mutation-single drug relations mentioned at the
abstract level in OncoKB, 66 of them are also in our
knowledgebase. We manually analyzed all the 47 rela-
tions that our method could not find but were included
in OncoKB. 33 of the 113 relations did not co-occur at
the sentence level, which cannot be detected by our
sentence-level relation extraction model. 6 of the 113 re-
lations were not clear. We could not find two relations
due to the NER problem in the dataset generation
process. Our model failed to detect the remaining 6
drug-mutation relations. We added these analysis results
and details to the Supplementary file. These results dem-
onstrate that our method can find many more mutation-
drug relations than manual curation.
In this analysis, we realized the limitations of our

method. We found that 121 of the OncoKB mutation-
drug relations are not mentioned in abstracts. If we can
utilize our method on full text, we can find many more
new relations that are not mentioned at the abstract
level. We also believe that if we extend our method from
single-sentence level extraction to multi-sentence level
extraction, we can find more missing relations in
OncoKB.

Discussion and conclusion
Here, we have proposed computational methods that
automatically identify mutation-gene-drug relations in
text using deep convolutional neural networks. Our deep
learning model achieved better accuracy than the base-
line methods. Our proposed methods also use the entire
PubMed dataset to understand the existing relationships
between entities. We used pre-trained word embeddings
and entity search engine results to detect the relations
between entities in PubMed abstracts. As demonstrated
in the Results section, our methods use all the abstracts
in PubMed database as background knowledge.
Our method that uses search engine scores is useful in

finding the relations that are already mentioned together

in existing publications. Even though there is no known
relation between two entities, we use the other entities
that are mentioned with the target entities in the same
sentence to expand the query. These methods mimic
how the manual curators use their background domain
knowledge and the context of a text. We believe that the
improvement in accuracy of our classification results
prove that equipping machine learning tools with back-
ground domain knowledge is effective. However, if a
mutation-gene-drug relation is novel and has not been
previously reported in the literature, the search engine
score will not be very helpful in finding the new rela-
tions between entities. In such cases, the extraction of
the relations between the entities will depend more on
the methods that focus on solely the text rather than
outside knowledge. The suggested deep convolutional
neural network models can detect these novel relations
using pre-trained word embedding and numerous train-
ing examples.
Word vectors trained on other numerous texts such as

Google News or PubMed abstracts represent another type
of background information of entity-relations. Traditional
biomedical text mining techniques used pre-defined key-
words to explicitly describe the relations between entities
[18, 23]. However, our approach does not require the
manual selection of descriptive words. Instead, our ap-
proach learns relation words from other words using
machine learning (CNN).
Most of the biomedical research studies on word vectors

usually focus on biomedical entity terms [35, 48, 49].
However, we used word vectors with CNNs to find rela-
tions between entities. Our novel deep CNN models with
word embedding and entity search scores can be readily
used in other applications.
We also observed that in our task, the Google News

word vector obtained better results than the PubMed
word vector. We expected that PubMed would be better
for biomedical entity relation classification; however, we
believe that general terms such as verbs and adjectives
are more important than biomedical entities in this task
of describing the relations between the entities. Add-
itional experiments are required to explain which word
vectors are better for biomedical text mining tasks. We
still believe, since we build word vectors for all the
words that appear in PubMed, the words are optimized
for biomedical text mining in PubMed. We leave this
problem for future work.
In this research, we used only CNN as our deep learn-

ing classifier; however, we believe we can extend this
study using other deep learning models such as recur-
rent neural network or recursive neural network. We
will leave this problem for future work as well.
We observed that not all the mutation-drug relations

can be explained in single drug – single mutation
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relation. Drug combination research studies or other stud-
ies on the effect of multiple mutations require multiple
drugs or multiple mutation relation extraction methods.
Our method needs to be expanded to combination of
multiple entity relation extraction. We also believe that
using better NER tools will improve knowledge extraction.
In conclusion, we have developed a set of novel com-

putational deep learning methods that integrate search
engine scores and word embedding for identifying
mutation-gene and mutation-drug relations in text. The
methods utilize background knowledge in PubMed ab-
stracts as features for machine learning classifiers. We
demonstrated that using the PubMed database as back-
ground knowledge improves the classification results. To
the best of our knowledge, our approach is the first that
combines biomedical entity search and word embedding
using deep learning to utilize background knowledge for
mutation-entity relation extraction from the literature.

Additional file

Additional file 1: Table S1. Feature contribution analysis in our CNN
model. Table S2. Results of simple co-occurrence-based method. Table
S3. VarDrugPub and OncoKB comparison examples. Figure S1. Precision-
Recall curves of our CNN classifier (Blue: Mutation-Gene, Red: Mutation-
Drug). (DOCX 50 kb)
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