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Genetic variation in released 
gametes produces genetic diversity 
in the offspring of the broadcast 
spawning coral Acropora tenuis
Seiya Kitanobo1,3, Sho Toshino1,2,3 & Masaya Morita1*

All coral species in the genus Acropora are broadcast-spawning hermaphrodites. Fertilization in the 
ocean requires sufficient numbers of gametes from conspecifics and the contact time for fertilization 
is thought to be limited by the rapid diffusion of sperm. Many studies have reported a positive 
correlation between sperm concentration and fertilization success, but it is not clear how gametes 
diffuse in seawater to produce mixtures of gametes from many colonies, leading to fertilization 
that improves genetic diversity. To elucidate this, we analyzed the changes in sperm concentration 
of A. tenuis in situ after spawning and genotyped sperm and fertilized eggs from seawater using 
seven microsatellite (MS) markers. Results showed that most of the eggs were fertilized at below 
106 sperm/mL in situ. MS genotyping showed that the alleles of released sperm were diverse and 
those alleles also appeared in the fertilized eggs. The MS fragment peak height in released sperm, 
which presumably reflects the allele frequency of the sperm, was positively correlated with the allele 
frequencies of the fertilized eggs. Collectively, synchronous spawning populations composed of highly 
fecund and genetically diverse colonies potentially increases genetic diversity and the number of 
descendants.

Sexual reproduction produces genetic diversity in offspring, which enables the selection of genotypes associated 
with higher fitness and adaptation1–3. Reef-building corals in the genus Acropora release gametes into seawater 
synchronously and this broadcast spawning system gives rise to genetic diversity in their offspring; eggs of one 
colony can potentially mate with sperm from many other colonies.

Climate change and heat wave potentially impact on the reproduction of the coral Acropora. Coral reefs are 
now under threat4, and reef degradation from bleaching events has increased4–6. Although the remaining corals 
have a higher thermal threshold for bleaching7 and can participate in sexual reproduction, it is plausible that 
their mating success has declined. The importance of sexual reproduction is noticed, but knowledge of how the 
process from spawning to fertilization generates genetic diversity in nature (in situ) is still limited.

Many marine invertebrates are benthic or sessile, releasing their gametes into the water column and spawn-
ing synchronously to facilitate fertilization8,9. Spawning synchronism in marine invertebrates has been widely 
reported10–13, and synchronism is associated with fertilization success14.

In broadcast-spawning Acropora corals, fertilization success is associated with sperm concentration, which 
is affected by spawning synchrony, gamete number, and other factors. For example, sympatric Acropora species 
release their gamete bundles synchronously10, and in vitro experiments15,16 have shown that the fertilization rate 
depends on sperm concentrations, which in nature are expected to be associated with spawning synchrony17, 
water currents18, colony densities19,20, and the distance from the sperm source21. The timing of spawning and 
variation in water currents lead to high variation in sperm concentrations that affects the selection of fertilization-
related traits. Although data on sperm concentrations in situ after spawning are limited, several studies have 
examined sperm concentrations after spawning in broadcast spawning corals22,23.

When examining sperm concentrations and fertilization success in Acropora corals in situ, it can be difficult 
to isolate one species. However, in Okinawa, Japan, Acropora tenuis spawns at sunset, about 2.5 h earlier than 
most other Acropora species24. Moreover, at Sesoko Island, Okinawa, sunset spawning is dominated by A. tenuis25, 
making it a good model for investigating the time course from spawning to fertilization.
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In this study, we obtained in situ data for A. tenuis on the time course of sperm concentrations, the genetic 
diversity of released sperm, and the non-biased fertilization success of released gametes. We discuss the relation-
ship between the genetic diversity of the fertilized eggs that leads to the next generation, and the amount and 
genetic diversity of the released gametes.

Materials and methods
Underwater observation of Acropora tenuis.  We observed spawning of the scleractinian coral A. ten-
uis (n = 11) on a section of the fringing reef of Sesoko Island, Okinawa, Japan (26° 37′ 43.9″ N 127° 51′ 43.3″ E), 
by snorkeling or SCUBA diving for six nights from May 26 to May 31, 2018. Floats were released from 4 of the 11 
tagged colonies (ten15, ten21, ten27, and ten31). The area in which we monitored the floats was approximately 
1 × 1 km2.

Sperm concentration in  situ.  To trace gamete bundles released from the tagged colonies, floats with 
fluorescent light bars (Fig. 1a) were released directly above the spawning colonies approximately 10 min after 
the colonies started spawning. We followed the floats by kayak, and collected 1 L seawater near each float at 
about 9 min intervals 4 to 6 times (during approximately 1 h) after the release of the floats (Fig. 1b). The col-
lected seawater was brought back to Sesoko Station within 30 min, and the sperm concentrations were measured 
with a Thoma hemocytometer according to a previous study12. The sperm in the collected seawater was meas-
ured five times in 200 × 200 µm. When no sperm was found, the concentration was described as being below 
2.5 × 104 sperm/mL. It took about 1 h from collecting the seawater to the start of sperm concentration measure-
ment, and by this time most of the eggs in the seawater had already been fertilized.

Genetic diversity of spermatozoa in seawater and fertilized eggs.  The genotypes of sperm and 
fertilized eggs were determined using microsatellite markers developed for Acropora26. Eggs in the collected 
seawater were transferred to fresh 0.22 µm filtered seawater, and fertilized eggs that had completed embryogen-
esis were fixed with 99.5% ethanol 3 days after collection. The remaining seawater was filtered and sperm were 
trapped on a membrane (mixed cellulose ester gridded at 0.45 μm, Merck Millipore, MA, USA). The membranes 
were soaked with 1 mL CHAOS solution (4 M guanidine thiocyanate, 0.1% [v/v] N-lauryl sarcosine sodium salt, 
0.1 M β-mercaptoethanol, 10 mM Tris–HCl pH 8.0) and the DNA was extracted using a Wizard SV genomic 
DNA purification system (Promega, WI, USA). DNA was extracted from the fertilized eggs following a previ-
ous study with some modifications12. Fertilized eggs were kept in filtered seawater for 2 days and fixed in 99.5% 
EtOH. The fixed larvae were treated with 20 μL f lysis buffer (100 mM NaCl, 10 mM Tris–HCl [pH 8.0], 0.3% 
[w/v] Triton X-100, 0.3% [w/v] Tween 20) containing 1 g/mL proteinase K for 2.5 h at 55 °C and heated at 95 °C 
for 5 min. The supernatant was used for PCR reactions for genotyping. As a negative control for sperm detection 
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Figure 1.   Map of study site. (a) Floats used in this study had fluorescent light bars (ϕ 13.0 × 122 mm, Hapyson) 
attached. (b) Trajectory of the float measured in the daytime via GPS. The dot indicates the location of the 
spawning colony where the float was released. Asterisks indicate the location of water sampling at 9 min 
intervals.
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in seawater, seawater was collected in the daytime following the same protocol. We sampled eight times at 9 min 
intervals after a float was released.

The sperm in seawater and fertilized eggs were genotyped with seven microsatellite markers with FAM or BIC 
(12406m3, 11543m5, 11401m4, 441m6, 11292m4, 10366m5, and 12130m5; Supplementary Information 1)26. 
The allele diversity of these seven markers was marked and the fragment amplification was stable. Subsequently, 
we used the seven markers to verify the presence of the alleles. Fragments were analyzed with a DNA sequencer 
(Applied Biosystems 3730xl or 3130xl) with GeneScan 500 LIZ dye size standard (Thermo Fisher, MA, USA). 
Peaks were measured with Microsatellite Analysis v1.0 software (Applied Biosystems by Thermo Fisher, MA, 
USA). For analyses of seawater containing sperm, peaks below 100 were excluded as alleles (Supplementary 
Fig. 1). The ratio of each peak in the samples (Rx) was calculated as Rx1 = (Hx1/H1 + H2 + ⋯ + Hx). Here, Hx1 
indicates the height of one peak among the others, and H1 + ⋯ Hx is the sum of the heights of all peaks. In the 
negative seawater control, marker 12406m3 was used and three alleles (176, 179, and 185) were detected in one 
of the seven samples. These alleles were not detected in sperm in this study (153–174). Thus, the alleles detected 
in sperm from seawater were treated as those from the released sperm.

Statistical analyses.  The Welch t-test was used to examine the differences in allele ratios. To test correla-
tions between the peak height of MS alleles from sperm and the ratio of allele appearance in fertilized eggs, a 
GLMM was performed with the glmmML package in R ver. 3.127. Each allele was treated as a random effect and 
the binominal distribution was used as a family.

Results
Spawning of tagged colonies.  In all, 10 of the 11 tagged A. tenuis colonies spawned on 29 May and 2 
colonies spawned on 30 May. Although we did not record the spawning start times of all colonies, spawning 
occurred around 19:32 to 19:38 on 29 May and 19:33 to 19:37 on 30 May. Most A. tenuis colonies released > 1000 
gamete bundles each.

In situ time course of sperm concentration and sperm genetic diversity.  We followed the floats and 
collected seawater containing gametes. Most sperm concentrations in the collected seawater were < 105 sperm/
mL (Fig. 2). We found no sperm in several samples although microsatellite analyses showed amplification of 
fragments in seawater in which no sperm were present (see below). The sperm concentrations varied over the 
course of sampling. Variation in sperm concentrations might have occurred because of differences between 
water currents and the movement of the floats, which might not represent precise water movements of the gam-
etes from tagged colonies.

Microsatellite genotyping showed that several alleles were amplified in each seawater sample. The numbers 
of alleles were indicated by the fragment lengths (bp). The allele numbers varied after spawning (Table 1, Sup-
plementary Information 2). Although sperm were not found in many observations with the hemocytometer, 
microsatellite fragments were amplified from these samples and the eggs in these samples were fertilized. Most 
alleles found in sperm were detected in fertilized eggs (Table 1, alleles marked with *). The alleles detected only 
in seawater had lower MS fragment peak heights in the fragment analyses (Fig. 3).

Genetic diversity of sperm and fertilized eggs in seawater.  When genotyping the sperm samples, 
many alleles were detected for each marker, and the numbers varied by MS markers, sperm, and fertilized eggs 
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Figure 2.   Time course of sperm concentration after the spawning in situ. Sperm concentrations were measured 
from seawater collected at 9 min intervals after the floats were released. Floats were released from the spawned 
colony approximately 10 min after they started releasing gametes. Water was collected for six times for Float 1 
and four, five times for Float 2, and four times for Float 3.
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Float no. 1st collection 2nd 3rd 4th 5th 6th

Genotypes 
of spawned 
colony

Colony 
no.

12406m3

1 156¶, 159*,†, 162, 165, 
168 (1 egg)

156, 159†, 162, 165* 
(2 eggs)

156, 159*,†, 162, 165* (6 
eggs)

156*, 159*,†, 162*, 165* 
(31 eggs)

156*, 159*,†, 162*, 
165* (24 eggs)

156*, 159*,†, 162*, 
165*, 171¶, 174 (25 
eggs)

159, 171 ten15

2 156, 159*, 162*, 165* 
(9 eggs) 153, 159* (2 eggs) 156¶, 159*, 162¶, 165* (9 

eggs)
153, 156¶, 159*, 162*, 
165*, 168¶ (6 eggs)

153*, 156*, 159*, 
162*, 165*, 168*, 174 
(117 eggs)

Seawater was not 
collected 162 ten21

3 159*, 162¶, 165¶ (2 eggs) N.D. (2 eggs) 156*, 159*, 162*, 165*, 168 
(47 eggs)

156*, 159*, 162*, 165*, 
168*, 171, 174 (96 eggs)

Seawater was not 
collected

Seawater was not 
collected 194 ten27

4 156, 159, 162, 165†, 168 N.D 156, 159, 162, 165† 165† 156, 159, 162, 165† 156, 159, 162, 165†, 
168, 171 153, 165 ten31

11543m5

1 126* 120, 122, 126*, 130 120, 122, 126*, 130, 132¶ 120, 122, 126*, 130, 132¶ 120, 122, 126*, 130, 
132¶

120, 122, 126*, 130, 
132¶ 128 ten15

2 120, 122, 126*, 128†, 
130, 132¶

120, 122, 126*, 130, 
154 126*, 130, 132¶ 126*, 130, 132¶ 120, 122, 126*, 128†, 

130, 132¶
Seawater was not 
collected 128.132 ten21

3 126*, 130, 132¶ 126*, 130, 132¶ 120, 122, 126*, 130, 132¶ 120, 122, 126*, 128†, 
130, 132¶

Seawater was not 
collected

Seawater was not 
collected 1,28,132 ten27

4 120, 122, 124, 126, 128†, 
130, 154 126, 130 126, 128†, 130 126, 130 126, 130 126, 130, 230 128, 132 ten31

11401m4

1 403*, 407¶, 411, 415 391*, 399, 410, 403*, 
407, 411 399, 401, 403*, 407 399*, 403*, 407*, 411 391*, 395, 399*, 401¶, 

403*, 407*, 411
391*, 399*, 403*, 
407*, 411 N.D ten15

2 391, 395, 399†, 403*, 
407*, 411

391*, 395, 399†, 401, 
403*, 407, 411 395¶, 399*,†, 403, 405¶, 407* 391, 399*,†, 401¶, 403*, 

407¶, 409, 411
391*, 395, 399*,†, 
401*, 403*, 405, 407*, 
409, 411

Seawater was not 
collected 399 ten21

3 383, 399, 403*, 407*, 
411,415

383, 391, 399*, 401¶, 
403*, 407*

391*, 395¶, 399*, 403*, 407*, 
409¶, 411

391*, 399*, 401¶, 403*, 
407*, 411

Seawater was not 
collected

Seawater was not 
collected 409, 413 ten27

4 383, 395, 399, 403, 
407, 411 403 403 391, 403 399, 407 391, 395, 401, 403, 

407, 409†, 411 409, 413 ten31

441m6

1 285*, 291* 285*, 291*, 297*,303 285*, 291*, 297*, 303 285*, 291*,297*, 299¶,†, 
303¶

285*, 291*, 297*, 
299¶, 303

285*, 291*, 297*, 
303* 299 ten15

2 285*, 291*, 297, 299*,† 279, 285*, 291*, 297 285*, 291*, 297*, 303 285*, 291*,†, 297*, 303 285*, 291*,†, 297*, 
299¶, 303*

Seawater was not 
collected 291 ten21

3 285*,†, 291* 285*,†, 291*, 297¶, 
299¶ 285*,†, 291*, 297*, 299¶ 279¶, 285*,†, 291*, 297*, 

299¶, 303
Seawater was not 
collected

Seawater was not 
collected 285 ten27

4 285, 292, 297†, 303 N.D 285, 292, 297† 285, 291, 303 N.D 285, 291, 297† 297 ten31

11292m4

1 471*, 483*, 487 471*, 475, 483, 487*, 
495 471*, 475, 483, 487* 471*, 475, 483*, 487*, 

495
471*, 475*, 479, 483*, 
487*, 495 471*, 475, 483*, 487* N.D ten15

2 471*,†, 475*, 483*, 487¶, 
491¶ 471*,†, 483¶ 471*,†, 475, 483*, 487 463¶, 471*,†, 483*, 487, 

491
463*, 471*,†, 483*, 
487*, 491*

Seawater was not 
collected 471 ten21

3 471*, 475¶, 483† N.D 471*, 475, 483*,†, 487* 471*, 479, 483*,†, 487*, 
491*

Seawater was not 
collected

Seawater was not 
collected 483 ten27

4 471†, 483†, 487 N.D 471†, 475, 483†, 487 N.D 471† 471†, 483† 471, 483 ten31

10366m5

1 215* 217, 223†, 225, 227¶ 215*, 217, 223†, 225 215*, 217¶, 223¶, 225*, 227¶ 213*, 215*, 217*, 225*, 
227*

213*, 215*, 217*, 
225*, 227*

213*, 215*, 217*, 
223¶, 225*, 227 223 ten15

2 213*, 215*, 217¶, 223¶, 
225*, 227 N.D N.D 211¶, 215*, 217¶, 223†, 

225*
209¶, 213*, 215*, 
217*, 219, 223*,†, 
225*, 227

Seawater was not 
collected 223 ten21

3 N.D N.D 209*, 211, 213*, 215*, 217*,†, 
225*, 227*

213*, 215*,†, 217*,†, 219, 
223*, 225*, 227*

Seawater was not 
collected

Seawater was not 
collected 217 ten27

4 N.D N.D N.D N.D N.D N.D 223 ten31

12130m5

1 241*,†, 277* 241*,†, 277* 241*,†, 269*, 277* 241*,†, 261, 277* 241*,†, 261†, 277* 241*, 269*, 277* 241, 261 ten15

2 241*,†, 277*,† 241*,†, 277¶,† 241*,†, 269¶, 277*,† 241*,†, 269*, 277† 241*,†, 261, 269*, 
277*,†

Seawater was not 
collected 241, 277 ten21

3 241*,†, 277* 241*,†, 277* 241*,†, 277* 229, 241*,†, 261, 269*, 
277*

Seawater was not 
collected

Seawater was not 
collected 241 ten27

4 241†, 277 215, 241† 241†, 277 241†, 277 241†, 277 241†, 277 241 ten31

Table 1.   Alleles detected in seawater and fertilized egg samples. *Alles found in both fertilized eggs and 
sperm, ¶Alleles found only in fertilzed eggs, †Alleles from tagged colony, alleles without mark was found only 
in sperm.
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(Table 1, Supplementary Information 2 and 3). We released floats from the spawning colonies to follow released 
gametes, but the alleles found in the collected seawater often did not match those of the spawned colony (Table 
alleles from tagged colonies are marked with †).

We examined 1 to 60 fertilized eggs for floats 1 to 3, but we could not analyze eggs found for float 4 due to 
loss of the samples. Many alleles were detected and most of these matched those in the same seawater sample. 
The alleles present changed over the sampling time (Table 1, Supplementary Information 3). Several alleles in 
sperm samples were not detected in the fertilized eggs (Table 1, alleles are not marked), and there were alleles 
that found only in the fertilized eggs (Table 1, alleles marked with ¶).

When comparing the fragment peaks of the alleles, MS fragment peak height was positively correlated with 
the frequency of the alleles in the fertilized eggs (Figs. 3 and 4, Supplementary Information 2 and 3). Several 
alleles were detected only in sperm samples and these had smaller peaks (Fig. 3, Supplementary Information 2 
and 3). However, we could not distinguish which alleles in the fertilized eggs were derived from sperm or eggs. 
Alleles in the fertilized eggs were positively correlated with the peak heights in the fragment analyses (GLMM 
P < 0.001, coefficient = 6.9; Fig. 4).

Discussion
The genetic diversity represented by allele frequencies in fertilized eggs was correlated with the genetic diversity 
of released sperm. After spawning, the sperm concentrations in situ varied and were often lower (< 105 sperm/
mL) than the “ideal” level (106 sperm/mL)15,16, but fertilization was accomplished in situ. Microsatellite analyses 
showed that many alleles of the fertilized eggs matched those of sperm in situ. In addition, the frequencies of 
the alleles in fertilized eggs were positively correlated with MS fragment peak heights, which corresponds to the 
amount of sperm with those alleles. Therefore, mating success in reef-building Acropora depends on the amount 
of released sperm in situ, concurring with many previous in vitro fertilization trials; more sperm have greater 
chances of successfully fertilizing eggs.

The sperm concentration in situ was lower than we expected, but most eggs in the samples were fertilized. It 
took at least 1.5 h to examine egg fertilization. Many studies have indicated that fertilization in vitro decreases 
below 105 sperm/ML15,16,28. The sperm and eggs were kept in containers after collection, and so the condition for 
fertilization is not precisely represented in situ. The fertilization ratio is often dependent on the combination of 
colonies. For example, the fertilization rates of A. tenuis around Sesoko Station vary according to the combina-
tion of gametes from conspecific colonies; several combinations of colonies have very low fertilization rates25. 
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While this needs to be examined, the alleles found in the fertilized eggs were correlated with the peak height of 
each allele, which is representative of sperm numbers.

Although the fertilization ratio in situ was potentially overestimated, fertilization might be accomplished soon 
after sperm and eggs are mixed29. Moreover, sperm–egg interactions due to chemoattractants may contribute to 
their successful fertilization at lower sperm concentrations30. If sperm can efficiently interact with unfertilized 
eggs with the assistance of chemoattractants and fertilization finishes quickly, fertilization with many different 
sperm from many colonies may occur, even at low sperm concentrations. However, we have no practical observa-
tions or information about gamete interactions, such as details of the release of bundles from colonies, bundles 
separated into sperm and eggs, and diffusion of these gametes.

The genetic inheritance of fertilized eggs, number of alleles, and their frequencies were positively correlated 
with sperm alleles found in the water. Most alleles found in the fertilized eggs were also found in the seawater 
containing sperm (Table 1, alleles marked with *). Presumably, most alleles found in both seawater and eggs 
represent the alleles in the fertilizing sperm, but several alleles were found only in the fertilized eggs (Table 1, 
alleles marked with ¶) and these alleles may be from both sperm and eggs. Although we could not distinguish 
the origin of alleles (sperm or eggs), the MS fragment peak heights of alleles found in seawater and fertilized 
eggs were slightly higher than those of alleles found only in seawater (Fig. 3), suggesting that the alleles found 
in more sperm in seawater completed fertilization in situ. There is almost no information on which alleles are 
passed to the next generation in corals.

Genetic inheritance in Acropora needs more study regarding the fertilization of gametes according to sperm 
concentration. In a previous study, eggs preferred conspecific sperm, while the proportion of fertilization by 
heterospecific sperm increased at lower sperm concentrations12. This implies that fertilization matching con-
specific sperm and eggs is complicated and lower sperm concentrations might be associated with hybridization. 
In this study, we collected gametes in the ocean off Sesoko Island to follow the fertilization process in A. tenuis. 
Near this island, A. donei, which can potentially mate with A. tenuis, does not release a large number of eggs25. In 
addition, A. tenuis sperm does not fertilize eggs of A. donei in the presence of conspecifics24,25. Therefore, hybridi-
zation between A. tenuis and A. donei rarely occurs. We need to consider the breeding success of conspecifics or 
hybridization in later-spawning intercrossing species such as A. intermedia and A. florida. Fertilization in situ 
among intercrossing species may be associated with hybridization, which could be associated with adaptation 
to climate change31. Future studies need to address this.
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