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A B S T R A C T

Background: Preeclampsia is a devastating hypertensive disorder of pregnancy with unknown mechanism.
Recent studies have considered abnormal autophagy as a new cellular mechanism for this disorder, while lit-
tle is known about how autophagy is specifically involved and what factors are implicated. Here, we report a
previously unrecognized preeclampsia-associated autophagic regulator, PKCb, that is involved in placental
angiogenesis.
Methods: PKCb levels were evaluated by quantitative real-time PCR, western blotting, immunofluorescence
and by the analysis of public data. The autophagy-regulating role of PKCb inhibition in preeclampsia patho-
genesis was studied in a mouse model, and in human umbilical vein endothelial cells (HUVECs) and human
choriocarcinoma cells (JEG-3).
Findings: PKCb was significantly downregulated in human preeclamptic placentas. In a mouse model, the
selective inhibition of PKCb by Ruboxistaurin was sufficient to induce preeclampsia-like symptoms, accom-
panied by excessive autophagic flux and a disruption in the balance of pro- and anti-angiogenic factors in
mouse placentas. In contrast, autophagic inhibition by 3-methyladenine partially normalized hypertension,
proteinuria and placental angiogenic imbalance in PKCb-inhibited mice. Our in vitro experiments demon-
strated that PKCb inhibition activated autophagy, thus blocking VEGFA-induced HUVEC tube formation and
resulting in the significant upregulation of sFLT1 and downregulation of VEGFA in JEG-3 cells.
Interpretation: These data support a novel model in which autophagic activation due to PKCb inhibition leads
to the impairment of angiogenesis and eventually results in preeclampsia.
Funding: Shanghai Key Program of Clinical Science and Technology Innovation, National Natural Science
Foundation of China and Shanghai Medical Center of Key Programs for Female Reproductive Diseases.
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1. Introduction

Preeclampsia (PE), a devastating hypertensive disorder affecting
~8% of pregnancies, involves significant alterations in pathophysio-
logical features, including abnormal autophagy and angiogenesis [1].
This syndrome is pregnancy-specific and characterized by the onset
of hypertension and proteinuria after 20 weeks of gestation [1]. Eluci-
dation of the specific mechanism involved has long been considered
as one of the toughest challenges in preeclampsia, thereby limiting
the establishment of mechanism-based preventative and therapeutic
strategies.
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Research in context

Evidence before this study

Preeclampsia is a devastating hypertensive disorder of preg-
nancy with unknown mechanism. The current insight into the
etiology of preeclampsia is focused on abnormal autophagic
flux in placenta, while little is known about how autophagy is
involved and what initial factors are related. Evidence showed
that Protein kinase C isoform b (PKCb) played an important
role in the regulation of autophagy in HEK293 cells. Besides,
hypermethylated PKCb was identified in human preeclamptic
placentas. However, there is no direct evidence to support the
fact that PKCb is involved in the pathogenesis of preeclampsia.

Added value of this study

In this study, we report the causal relationship between selec-
tive inhibition of PKCb and preeclampsia. We found that: (i)
PKCb was significantly downregulated in human preeclamptic
placentas; (ii) the selective inhibition of PKCb was sufficient to
induce preeclampsia-like symptoms in mice; (iii) PKCb inhibi-
tion led to excessive autophagic flux and an angiogenic imbal-
ance in mouse placentas; (iv) autophagic inhibition by 3-MA
partially normalized hypertension, proteinuria and placental
angiogenic imbalance in PKCb inhibited mice; (v) the inhibition
of PKCb blocked VEGFA-induced HUVEC tube formation and
resulted in the upregulation of sFLT1 and downregulation of
VEGFA in JEG-3 cells by activating autophagy.

Implications of all the available evidence

This study reveals the autophagy-regulating role of PKCb in the
pathogenesis of preeclampsia. Our results raise the possibility
that restoration of PKCb levels in PKCb-deficient women may
be an efficient means of treating placental diseases, such as, but
not limited to, preeclampsia.
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The current insight into the etiology of preeclampsia is focused on
abnormal autophagic flux in placenta [2-5]. Autophagy is a self-degrada-
tive process that produces energy from cytoplasmic contents and subse-
quently prevents the accumulation of waste products [4]. An
appropriate level of autophagy is essential to maintain physiological
homeostasis and energetic balance [4,6]. Growing evidence showed
autophagy participated physiologically in preimplantation development
and placentation [7,8]. Compared with normal pregnancies, excessive
levels of autophagic activity have been identified in preeclamptic pla-
centas [3], which is considered to represent a potential cause for inade-
quate trophoblast invasion in preeclampsia [3,4,9]. Additionally,
angiogenesis, an essential but defective process in preeclampsia, has
been recently reported to be regulated by autophagy during tumorigene-
sis [10,11]; however, direct evidence of autophagy's involvement in
human placental angiogenesis is scarce, and the initial factors that lead
to this process remain poorly understood.

A previous experimental study supported the autophagy-regulating
role for protein kinase C isoform b (PKCb)(12). PKCb is a predominant
conventional isoform of the protein kinase C (PKC) family, and is a ser-
ine/threonine protein kinase known to be involved in various cellular
signal transductions [13]. Although previous studies linked several mem-
bers of the PKC family to the pathogenesis of preeclampsia and abnormal
placental development [14-17], very little has been carried out on the
specific role of PKCb in preeclampsia. In fact, the regulation of angiogen-
esis is one of the key roles of these multifunctional isoenzymes in the
PKC family, including PKCb [18-20]. In addition, it has been shown that
PKCb was downregulated in preeclamptic placentas [21]. This observa-
tion of aberrant expression and the dual function (i.e., the regulation of
autophagy and angiogenesis) of PKCb led us to hypothesize that this
molecule may be involved in the pathogenesis of preeclampsia.

Here, we demonstrated that PKCb levels in the placenta are
reduced in pregnancies complicated by preeclampsia. Furthermore,
we provided the first line of in vivo and in vitro evidence that PKCb is
a novel factor that plays an important role in the pathogenesis of pre-
eclampsia by modulating autophagy. This study provides further
understanding of the molecular mechanisms underlying the patho-
genesis of preeclampsia.

2. Methods

The data that support the findings of this study are available from
the corresponding author upon request.

2.1. Subjects and the Collection of Human Placentas

Placental samples obtained from preeclamptic and control sub-
jects were analysed in a case�control study design at the Obstetrics
and Gynaecology Hospital of Fudan University. Eligible subjects were
randomly selected from women who delivered by elective caesarean
section and had stored placental samples available for analysis. All
participants provided written informed consent for the use of their
placenta tissues. The study was approved by the Ethics Committee of
Obstetrics and Gynaecology Hospital of Fudan University.

Preeclampsia was defined according to the 2013 ACOG (The
American College of Obstetricians and Gynaecologists) Hypertension
Guidelines [22]. In brief, patients were diagnosed with preeclampsia
when blood pressure �140 mm Hg systolic, or 90 mm Hg diastolic,
on at least two occasions 4 h apart, with (or without) positive urinary
protein testing (�300 mg per 24 h) after 20 weeks of gestation.
Severe preeclampsia was defined as a blood pressure �160 mm Hg
systolic, or 110 mm Hg diastolic, accompanied by organ dysfunction.
Controls were pregnant women who did not develop preeclampsia
or other complications mentioned in the exclusion criteria below.

Cases involving multiple pregnancies and transplanted organs, or
those that were complicated by pre-existing chronic conditions (e.g.,
chronic hypertension), pregnancy complications other than pre-
eclampsia (e.g., diabetes mellitus), other complications (e.g., autoim-
mune diseases and oncological diseases), and any known foetal
anomalies, were excluded.

The sample size of 26 placental samples in each group was calcu-
lated by PASS software based on the PKCb expression data from the
GSE75010 dataset in Gene Expression Omnibus (GEO) (http://www.
ncbi.nlm.nih.gov/gds/). Specifically, the calculation was assuming
a=0.05, b=0.20, the outcome mean§SD (standard deviation) as 1§
0.15 and 0.9§0.10 for control and preeclampsia groups, respectively,
and using a 1:1 ratio between groups. Eventually, we selected 30 con-
trol and severe preeclamptic samples, respectively, to detect a statis-
tical difference of PKCb expression.

2.2. Animal Experiments

Adult male and female C57BL/6J mice were purchased from Jiesijie
Laboratory (Shanghai, China). All animal protocols were performed in
accordance with the guidelines issued by Fudan University for the care
and use of laboratory animals. The mice were housed in a temperature-
and humidity-regulated environment with free access to standard chow
and water. Photoperiod was controlled automatically with 12-h light-
dark cycles. Prior to the experiments, all animals were acclimated for
one week. For all timed pregnancy experiments, virgin female mice
(8�12 weeks old), and stud male mice, were mated overnight at a 2:1
ratio. The day on which a copulation plug appeared was recorded as
embryonic day 0.5 (E0.5). Plugged females were then removed from the
stud cage and placed into another cage for subsequent experiments. To
explore the causal relationship between PKCb inhibition and
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preeclampsia, Ruboxistaurin (RBX, 10 mg/kg/d), a selective and ATP-
competitive PKCb inhibitor [23], was administered to the mice by
gavage from E7.5 to E14.5, a period that was approximately equiva-
lent to murine placental development. For the in vivo inhibition
of autophagy, the mice were intraperitoneally injected with a
dose of 20 mg/kg/d of the autophagic inhibitor 3-methyladenine
(3-MA, Sigma-Aldrich, MO, USA) from E7.5 to E14.5. We selected
DMSO, the solvent of RBX and 3-MA, as the vehicle control.

2.3. Measurements of Blood Pressure and Urinary Protein in Mice

To evaluate the preeclampsia symptoms of animals, blood pres-
sure and urinary protein were measured. We determined the indirect
blood pressure in conscious mice by tail cuff plethysmography using
the Visitech System BP2000 (Apex, NC, USA). All animals were habit-
uated to the measurement procedure 10 times a day from E4.5�6.5
before blood pressure was formally evaluated. At least 10 consecutive
measurements were recorded, but only when the condition of the
mice was stable. Seven time points (E7.5, E9.5, E11.5, E13.5, E15.5,
E17.5, and after delivery) were selected for assessing blood pressure
levels throughout the pregnancy. Twenty four-hour urine samples
were collected from the mice in metabolic cages from E16.5 to E17.5,
and the volumes were then recorded. Urine was frozen at -80°C until
further analysis. Urinary protein concentrations were quantified
Fig. 1. Decreased PKCb levels in placentas from pregnant women with preeclampsia. (a) V
from normotensive controls (n=30) and preeclampsia patients (n=30), ***P<0.001 (Mann�W
from preeclampsia (n=63) and normotensive controls (n=53) by analysis of a Gene Express
panel: representative western blot image of PKCb protein expression in placentas from norm
by densitometry of the Western blot bands are shown relative to the control (The analysis w
immunofluorescence image of double labelling (PKCb and CD31) showing PKCb protein exp
patients (n=5 in each group. Scale bars, 20mm).
using a Bradford Protein Assay Kit (Beyotime Biotechnology, Beijing,
China), according to the manufacturer’s instructions.

2.4. Differential Expression Analysis of mRNA

An mRNA microarray dataset was downloaded from the GEO data-
base and used to confirm the downregulation of PKCb in human pre-
eclamptic placentas. This placental mRNA microarray data, including 53
placental tissues from normotensive pregnancies and 63 placental tis-
sues from preeclamptic pregnancies, were derived from GSE75010 after
excluding 41 pregnancies with chronic hypertension. After normaliza-
tion and log2-transformation of the raw data, the two-tailed unpaired
Student’s t test was used to evaluate whether the expression of PKCb
was differential between normotensive and preeclamptic pregnancies.

2.5. Histopathology and Immunofluorescence

For histological analysis and assessment of mouse kidney and pla-
centa changes, H&E (haematoxylin & eosin) staining was performed.
At E17.5, when urine collection had been completed, the mice were
euthanized and samples of kidney and placenta were collected. A
small aliquot of each sample was fixed in 4% paraformaldehyde for at
least 12 h. Subsequently, these tissues were paraffin-embedded, sec-
tioned to a thickness of 4 mm, and stained using standard H&E
iolin plots showing qRT-PCR analysis of placental PKCb mRNA expression in placentas
hitney U test). (b) Violin plots showing normalized placental PKCb mRNA expression
ion Omnibus (GEO) dataset (GSE75010), ***P<0.001 (Mann�Whitney U test). (c) Top
otensive and preeclampsia pregnancies. Bottom panel: quantitative results determined
as based on �3 samples per group, *P<0.05, Mann�Whitney U test). (d) Representative
ression and localization in placentas from normotensive pregnancies and preeclampsia
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techniques. The human and mouse placental immunofluorescence
was performed as previously described [24] using an anti-PKCb anti-
body (ab189782) from Abcam (Cambridge, UK) or an anti-LC3 anti-
body (L8918, RRID: AB_1079382) from Sigma-Aldrich (MO, USA). The
numbers of LC3 puncta were counted according to previous guide-
lines [25] and using ImageJ software (RRID: SCR_003070).

2.6. RNA Isolation and Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)

Total RNA was isolated from human placental tissues by Trizol
reagent (Invitrogen, CA, USA), in accordance with the manufacturer’s
instructions. A Nanodrop 2000 (Thermo fisher scientific, MA, USA) was
used to measure the amount and purity of the RNA extracted. cDNA was
then synthesized from total RNA via reverse transcription using the Pri-
mescript RT reagent kit with gDNA Eraser (Takara, Shiga, Japan). Next,
qRT-PCR was performed using a TB Green Premix Kit (Takara) on an
EcoTM quantitative PCR system (Illumina, CA, USA), in accordance with
the manufacturer’s protocols. Relative gene expression was calculated
by the comparative CT method, with b-actin as the internal control. The
following primers were used: PKCb, 50-CCCTCAACCCTGAGTGGAAT-30

and 50-CTTAAACCAGCCATCAACACTGG-30, b-actin, 50-AGAGCTAC-
GAGCTGCCTGAC-30 and 50 -AGCACTGTGTTGGCGTACAG -30.

2.7. Western Blot Analysis

Protein extracts from human and mouse placental tissues, and cell
lines, were obtained using RIPA lysis buffer in the presence of
1 mmol/L PMSF (Beyotime Biotechnology). The protein concentration
was then determined by a Bradford protein assay kit (Beyotime
Fig. 2. PKCb-inhibited pregnant mice exhibited preeclampsia-like features. (a) Systolic bloo
treated pregnant mice at the indicated gestational day (n=5 mice per group, *P<0.05, **P<0.0
variance). (b-f) PKCb inhibition significantly increased the (b) 24 h total urinary protein
decreased the (c) placenta weight (n=41 and 30 placentas in control and RBX groups, respec
RBX groups, respectively, *P<0.05, Student’s t test) and (e) number of pups per litter (n=5 mic
mal stromal collagen deposition were evident in the kidney and placental labyrinth layer, res
control mice were analysed for sFlt-1 and VEGFA expression by immunoblot, and a represent
the Western blot bands are shown relative to the control (The analysis was based on 5 placen
Biotechnology). Proteins were separated on SDS-PAGE gels of an
appropriate concentration, and then transferred to polyvinylidene
difluoride (PVDF) membranes. After blocking with 5% non-fat milk,
the membranes were probed with primary antibodies against PKCb
(Abcam, ab189782), LC3 (L8918, RRID: AB_1079382, Sigma-Aldrich),
p62 (sc-28359, RRID: AB_628279, Santa Cruz Biotechnology), VEGFA
(19003-1-AP, RRID: AB_2212657, Proteintech), sFlt-1 (ab32152,
RRID: AB_778798, Abcam), mTOR (2983, RRID: AB_2105622, Cell Sig-
naling Technology), and Phospho-mTOR (Ser2448) (5536, RRID:
AB_10691552, Cell Signaling Technology), followed by incubation
with goat anti-rabbit (7074, RRID: AB_2099233, Cell Signaling Tech-
nology) /mouse (CW0102, RRID: AB_2814710, CWBio) IgG, horserad-
ish peroxidase (HRP)-linked secondary antibody, as required.
Visualization of the blots was achieved by enhanced chemilumines-
cence (ECL) using NcmECL Ultra (New Cell & Molecular Biotech, Suz-
hou, China). b-actin (60008-1-Ig, RRID: AB_2289225, Proteintech)
was used as the internal standard.
2.8. Tube Formation Assay

Forty-eight-well plates were precoated with 100 ml of Matrigel
(BD Biosciences, CA, USA) and incubated at 37°C for 2 h. VEGFA (40
ng/ml) was used to induce Human umbilical vein endothelial cells
(HUVECs) tube formation with reference to previous reports [26,27].
To investigate the effects of PKCb- and autophagy-inhibition on
angiogenesis, HUVECs were treated with VEGFA (40 ng/ml), RBX (100
nmol/L) and 3-MA (5 mmol/L), alone, or in combination, as required,
in ECM media supplemented with 3% FBS for 24 h in 6-well plates
(Hangzhou Xinyou Biotechnology Co., Ltd, China). DMSO, the solvent
used for RBX and 3-MA, was selected as the vehicle control. Then,
d pressure (SBP) and diastolic blood pressure (DBP) measurements of control and RBX-
1, ***P<0.001 vs Control group at the same time points, Repeated measures analysis of
level measured at E17.5 (n=5 mice per group, **P<0.01, Mann�Whitney U test) and
tively, *P<0.05, Student’s t test), (d) foetal weight (n=41 and 30 foetuses in control and
e per group, **P<0.01, Mann�Whitney U test). (f) Glomerular endotheliosis and abnor-
pectively. Scale bars, 20mm. (g) Left panel: placental samples from PKCb-inhibited and
ative blot is presented. Right panel: quantitative results determined by densitometry of
tal samples per group, *P<0.05, Mann�Whitney U test).
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HUVECs were seeded at a density of 105 cells per well in 48-well
plates. After 4 h, the tube-like structures were labelled with a green
tracer (Thermo Fisher Scientific) for 2 min at 37°C. Appropriate
images were acquired by fluorescence microscopy. Three key param-
eters were then quantified by Image J Software (RRID:SCR_003070):
total tube length, branching point count, and tube count.

2.9. Cell Culture and Lentiviral Transduction

JEG-3, HUVEC, and HTR-8/SVneo cells were routinely cultured in
DMEM, ECM, and RPMI-1640 medium, respectively, with 10% foetal
bovine serum (Gibco, Carlsbad, CA, USA). In order to prepare the lentivi-
rus encoding the short hairpin RNA (shRNA) targeting PKCb, a unique
sequence of the PKCb open reading frame (5’-CCTGTCAGATCCCTACG-
TAAA-3’), was cloned into the pGreen�CMV�puro�vector plasmid.
Scrambled shRNA (5’-TTCTCCGAACGTGTCACGTC-3’) was used as a nega-
tive control. Viral particles were produced by lipofectamine 3000 trans-
fection into human embryonic kidney fibroblasts. Cells were infected
with lentiviruses in the presence of 8 mg/ml polybrene (Genomiditech,
Shanghai, China) for 24 h. Then cells were selected by 1mg/ml of puro-
mycin. Knockdown of PKCbwas confirmed by western blotting.

2.10. Statistical Analysis

Statistical analyses were performed using SPSS version 20.0 (SPSS
Inc., IL, USA). The normality of data was analysed by the Kolmogorov-
Smirnov normality test. The differences between groups were ana-
lysed by the Student’s t test for continuous variables that were dis-
tributed normally and by the Mann�Whitney U test for continuous
variables with a non-normal distribution or a sample size �5. The
Fig. 3. The inhibition of PKCb augments autophagy in mouse placentas. (a) Left panel: Weste
LC3-II with PKCb inhibition. Right panel: quantitative results determined by densitometry o
Quantification of LC3-II levels was performed by densitometry of (b) LC3-II/b-actin and (c) L
tions of RBX-treated pregnant mice and controls were triple stained with anti-LC3 (red), ant
20mm. (e) Quantitative results of the data are depicted in (d) (All the analyses were based on
Chi-square test or Fisher’ exact test was used for categorical variables.
One-way analysis of variance (ANOVA) followed by a Tukey’s post
hoc test was used to analyse normally distributed baseline variables
across multiple groups. The Kruskal-Wallis test, with Bonferroni cor-
rection, was used if the data were not normally distributed. Binary
logistic regression was used to examine the association between pla-
cental PKCb levels and the risk of developing preeclampsia by calcu-
lating unadjusted and adjusted odds ratios (ORs). Maternal age and
pre-gestational body mass index (BMI) were included in the analysis
of qRT-PCR results, and the GSE75010 dataset analysis, as potential
confounders regardless of statistical significance, since these factors
are associated with preeclampsia [28]. Gestational age was regarded
as a potential confounder only when it altered the association
between PKCb level and preeclampsia by >10%. Repeated measures
analysis of variance was used for blood pressure analysis followed by
the Bonferroni post hoc test as required. A P value less than 0.05 was
regarded as statistically significant. All the exact P values calculated
in this study are shown in Supplementary Table 1.

3. Results

3.1. Clinical Characteristics of the Study Population

The clinical characteristics of preeclampsia patients (n=30) and
normotensive controls (n=30) are shown in Supplementary Table 2.
Maternal age and pre-gestational body mass index (BMI) were com-
parable between the two groups. However, there were significant dif-
ferences between the normotensive and preeclampsia groups in
terms of the gestational age at delivery, highest systolic and diastolic
blood pressures, and newborn birth weight.
rn blot analysis of murine placental mTOR, p-mTOR, p62, and the conversion of LC3-I to
f the Western blot bands (mTOR, p-mTOR and p62) are shown relative to the control.
C3-II/LC3-I ratio. (d) Visualization of LC3 puncta in the placentas of mice. Placental sec-
i-CD31 antibody (green) and DAPI (blue). Representative images are shown. Scale bars:
5 placental samples per group, *P<0.05, Mann�Whitney U test).



Fig. 4. The blockade of 3-MA-mediated autophagy attenuates preeclampsia-like symp-
toms in PKCb-inhibited mice. RBX-treated pregnant mice were injected with 3-MA
from E7.5�E14.5 and placentas were collected on E17.5. (a) Left panel: the placental
protein levels of mTOR, p-mTOR, sFLT-1, VEGFA, p62 and LC3, were detected by immu-
noblotting. Right panel: Quantification of LC3-II levels was performed by densitometry
of LC3-II/b-actin and LC3-II/LC3-I ratio (The analyses were based on 5 placental sam-
ples per group. ***P<0.001, One-way ANOVA). (b) Systolic and diastolic blood pres-
sures of mice were measured on the indicated gestational day (n=5 mice per group,
**P<0.01, ***P<0.001 vs Control groups; #P<0.05 vs RBX group at the same time
points, Repeated measures analysis of variance). (c) The 24 h total urinary protein level
was determined at E17.5 (n=5 mice per group, *P<0.05, **P<0.01, One-way ANOVA).
RBX, Ruboxistaurin; 3-MA, 3-methyladenine; SBP, Systolic blood pressure; DBP, Dia-
stolic blood pressure.
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3.2. Aberrant Expression of PKCb in Preeclamptic Placentas

To investigate the potential association between PKCb and pre-
eclampsia, we first evaluated PKCb mRNA and protein levels in pla-
centas from pregnant women with and without preeclampsia. qRT-
PCR revealed a significant reduction of PKCb mRNA expression in
preeclamptic placentas compared with normal placentas (Fig. 1a).
After adjusting this difference for maternal age, BMI and gestational
age, PKCbmRNA expression remained significantly lower in the pre-
eclampsia group (Supplementary Table 3). This downregulation of
PKCb in preeclampsia was confirmed by the subsequent analysis of
PKCb mRNA expression in 63 preeclamptic and 53 control placentas
from a GEO dataset (GSE75010) (Fig. 1b and Supplementary Fig. 1a);
this dataset is the largest one, thus far, containing the gene expres-
sion data of normal and preeclamptic placental samples. After adjust-
ing for maternal age and BMI, PKCb mRNA expression in GSE75010
remained downregulated in preeclampsia (Supplementary Table 3).
Western blotting further showed a reduction in PKCb protein levels
in three representative controls in comparison with three preeclamp-
tic placentas (Fig. 1c). The immunostaining of placental sections
revealed the downregulation of PKCb in preeclamptic placentas, and
also showed that PKCb was predominantly expressed in syncytiotro-
phoblasts and vascular endothelial cells in normal placentas at term
(Fig. 1d and Supplementary Fig. 1b). Collectively, these data suggest
that PKCb was downregulated in preeclamptic placentas and high-
light the likelihood that PKCb exerts certain biological functions in
the pathogenesis of preeclampsia.

3.3. The Selective Inhibition of PKCb by RBX Induces Preeclampsia-like
Symptoms in Mice

To confirm whether PKCb is a causal factor of preeclampsia, we
administered RBX (10 mg/kg/d), a specific inhibitor of PKCb, into
pregnant and non-pregnant mice by gavage to determine whether
the inhibition of PKCb induces preeclampsia-like features. The PKCb
activity in mouse placentas was significantly decreased with RBX
treatment (Supplementary Fig. 2a). The inhibition of PKCb by RBX
induced preeclampsia-like symptoms in pregnant mice as evidenced
by hypertension (Fig. 2a and Supplementary Table 4) and protein-
uria (Fig. 2b). The overall systolic and diastolic blood pressure
changes at the indicated gestational day can be seen in Figure 2a.
Specifically, RBX treated pregnant mice exhibited an increase in
blood pressure, which began to rise at E11.5, reached a peak at E15.5,
and continued until delivery. In a manner similar to human recovery
after delivery, the blood pressure eventually returned to normal post-
partum. The variation of blood pressure from E11.5 to postpartum
were comparable to those of other mouse models of preeclampsia
[29-31]. In non-pregnant mice, it should be noted that RBX did not
affect the systolic blood pressure (Supplementary Fig. 2b), further
simulating the pregnancy-specific feature of preeclampsia. In addi-
tion, severe proteinuria was observed in RBX-treated pregnant mice
at E17.5 (Fig. 2b), whereas the 24 h total urinary protein levels
showed no significant difference when compared between RBX
treated non-pregnant mice and controls (non-pregnant mice) (data
not shown).

Symptoms of preeclampsia in PKCb-inhibited mice were accom-
panied by a significant reduction in placental weight (Fig. 2c), foetal
growth restriction (Fig. 2d), and a reduced number of viable foetuses
(Fig. 2e), as expected, compared to control mice. The morphological
changes in preeclampsia are mainly reflected in the kidney and pla-
centa [32,33]. Inhibition of PKCb induced typical preeclampsia-
related renal morphological characteristics including glomerular
endotheliosis and capillary occlusion in pregnant mice (Fig. 2f).
Moreover, placentas from PKCb inhibited mice isolated at E17.5
exhibited obvious abnormal stromal collagen deposition in the laby-
rinth layer (Fig. 2f).
Abnormal placental angiogenesis resulting from failing to main-
tain the balance of proangiogenic (e.g. soluble vascular endothelial
growth factor receptor 1, sFLT1) and antiangiogenic (e.g. vascular
endothelial growth factor A, VEGFA) factors has been implicated in
preeclampsia pathogenesis. Analogous to preeclampsia patients [34],
the PKCb inhibition induced an angiogenic imbalance as evidenced
by the significant downregulation of VEGFA and upregulation of
sFLT1 in RBX-treated murine placentas (Fig. 2g).

Collectively, these data suggest that the PKCb inhibition is a
potential cause for preeclampsia.

3.4. The Inhibition of PKCb Augments Autophagy in Mouse placentas

Impaired autophagy is known to induce poor placentation in pre-
eclampsia [4,6]. Considering that PKCb serves as a key regulator of
autophagy by modulating the mitochondrial energy status in HEK293
cells [12], we attempted to determine whether the inhibition of
PKCb reproduces this process in vivo. As shown in Fig. 3a, the activity
of mammalian target of rapamycin (mTOR), an essential inhibitor of
autophagy, was significantly inhibited in the placentas of RBX-treated
mice in comparison with control mice. The placentas of RBX-treated
mice also exhibited enhanced conversion rates of LC3 I to LC3 II
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(Fig. 3a-c) and decreased expression of p62 (Fig. 3a); these are
regarded as being specific markers of autophagy. There were consid-
erably higher levels of LC3 protein in the placenta of RBX-treated
mice than in controls, as visualized by the increased accumulation of
LC3-positive puncta (Fig. 3d-e and Supplementary Fig. 3). However,
no significant differences in the levels of BECN1 were observed (data
not shown). Together, these data suggested that the inhibition of
PKCb caused activation of autophagic signals in murine placentas.

3.5. The Blockade of 3-MA-Mediated Autophagy Attenuates
Preeclampsia-like Symptoms in PKCb-inhibited Mice

Since PKCb activates autophagy during pregnancy, we decided to
investigate whether the administration of 3-MA (20 mg/kg/d), an
inhibitor of autophagy, alleviates preeclampsia-like symptoms
induced by PKCb inhibition. As shown in Fig. 4a, a reduction of
autophagy activity was observed after the administration of 3-MA, as
evidenced by the reduced levels of LC3-II, and the increased levels of
p62 and p-mTOR, in the placentas of 3-MA+RBX-treated mice, when
compared with RBX-treated mice. Most importantly, 3-MA treatment
reduced the severity of preeclampsia-like symptoms in mice, includ-
ing the reduction in blood pressure (Fig. 4b) and catabatic proteinuria
(Fig. 4c), although the mice did not fully recover. These results sug-
gested that the inhibition of PKCb exerts its impact on preeclampsia
in mice by regulating autophagy, at least in part.

3.6. The Suppression of PKCb Exerts an Anti-Angiogenesis Effect in vitro

Considering that the alteration of angiogenesis has been revealed
to play an important role in the pathogenesis of preeclampsia [35],
we decided to examine whether the inhibition of PKCb disrupts the
action of VEGFA in endothelial cells. To do this, we performed the
tube formation assay. Our data showed that HUVECs were organized
into complex capillary-like structures with the addition of VEGFA (40
Fig. 5. The suppression of PKCb exerts anti-angiogenesis effects in vitro. (a) Representative i
tion in HUVECs. Scale bars, 50 mm. (b-d) The capacity of tube formation was quantified by (
One-way ANOVA). (e) Left panel: validation of the expression of representative proangiogen
immunoblotting in RBX-treated human choriocarcinoma cells (JEG-3). Right panel: quantita
are shown relative to the control (*P<0.05, Mann�Whitney U test). All experiments were per
ng/ml), and that this effect was suppressed by RBX-mediated PKCb
inhibition (Fig. 5a). Three parameters were used to evaluate the abil-
ity to form tubes, including tube number (Fig. 5b), total tube length
(Fig. 5c), and branching point (Fig. 5d). In addition, the anti-angiogen-
esis effect of PKCb inhibition was validated by detecting (anti) angio-
genic factor expression in human choriocarcinoma cells (JEG-3). After
24 h of RBX treatment, we found that VEGFA was significantly down-
regulated, while sFLT1 was markedly upregulated (Fig. 5e). These
data convincingly demonstrate that selective PKCb inhibition exerts
its anti-angiogenesis effects by affecting endothelial function and by
disrupting the balance of proangiogenic and antiangiogenic factor
expression.

3.7. The Inhibition of PKCb Promotes Autophagy in vitro

To further confirm the role of PKCb as an autophagic regulator, we
quantified the levels of autophagic signals in HUVEC and JEG-3 cells
treated with PKCb inhibitor, RBX. RBX, at a concentration of
100 nmol/L, suppressed the expression of p62 and increased the con-
version of LC3 I to LC3 II, both in HUVEC (Fig. 6a) and JEG-3 cells
(Fig. 6b). We also measured autophagic flux using tandem fluorescent
mRFP-GFP-LC3. With the RFP-GFP-LC3 assay, autophagosomes emit
both GFP and RFP markers, while autolysosomes emit only an RFP
signal because the GFP signal is lost in the acidic lysosomal environ-
ment. As detailed in Fig. 6c-d, the selective inhibition of PKCb
increased the formation of total autophagosomes and autolysosomes,
both in HUVEC and JEG-3 cells. Taken together, these results corrobo-
rate the fact that the inhibition of PKCb promotes autophagy in vitro.

3.8. The Autophagy Inhibition Partially Abrogates PKCb Inhibition-
Mediated Anti-Angiogenesis Effects

The angiogenetic behaviour of endothelial cells has been found to
be dictated by autophagy signals [36]. Given the dual functions of
mages showing the suppression of PKCb by RBX inhibited VEGFA-induced tube forma-
b) tube number, (c) tube length, and (d) branching point (***P<0.001 vs VEGFA group,
ic and antiangiogenic factors. The protein levels of VEGFA and sFLT1 were detected by
tive results determined by densitometry of the western blot bands (sFLT-1 and VEGFA)
formed at least three times independently.
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PKCb on the regulation of autophagic flux and angiogenesis, we next
investigated whether the anti-angiogenic effects of PKCb inhibition
were mediated by autophagic dysfunction. Results from western
blotting experiments showed that 3-MA efficiently inhibited auto-
phagic flux in HUVEC and JEG3 cells in which PKCb had been inhib-
ited (Fig. 7a and Supplementary Fig. 4a-b). Under this condition, the
PKCb inhibition-mediated downregulation of VEGFA, and the upre-
gulation of sFLT1, were partially reversed in JEG3 cells (Fig. 7b and
Supplementary Fig. 4c). Moreover, autophagic inhibition by 3-MA
partially rescued the tube formation potential of HUVECs treated
with RBX (Fig. 7c), as evidenced by the recovery of tube count
(Fig. 7d), total tube length (Fig. 7e), and branching point count
(Fig. 7f). Therefore, these results proved that autophagic activation
may be responsible, at least in part, for the anti-angiogenesis effect of
PKCb inhibition.
Fig. 6. The inhibition of PKCb induces autophagy in vitro. (a-b) The inhibition of PKCb
HUVECs (a) and JEG-3 cells (b). LC3-II levels were quantified by densitometry of LC3-I
GFP-LC3 puncta before or after RBX treatment for 2 h in HUVECs (c) and JEG-3 (d) cells
dently. *P<0.05 (Mann�Whitney U test).
3.9. The Contribution of PKCb Inhibition to Preeclampsia is Independent
of Inadequate Trophoblast Invasion

Considering that the impairment of spiral artery remodelling
caused by inadequate trophoblast invasion results in poor placental
perfusion and the consequent pregnancy-related diseases [37], we
next sought to determine whether the contribution of PKCb inhibi-
tion to preeclampsia is mediated by inadequate trophoblast invasion.
Surprisingly, the genetic or pharmacological inhibition of PKCb pro-
moted both the migration and invasion of human trophoblast HTR8/
SVneo cells (Fig. 8a and Supplementary Fig. 5), thus indicating that
the inhibition of PKCb is beneficial to spiral artery remodelling and
placental perfusion. Therefore, we propose that the contribution of
PKCb inhibition to preeclampsia is independent of inadequate tro-
phoblast invasion. This phenomenon may be interpreted as a
reduced p62 expression and increased the conversion of LC3 I to LC3 II, both in
I/b-actin and LC3-II/LC3-I ratio. (c-d) Formation and quantitative analysis of RFP-
. Scale bars, 20 mm. All experiments were performed at least three times indepen-



Fig. 7. Autophagic inhibition by 3-MA partially abrogates the PKCb inhibition-mediated anti-angiogenesis effect. HUVECs and JEG-3 cells were exposed to RBX (100 nmol/L) and/or
3-MA (5 mmol/L), as indicated. (a) Immunoblot analysis of mTOR, p-mTOR, p62, and the conversion of LC3 I to LC3 II in HUVECs and JEG-3 cells. (b) VEGFA and sFLT1 protein levels
were determined by immunoblotting. (c) The capacity for tube formation was quantified by (d) tube number, (e) tube length, and (f) branching point. Scale bars, 50 mm. All experi-
ments were performed at least three times independently. ***P<0.001 vs VEGFA groups; #P<0.05, ##P<0.01 vs VEGFA+RBX group (One-way ANOVA).

H. Zhao et al. / EBioMedicine 56 (2020) 102813 9
compensatory mechanism to limit the adverse effects of PKCb inhibi-
tion in preeclampsia.

4. Discussion

In this article, we report a previously unrecognized preeclampsia-
associated autophagic regulator, PKCb, that is involved in placental
angiogenesis. First, in preeclamptic placentas, we found that PKCb
was downregulated. Second, in an animal model, the selective inhibi-
tion of PKCb was sufficient to induce preeclampsia-like symptoms,
and result in excessive autophagic flux, and a disruption in the bal-
ance of pro- and anti-angiogenic factors in mouse placentas, all of
which could be partially normalized by 3-MA, an autophagic inhibi-
tor. These findings suggest that autophagy mediated, at least in part,
the impairment of angiogenesis in PKCb inhibition-induced pre-
eclampsia. Third, our in vitro experiments demonstrated that the
inhibition of PKCb activated autophagy, thus blocking VEGFA-
induced HUVEC tube formation and resulting in the significant upre-
gulation of sFLT1 and the downregulation of VEGFA. These data sup-
port a model in which autophagic activation, due to PKCb inhibition,
leads to the impairment of angiogenesis and eventually results in
preeclampsia in pregnancy (Fig. 8b). Ameliorating the toxic effects of
PKCb inhibition by the restoration of PKCb or autophagic inhibition
may alleviate the preeclamptic morbidity of pregnant women.

A previous study has documented hyper-methylation of the PKCb
gene in the preeclamptic placentas [21]; however, no causal link was
established between PKCb and preeclampsia. RBX is a selective and
ATP-competitive PKCb inhibitor [23]. Because of its ability to inhibit
retinal neovascularization, the inhibition of PKCb by RBX is currently
used as a strategy for the treatment of diabetic retinopathy [38].
Given that angiogenesis is an indispensable process for placental
development [35], we speculate that the harmful effects of PKCb
inhibition may be generated in pregnant women by a mechanism
involving placental neovascularization suppression. In this study, the
placental levels of PKCb were evaluated by various biological experi-
ments and by analysing a dataset in the public database. We obtained
findings to indicate that PKCb was downregulated in preeclamptic
placentas; this was in general agreement with the results described
in a previous report [21]. Furthermore, we administered RBX into
pregnant mice by gavage to inhibit the function of PKCb. As a result,
almost all of the characteristic features of preeclampsia appeared,
including hypertension, proteinuria, imbalance in angiogenic factors,



Fig. 8. The contribution of PKCb inhibition to preeclampsia is independent of inadequate trophoblast invasion. (a) Representative images of cell migration and invasion for PKCb-
and control-shRNA infected HTR8/SVneo cells. Quantitative results are depicted in the graph on the right. Scale bars, 30 mm. This experiment was performed three times indepen-
dently. *P<0.05 (Mann�Whitney U test). (b) Working model: autophagic activation due to PKCb inhibition leads to the impairment of angiogenesis and eventually results in pre-
eclampsia.
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and morphological changes in kidney and placenta. These data sug-
gest that the inhibition of PKCb contributes to the pathogenesis of
preeclampsia, which therefore indicates that the restoration of PKCb
in PKCb-deficient women may provide a new paradigm for pre-
eclampsia treatment. Our results also suggest that side effects, includ-
ing pregnancy-associated diseases (e.g. preeclampsia), should be
noted when RBX is marketed.

Recent studies support the hypothesis that autophagic dysfunc-
tion is associated with preeclampsia [2,4,6]. The dysregulation of
autophagy may induce placental dysfunction by failing to maintain
homeostasis [3,4,9] and consequently influencing multiple cell
behaviours including trophoblast invasion in the process of human
placentation [3-5,8]. Akitoshi et al. found that the impairment of
autophagy occurred in preeclamptic extra villous trophoblasts
(EVTs), and resulted in the failure of EVT invasion and vascular
remodelling [4,5]. However, there is no direct evidence that autoph-
agy is involved in human placental angiogenesis, which is considered
to be an essential process in placentation, but defective in preeclamp-
sia. In the present study, in vivo and in vitro methods were used to
validate our hypothesis that autophagy partially mediates the PKCb-
inhibition induced impairment of angiogenesis in preeclampsia. In
this scenario, we may reconstruct, at least in part, the pathological
status of the placenta in preeclampsia.

Impaired angiogenesis and inadequate trophoblast invasion are
the two most important pathophysiological features of preeclampsia
[37]. Angiogenesis generally depends on maintaining the balance of
both pro- and anti-angiogenic factors. VEGFA and sFLT1 have been
recognized as potential key candidates [39-41]. The upregulation of
sFLT1, and the downregulation of VEGFA, play major roles in the
pathology of preeclampsia by leading to long-lasting systemic vascu-
lar dysfunction [34,42]. Our current data show that the inhibition of
PKCb exerts an inhibitory effect on VEGFA and facilitates the expres-
sion of sFLT1 both in vivo and in vitro. This finding is in accordance
with some pathogenicity-related factors in preeclampsia, such as
Toll-Like receptor 9 [29] and retinoic acid [43]. Since inadequate tro-
phoblast invasion is another essential factor that leads to the devel-
opment of preeclampsia [37], we also investigated the effect of PKCb
inhibition to trophoblast invasion in this study. Our data showed that
the suppression of PKCb by RBX subsequently activated autophagy
and promoted the migration and invasion of HTR8/SVneo cells. We
speculate that this phenomenon occurred in the trophoblast as a
compensatory mechanism to limit the adverse effects (e.g. impaired
angiogenesis as mentioned above) of PKCb inhibition in preeclamp-
sia. This can be explained by the fact that intracorporal compensation
usually occurs under extreme circumstances. Another intracorporal
compensation is that PKCb is able to interrupt the stimulation of
endothelial nitric oxide synthase (eNOS), which reduces NO produc-
tion, and causes endothelial dysfunction [44,45]. The downregulation
of PKCb in preeclamptic placenta may attempt to activate eNOS to
restore vascular function. These findings therefore suggest that the
contribution of PKCb inhibition to preeclampsia is achieved by the
impairment of angiogenesis, and that this might also involve the acti-
vation of a compensatory response.

Our study leaves several unanswered questions for further
exploration. Firstly, a major limitation of this study was that the
global inhibition of PKCb might cause unrelated signs from other
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organs besides placenta in the mouse model. However, consider-
ing the facts that no signs of hypertension were found in PKCb-
inhibited non-pregnant mice, and the blood pressure of PKCb-
inhibited pregnant mice returned to normal postpartum, we
hypothesized that non-placental response is limited in this pre-
eclampsia model. Despite of this, PKCb activity should be evalu-
ated in other mouse tissues and the results should be validated
in placenta-specific PKCb-knockout mice. Secondly, the gesta-
tional age between normal controls and preeclampsia is signifi-
cantly different in the case-control study, which was likely to be
a confounder when analysing the changes of placental PKCb
expression. Indeed, it is not practical to make preeclampsia and
normal controls matched for gestation at delivery, since pre-
eclamptic patients have a high risk of preterm labour, while the
seemingly ideal candidate controls, preterm labour, are not gen-
erally considered normal. Considering this kind of concerns, the
difference of PKCb mRNA expression was adjusted for some
potential confounders including gestational age. The results
showed the difference remained significant, suggesting the con-
founders was likely to have limited effects. Thirdly, we do not
know whether other mechanisms, such as processes besides
autophagy that reversely induced by PKCb inhibition and 3-MA
induction, maternal-foetal immune tolerance and epigenetic regu-
lation, are involved in the PKCb inhibition-mediated impairment
of angiogenesis [46,47]. Further studies are now warranted to
complement the roles of PKCb in preeclampsia. Despite of these
limitations, our findings provided a novel target in term of uncov-
ering the mechanism of preeclampsia.

In conclusion, we have proposed that PKCb is a previously unrec-
ognized preeclampsia-associated autophagic regulator, and that the
selective inhibition of PKCb contributes to the pathogenesis of pre-
eclampsia by autophagy-mediated impairment of placental angio-
genesis. These findings may have important implications in the
pathogenesis of autophagy dysfunction�associated preeclampsia. In
addition, our results raise the possibility that restoration of PKCb lev-
els in PKCb-deficient women may be an efficient means of treating
placental diseases, such as, but not limited to, preeclampsia.
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