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Ebola virus disease (EVD) kills almost 
half those people infected. Four different 
viruses from 4 Ebolavirus species have 
caused EVD in Africa: Zaire ebolavi-
rus (EBOV), Sudan ebolavirus (SUDV), 
Bundibugyo ebolavirus (BDBV), and 
Tai Forest ebolavirus (TAFV), with all 
but TAFV causing fatal human disease. 
Outbreaks have been sporadic and un-
predictable, but the frequency and size of 
outbreaks appear to be increasing [1, 2]. 
The ongoing outbreak in the Democratic 
Republic of the Congo (DRC) is the 
second largest on record, with >500 cases 
and >290 deaths reported from 15 health 
zones [3]. The largest EVD outbreak, 
originating in Guinea, West Africa, in 
2013 [4], ended in 2016 after 28 616 cases 
and 11 310 deaths [5].

Preventing EVD outbreaks is chal-
lenging because the “reservoir hosts” 
of the viruses that cause the disease are 
not known. The weight of evidence sug-
gests that fruit bats are the natural hosts, 
but this is uncertain [6]. The uncertainty 
is partially because most outbreaks in 
people are not directly linked to bats. 

Circumstantial evidence linked bats to the 
2013 West African outbreak [7], but index 
case exposure to bats has only once been 
reported with any confidence [8]. In con-
trast, hunting or butchering primates has 
been linked to several EVD index cases. In 
particular, Africa’s great apes, gorillas and 
chimpanzees, have been sources of human 
infection, and human EVD outbreaks 
have occurred concurrently with out-
breaks in apes in Central and West Africa 
[9, 10]. High case fatality rates among apes 
[11–13], however, suggest they are not 
maintenance reservoir hosts [14].

Wildlife mortality events during EVD 
outbreaks have involved other mammals, 
including monkeys, pigs, and antelope 
[15]. Contact with monkeys has been 
reported in human outbreaks in Central 
Africa [16, 17] and chimpanzees in Ivory 
Coast [10]. Monkeys themselves appear 
to be susceptible to EBOV infection, at 
least experimentally [18]. Outside of 
Africa, Reston ebolavirus (RESTV) has 
been linked to monkeys, with macaques 
imported to the United States from the 
Philippines infected [19], but the mam-
mals linked to RESTV in Asia are similar 
to Africa, with pigs, monkeys, and bats all 
implicated as hosts [20–22].

Serological data may be well suited 
for surveillance studies, because anti-
bodies are longer lasting than viral in-
fection and provide evidence of survival. 
Experimental evidence suggests that 
EBOV infection in bats may be acute, 
nonfatal, and short-lived, but induces 

antibodies [23]. This experimental work 
is supported by field data from related 
Marburg viruses, first identified after 
African monkeys infected people in 
Europe [24], which apparently persist 
within large colonies of cave-dwelling 
Egyptian fruit bats, and RESTV in Asian 
bats. In both cases, viruses or viral RNA 
and antibodies were detected in appar-
ently healthy bats [22, 25]. Just 1 study 
has detected EBOV RNA in bats, but 
anti-EBOV antibodies are widespread 
in African bats and the RNA-positive 
bats were, again, apparently healthy [11, 
26–29]. In contrast, while anti-EBOV 
antibodies have been observed in African 
apes and monkeys [30, 31], suggesting 
that nonlethal infections might occur, 
the prevalence of antibodies is low (sim-
ilar to those reported for RESTV in Asian 
macaques [21]), and EBOV RNA has 
been isolated from dead apes [32]. Thus, 
together the evidence for bats being the 
true reservoir host for EVD causing 
viruses is convincing, but relies on sero-
logical evidence of infection rather than 
virus detection, and the role of non-
human primates as reservoirs remains 
uncertain.

The role of primates in EVD epide-
miology has been unclear largely be-
cause study sample sizes have been 
small. Serology is further complicated 
by different methodologies and anti-
body-positive sera cross-reacting among 
different EVD-causing viruses. A  re-
port by Ayouba et al, in this issue of The 
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Journal of Infectious Diseases, has taken a 
significant step toward addressing these 
problems [33]. The team utilized a large 
sample (N = 4649) of tissues from mul-
tiple species of African primates, collected 
from 1999 to 2016 from Ivory Coast in 
West Africa and DRC and Cameroon in 
Central Africa. The study more than tri-
ples the number of all previous primate 
samples reported and is similarly pow-
ered to some studies showing high sero-
prevalence of anti-EBOV antibodies in 
certain African fruit bat species [26, 27]. 
A single Luminex-based serological assay 
that included antigens from 4 viruses 
(EBOV, SUDV, BDBV, and RESTV) was 
used, and the team discovered that none 
of 2327 ape samples and only 1 of 2322 
monkey samples met their seroposi-
tive criteria. The data strongly suggest 
that the primates sampled are unlikely 
reservoir hosts.

The work highlights the importance of 
multiyear, multisite empirical studies and 
archiving samples. Specimen collection in 
general has created some controversy in 
areas such as conservation biology [34], 
but for epidemiologists tissue archives 
may enable us to better understand the 
epidemiology of infectious diseases. Here, 
the primate samples were collected for 
lentivirus research (eg, human immuno-
deficiency virus [HIV] and its relatives), 
then repurposed for EVD research. In 
other systems, archived sample banks 
have helped identify Middle East respira-
tory syndrome coronavirus–seropositive 
camels in East Africa over 11-year (Kenya) 
and 30-year (Sudan and Somalia) periods, 
suggesting extensive virus circulation in 
camels prior to the first human outbreaks 
[35–38]. Some impressive examples of 
using archaeological samples have led to 
the sequencing of Yersinia pestis genomes 
from Black Death victims in London, 
England, dated to 1348–1350 [39], and 
Bronze Age hepatitis B viral DNA [40]. 
The instability of RNA viruses will pre-
vent paleovirological studies on these 
timeframes, though gene sequencing from 
archived samples has helped identify HIV 
type 1 (HIV-1) sequences predating the 

first AIDS diagnosis, with HIV sequences 
from 1959 and 1960 in DRC informing 
our understanding of pandemic HIV-1 
origins and evolution [41, 42].

Ideally, EVD-causing viruses them-
selves will be isolated in space and time 
through wildlife surveillance to un-
derstand viral transmission dynamics. 
Phylogenetic models that estimate the 
relationship between genetic sequences 
have been used with sample location data 
to place the first 1976 case from DRC near 
the root of the EBOV phylogenetic tree, 
suggesting that all other known outbreaks 
descended from a closely related virus [43]. 
Although the analysis contained just a few 
viral fragments, it suggested that later out-
breaks were epidemiologically linked and 
occurred in a wave-like pattern, spreading 
at approximately 50 km per year. Once 
EBOV RNA fragments were discovered in 
bats, the same team used similar models 
to reconstruct the ancestry of EBOV, in-
cluding fragments of viral RNA from bats 
[44]. Their analyses suggested that all of 
the genetic variation present in EBOV, in-
cluding from fruit bats, was the product of 
mutations accumulated within a 30-year 
time period, supporting the ancestry of 
EBOV in bat reservoirs and the role of bats 
in EBOV epidemiology.

The absence of robust data on Ebola 
virus reservoirs makes forecasting when 
and where outbreaks may occur difficult, 
limiting preventive measures [45, 46]. The 
lack of data relating to bats themselves led 
researchers to characterize the traits of all 
filovirus-seropositive and virus-positive 
bat species to predict potential unde-
tected bat species [47]. Putative bat hosts 
have been included in models to predict 
the spatial risk of human outbreaks [48]. 
Similar modeling approaches have been 
used to model the spatial and temporal 
risk of human and ape EVD, finding the 
greatest risk during wet to dry season 
transitions in sparsely populated regions 
of tropical Africa [49], supporting pre-
vious work [50]. All of these studies are 
limited by data, but Ayouba et  al’s com-
prehensive study supports the assumption 
that bats, not primates, are likely reservoir 

hosts and that nonhuman primates may 
be viewed as both sentinels for human in-
fection and victims of EVD [9, 15, 33, 51]. 
These are important findings because they 
can inform field and surveillance studies, 
which are costly and difficult in most areas 
where EVD outbreaks occur and for the 
species linked to EVD. To really manage 
and prevent EVD, however, we also need 
to understand why outbreaks appear to 
be increasing in frequency. Recent anal-
yses of forest fragmentation and EVD 
emergence suggest there may be links 
[52, 53]. If so, there may be management 
options that can be implemented along-
side human and wildlife surveillance and 
public health interventions to reduce the 
risk of human and, potentially, primate 
EVD emergence in the first place.
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