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A B S T R A C T   

Background and purpose: Chest wall movement during radiotherapy can impact the delivered dose to the internal 
mammary nodes (IMN) in high-risk breast cancer patients. Using portal imaging and dose reconstruction we 
aimed to examine the delivered IMN dose coverage. 
Material and methods: Cine MV images were recorded for 39 breast cancer patients treated with daily image- 
guided radiotherapy (IGRT) in deep-inspiration breath-hold (DIBH). On the final frame of each cine MV 
recording the chest wall was matched with the Digitally Reconstructed Radiograph (DRR) from the treatment 
plan. The geometrical chest wall error was determined in the imager-plane perpendicular to the cranio-caudal 
direction, rounded to integer millimeters, and binned. For each 1 mm bin, an isocenter-shifted treatment plan 
was recalculated assuming that the projected error observed in the cine MV image was caused by anterior- 
posterior chest wall movement in the IMN region. A weighted plan sum yielded the IMN clinical target vol
ume receiving at least 90% dose (V90_CTVn_IMN). 
Results: The mean number of cine MV observations per patient was 36 (range 26–55). Most patients (67%) had on 
average a posterior chest wall position at treatment compared to planned. This translated into a change in the 
delivered median V90_CTVn_IMN of − 0.7% (range, − 11.9–2.9%; p < 0.001). The V90_CTVn_IMN reduction was 
greater than 9% in three patients. No clinically relevant differences were found for the mean lung dose or mean 
heart dose. 
Conclusion: Using cine MV images, we found that the delivered V90_CTVn_IMN was significantly lower than 
planned. In 8% of the patients, the V90_CTVn_IMN reduction exceeded 9%.   

1. Introduction 

Internal mammary node irradiation (IMNI) in high-risk breast cancer 
(BC) patients reduces distant recurrence, BC specific mortality [1–3] and 
improves overall survival [3]. However, IMNI may increase the risk of 
ischemic heart disease. In early BC studies, excess cardiac disease [4] 
and mortality were observed in left-sided BC patients [5], and a dos
e–response relationship between mean heart dose (MHD) and major 
coronary events was established in 2D-based radiotherapy (RT) [6]. In a 
modern cohort of BC patients treated with tangential 3D-CT RT, the risk 
of cardiac events diagnosed with invasive procedures was not increased 
within 10 years after RT in left-sided patients [7]. 

However, the transition from 2D-based RT to tangential 3D-CT RT 
caused a slight decrease in IMNI target coverage [8,9]. Planning IMNI is 
often a balance between target coverage and constraints to organs at risk 
(OAR). A treatment planning study has shown that, despite employing 
steep dose gradients, it was not possible to achieve full IMN dose 
coverage while keeping OAR constraints in a subgroup of patients [10]. 
A recent study found a low median MHD (1.6 Gy) in left-sided BC pa
tients, though different dose distributions were shown across centers, 
indicating that the balance between target coverage and OAR sparing 
was prioritized differently across centers [11]. Hence, IMNI may be 
particularly sensitive to setup errors including internal movement dur
ing treatment. 
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Deep inspiration breath hold (DIBH) can increase the distance be
tween BC target structures and the heart. The DIBH gating level is often 
monitored by an external marker block on the chest wall [12]. The 
marker block position is, however, only a surrogate of the real internal 
chest wall movement. The internal chest wall position during treatment 
can be obtained by continuous portal imaging (cine MV) of tangential 
field delivery [13,14]. By this means, the mean chest wall position in 
gated BC patients deviated only 0.1 mm from planned [13]. However, in 
2.2% of the recorded fields the error was above 5 mm, and in 43% of the 
patients, the intra-field chest wall movement range exceeded the 
external gating window, highlighting that the external marker block 
movement may not in all patients represent the internal chest wall 
movement [13,15]. A possible pitfall is a caudal marker block placement 
on the thoracic wall, which has shown a worse correlation with chest 
wall position compared to mid-sternal and cranial placement [16]. In 
other studies, a systematic posterior movement of the target was 
observed during treatment delivery [17] or even already during the 
setup procedure [18]. Hypotheses to explain this phenomenon include 
relaxation [18] and fatigue during treatment [19]. DIBH can also be 
monitored with spirometry or with surface guidance (SGRT), though 
these methods have not been shown to further improve chest wall sta
bility [20–22]. 

Only a few studies have used intrafractional geometrical chest wall 
movements to estimate delivered RT dose coverages. The impact of the 
observed intrafractional chest wall movements on the delivered doses to 
OARs and the breast target was found negligible [15,23]. However, to 
the best of our knowledge, no studies have used Cine MV images to 
investigate the actual delivered IMNI dose. 

Therefore, due to the vulnerable nature of the IMN target and the 
existing gap in the literature, we examined the geometrical errors and 
the impact on IMN dose coverage during delivery of main tangential 
fields using cine MV images in a cohort of high-risk BC patients treated 
with DIBH and image-guided RT (IGRT). 

2. Material and methods 

2.1. Patient cohort 

A prospective single-center quality assurance study was conducted in 
a consecutive cohort of all left-sided node-positive BC patients treated 
with IMNI using DIBH at Aarhus University Hospital during 2021. Pa
tients with bilateral disease or treatment in non-supine position were 
excluded. In total 39 high-risk BC patients were included (supplemen
tary material A and figure S1). The project was approved by our insti
tutional review board. 

2.2. Treatment planning 

Patients were scanned and treated in DIBH, monitored and guided by 
Respiratory Gating for Scanners [RGSC, Varian Medical Systems, Palo 
Alto, Ca, USA]. Patients were immobilized in supine position in a breast 
board (Candor XRT) with the ipsilateral arm elevated above the head 
and the contralateral arm adducted alongside the chest. A marker block 
was placed on the lower part of the sternal bone at the junction with the 
xiphoid process, monitored by the RGSC system. Patients were trained at 
the CT session before the DIBH CT scan was acquired, and a comfortable 
gating level that the patient could hold for at least 20 s was found. The 
standard gating window was 2 mm. The slice thickness of the treatment 
planning CT was 3 mm. Target delineation followed the guidelines of the 
European Society for Radiotherapy and Oncology [24]. The CTVn_IMN 
included the third intercostal space (ICS) in all patients and the fourth 
ICS in case of a caudal and medially located tumor. For treatment 
planning, a single-isocenter technique was used. Two tangential fields 
were applied with a supplementary periclavicular field. Top-up in
tensity-modulated RT enhanced dose homogeneity. All treatment plans 
were calculated using the AcurosXB_16.1.0 calculation model (Eclipse 

treatment planning system, Varian). The Danish Breast Cancer Group 
(DBCG) recommends V90_CTVn_IMN ≥ 98%, and OAR constraints were 
MHD ≤ 5 Gy and mean lung dose (MLD) ≤ 18 Gy. A PTV margin of 5 mm 
to all target structures was recommended, though the PTV margin was 
prioritized below constraints to the heart and lungs. Hence, the PTV 
margin, and also sometimes the V90_CTVn_IMN, was susceptible to dose 
compromises. Patients were treated with either 40 Gy/15 fx or 50 Gy/25 
fx. In patients with breast-conserving surgery, a tumor bed boost was 
given as a simultaneous integrated boost with 45.75 Gy/40 Gy/15 fx or 
57 Gy/50 Gy/25 fx for patients aged 41–49 years and 52.2 Gy/42.3 Gy/ 
18 fx or 63 Gy/51,52 Gy/28 fx for patients ≤ 40 years or with a tumor 
resection margin < 2 mm. 

2.3. Treatment delivery 

At the treatment sessions, patients were positioned according to skin 
marks followed by daily IGRT including an MV image of one tangential 
field and a corresponding orthogonal kV image. These were matched to 
the treatment plan digitally reconstructed radiographs (DRR) and the 
patient position was corrected by couch movement before treatment. 
Both patient setup imaging and treatment delivery were gated in DIBH. 
During treatment delivery, cine MV images were recorded at every 
fraction for both the medial and lateral tangential fields. In the clinical 
setting, the cine MV images were reviewed offline by a medical physicist 
after the second fraction for a selection of patients (challenges in 
cooperation during the CT session, abdominal DIBH, field edge within 1 
cm of the heart). The purpose was to detect setup errors greater than 3 
mm to take counteractive action, e.g., additional gating training, repo
sitioning of the marker block or a rescan to make a new treatment plan. 
Based on the 5 mm PTV margin, a 3 mm cut-off was pragmatically 
chosen as a compromise between negligible errors and errors with 
dosimetric consequences. 

2.4. Geometrical errors 

In the present study, the chest wall location in the final frame of each 
cine MV series was matched post-treatment to the corresponding DRRs 
from the two main tangential fields in the treatment plan. The chest wall 
geometrical error was measured in the imager plane perpendicular to 
the cranio-caudal direction (u-direction, Fig. 1). Assuming that the chest 
wall region closest to the CTVn_IMN was a good surrogate for the IMN 
position, the match was performed for this region (Fig. 1C). To account 
for residual match errors in the daily IGRT and couch correction pro
cedure, also the acquired tangential setup MV image was matched with 
the DRR in this region closest to the IMN position (Fig. 1C). This post- 
treatment IMN match deviated from the daily clinical match priorities 
(Fig. 1B). The differences between the IMN match and the daily clinical 
match were attributed to pitch rotation around the right-left axis, which 
was furthermore evaluated visually. The difference between this resid
ual match error and the actual error in cine MV image during treatment 
was ascribed to intrafractional chest wall movement from setup imaging 
to treatment. To explore a possible correlation between marker block 
positioning and IMN dose coverage, the distance from the marker block 
to the junction between the sternal bone and the xiphoid process was 
measured on the planning CT-scan (figure S2). 

2.5. IMN dose reconstruction 

The geometrical chest wall errors in the cine MV images were 
rounded to integer millimeters and binned for each treatment field 
observation. For each 1 mm bin, a new treatment plan was recalculated 
with a shifted isocenter. It was assumed that the error in the u-direction 
observed in the cine MV image was caused by an anterior-posterior chest 
wall movement in the IMN region. This allowed calculation of a 
weighted plan sum of the delivered CTV dose from the whole treatment 
course. From this, the delivered V90_CTVn_IMN was calculated and 

A.W. Mølby Nielsen et al.                                                                                                                                                                                                                     



Physics and Imaging in Radiation Oncology 27 (2023) 100470

3

compared with the planned dose. 

2.6. Statistics 

The population mean error M, and the standard deviation (SD) of the 
systematic error 

∑
and the random error σ in the u-direction were 

calculated according to van Herk [25]. Geometrical errors were also 
presented as simple means with 95% confidence intervals. The primary 
outcome was the difference between delivered and planned 
V90_CTVn_IMN. Differences were tested with the non-parametric 
signed-rank test. Pearson correlation coefficient was used to test corre
lation between two continuous variables. Normality of data was assessed 
with histograms and QQ-plots. All statistical analyses were done in Stata 
17.0 (StataCorp LLC, Texas, USA). 

3. Results 

In the setup MV images, 46% of fractions were assessed to have no 
pitch, 17% to have a posterior pitch i.e., the cranial part of the thoracic 
wall falling more posterior than the caudal part, and 36% to have an 
anterior pitch. For field 1 and 2 combined, 49%, 24%, and 27% of the 
cine MV images were without, with a posterior, and with an anterior 
pitch, respectively. Matching the chest wall in the cine MV image to the 
DRR in the CTVn_IMN target region most patients (67%) had on average 
a posterior chest wall position on cine MV images compared to the 
planned position (Fig. 2). The geometrical error in field 1 was strongly 
correlated to the error in field 2. The geometrical errors combined for 
field 1 and 2 were according to van Herk; M = 0.7 mm, 

∑
= 1.4 mm, and 

σ = 1.7 mm. In 3% of the observations the error was larger than 5 mm. 
Intrafraction chest wall movement was the main constituent of the 
geometrical error (Fig. 3D). Results for the daily clinical match method 
are supplied in supplementary materials B. 

A posterior geometrical error entailed, in contrast to anterior errors 
that the IMN target moved partly out of the high-dose region (Fig. 4). 
This translated into a statistically significant change of the delivered 
median V90_CTVn_IMN of − 0.7% (p < 0.001). The difference in 
V90_CTVn_IMN ranged from a 2.9% increase to an 11.0% reduction in 
delivered compared to planned dose. The V90_CTVn_IMN reduction was 
greater than 9% in three patients (Fig. 5). A dosimetric example is 
provided in Fig. 6. The median planned MHD was 1.3 (range: 0.5––4.5) 
Gy and the median estimated delivered MHD was 1.3 (range: 0.5–4.4) 

Gy (p = 0.04). The median planned MLD was 11.4 (range: 7.7–16.1) Gy 
and the median estimated delivered MLD was 11.3 (range: 7.3–16.6) Gy, 
p = 0.007. 

In 27 of 39 patients, the cine MV images were reviewed by a medical 
physicist after the second fraction, but only in four patients was the cine 
MV review performed at more than two fractions. The median distance 
between the junction of the sternal bone/xiphoid process and the 
measuring point on the marker block was 4.4 cm (range 0.9–9.7 cm). No 
correlation was found between the magnitude of the marker block po
sition in cranio-caudal direction and the field 1 error, field 2 error, or the 
difference between delivered and planned V90_CTVn_IMN. 

4. Discussion 

To our knowledge, this is the first report estimating the delivered 
V90_CTVn_IMN doses for BC RT. We found a statistically significant 
reduction of the median V90_CTVn_IMN of 0.7% with a maximum 
reduction of 11%. The reduction was greater than 9% in three patients. 
No clinically relevant differences between delivered and planned MLD 
and MHD were found. Both geometrical errors and a vulnerably planned 
V90_CTVn_IMN could explain these findings. 

First, our data shows that the V90_CTVn_IMN was more vulnerable to 
setup errors than MLD and MHD. The sensitivity toward geometrical 
errors varied among patients and seemed more pronounced in patients 
with a low planned V90_CTVn_IMN (Figs. 4 and 5). This is caused by the 
steep dose gradient of IMNI on the edge of the tangential fields, which 
reflects the trade-off between target and OAR doses. No clinically rele
vant differences were found for OAR doses indicating more robustness 
towards the observed geometrical errors. As there is level 1 evidence 
supporting overall survival gain from IMNI, the CTVn_IMN needs to 
have priority in RT planning of high-risk BC patients [1–3]. The risk of 
ischemic heart disease and second lung cancer is also of concern, how
ever, with modern RT planning according to DBCG guidelines it is un
likely that dose to these OAR influences survival at least within the first 
decade [7,26]. 

Second, impact of marker block position has previously been inves
tigated at our institution, and acceptable chest wall position reproduc
ibility was found for sternal bone placement of the marker block. [13]. 
Not in line with this, we found the marker block displaced 4.4 cm 
(median value) below the xiphosternal junction. This could be caused by 
the practical problem of placing the marker block between the breasts 

Fig. 1. A. Beams eye view of lateral tangential field 1 with overlayed IMN segmentation (red structure). The white arrows show the u-direction and the v-direction B- 
C. Blended image of a cine MV image (red) and DRR (light blue) for a fraction with a posterior pitch. The black bars show the u-directional geometrical error. B. 
Shows the residual errors applying the daily clinical match as used in the clinical setting. C. Shows the residual error when applying a match strategy that focuses on 
the IMN region. It is seen that there are residual errors in both match strategies but in different regions. Patient 34, fraction 10, field 1 has been used for Fig. 1. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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and the worry of introducing a bolus effect causing skin damage. We 
found no correlation between the magnitude of caudal displacement of 
the marker block from the sternal bone and reduction in delivered 
V90_CTVn_IMN. However, in line with previous findings [16], the 
general caudal displacement of the marker block toward the abdomen 
may contribute to the poor reproducibility of the chest wall position, 

since in this case abdominal movements rather than the chest wall 
movements are monitored by the gating system. 

Third, the daily IGRT was not always representative of the chest wall 
position during treatment. Our data suggest this in three ways. First, the 
number of patients with an anterior pitch decreased from the setup MV 
image of daily IGRT to cine MV images of the delivered fields, in line 

Fig. 2. Geometrical error of the chest wall in the u-direction in MV images. Patients sorted according to mean geometrical errors in field 1 and field 2 from most 
anterior deviation (patient 1) to most posterior deviation (patient 39). Boxplot shows the 25th and 75th percentile with a median bar in the middle. Whiskers defined 
as by Tukey. Outside values shown. A. Setup MV error after daily IGRT procedure and correction. Notice, that the median value is zero for 27 of the patients. Patient 
12 was treated with cone beam CT only as daily IGRT, hence no setup MV values B. Cine MV error of field 1 and 2. 
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with the previously proposed relaxation theory [18]. Second, the 
geometrical errors mainly originated from intrafraction chest wall 
movements (Fig. 3). Third, the geometrical error was larger than 5 mm 
in 3% of all observations, previously estimated to 2.2% [13]. 

Another modality for daily IGRT is cone beam CT (CBCT). 2D portal 
images underestimate the bony set-up error compared with CBCT [27]. 
A possible advantage of CBCT is the prolonged image capturing time, 
which we believe is more representative of the average chest wall po
sition during DIBH compared with the snapshot approach of 2D IGRT. 

Finally, a cine check was applied after the second fraction in 67% of 
the patients, and follow-up checks were rarely carried out. As 

geometrical errors can vary over the entire course of RT, cine checks at a 
larger proportion of fractions, or automating the process, would likely 
enhance the probability of detecting patients with the largest geomet
rical errors. 

A primary strength of our study is that it was conducted in a 
consecutive cohort representing a full calendar year. Unlike most 
research in the area, the match between cine MV images and the planned 
position from the DRR was done manually, and every cine MV image 
was reviewed twice according to the two listed match strategies by one 
investigator. Important limitations were the assumptions made in 
recalculating the treatment plans. First, we assumed the final cine MV 
frame to be representative for the entire field delivery, which was based 
on clinical experience from our institution and from Lutz et al, who 
described a small SD of intra-field movement of the chest wall of 0.5 mm 
[13]. Second, we assumed that the error observed at the chest wall in the 
u-direction originated solely from an anterior-posterior movement. This 
was found most plausible and dosimetrically valid as the observed u- 
error gives the same dosimetric effect on the V90_CTVn_IMN whether it 
originated from an anterior-posterior or medial–lateral geometrical 
error due to the tangential field arrangement. Third, we assumed no 
cranio-caudal movement as this movement is difficult to quantify 
accurately on cine MV images from tangential fields alone, and such 
movement would occur mainly along the steep dose gradients near the 
IMN and not perpendicular to it. Finally, we assumed no rotation or 
deformation. Taken together, with these simple assumptions we find our 
dose reconstruction provides a valid estimate of the V90_CTVn_IMN. 

These results raised awareness around all factors contributing to 
setup errors during RT in high-risk BC patients at our department. This 
included focus on optimal marker block positioning (i.e. on the sternal 
bone), improved DIBH training, and improved daily IGRT by imple
menting CBCT. Prioritizing a PTV margin above constraints to OAR 
would be another way to improve V90_CTVn_IMN coverage. 

Fig. 3. A. Histogram of measured geometrical errors in the final frame cine MV images in the u-direction compared to the planned position. B. Correlation between 
field 1 and 2 geometrical errors. Pearson correlation coefficient shown in figure. C. Residual geometrical error at the setup MV image when applying the IMN match 
after initial couch correction. D. Geometrical errors originating from intrafraction chest wall movements derived as the difference between the setup MV error and 
the cine MV error. 

Fig. 4. Reconstructed treatment plans for each 1 mm bin. If the patient had at 
least one deviation in the specific bin, a recalculated treatment was recon
structed. Each colored curve represents one patient. 
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Furthermore, robustness analysis of the dosimetric impact of setup er
rors as in Fig. 4 could be performed prior to treatment start to select 
sensitive treatment plans that would benefit from more frequent cine 
MV-based monitoring. Volumetric modulated arc therapy (VMAT) may 
enhance treatment plan robustness, and can also be monitored with cine 
MV images [28,29]. Detection of the chest wall as well as the heart in the 
cine MV images of tangential breast fields can be automated [14,21,30] 
and combined with automated dose reconstruction [31]. This could be 
used for automated prospective monitoring of the delivered target and 
OAR doses in BC RT based on daily cine MV imaging. Magnetic reso
nance imaging might be another strategy to monitor intrafractional 
movements [32,33]. 

Using cine MV images, we found that the delivered V90_CTVn_IMN 
was significantly lower than planned. In 8% of the patients, the 
V90_CTVn_IMN reduction exceeded 9%. No clinically relevant differ
ences were found for the MLD or MHD. Based on these data our insti
tution plans to implement CBCT for daily IGRT for high-risk BC patients 
supported by continued cine MV image monitoring. 
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