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Background. It is well known that hypoxia and ferroptosis are intimately connected with tumor development. ,e purpose of this
investigation was to identify whether they have a prognostic signature. To this end, genes related to hypoxia and ferroptosis scores
were investigated using bioinformatics analysis to stratify the risk of lung adenocarcinoma. Methods. Hypoxia and ferroptosis
scores were estimated using ,e Cancer Genome Atlas (TCGA) database-derived cohort transcriptome profiles via the single
sample gene set enrichment analysis (ssGSEA) algorithm.,e candidate genes associated with hypoxia and ferroptosis scores were
identified using weighted correlation network analysis (WGCNA) and differential expression analysis. ,e prognostic genes in
this study were discovered using the Cox regression (CR) model in conjunction with the LASSO method, which was then utilized
to create a prognostic signature. ,e efficacy, accuracy, and clinical value of the prognostic model were evaluated using an
independent validation cohort, Receiver Operator Characteristic (ROC) curve, and nomogram. ,e analysis of function and
immune cell infiltration was also carried out. Results. Here, we appraised 152 candidate genes expressed not the same, which were
related to hypoxia and ferroptosis for prognostic modeling in ,e Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD)
cohort, and these genes were further validated in the GSE31210 cohort. We found that the 14-gene-based prognostic model,
utilizing MAPK4, TNS4, WFDC2, FSTL3, ITGA2, KLK11, PHLDB2, VGLL3, SNX30, KCNQ3, SMAD9, ANGPTL4, LAMA3, and
STK32A, performed well in predicting the prognosis in lung adenocarcinoma. ROC and nomogram analyses showed that risk
scores based on prognostic signatures provided desirable predictive accuracy and clinical utility. Moreover, gene set variance
analysis showed differential enrichment of 33 hallmark gene sets between different risk groups. Additionally, our results indicated
that a higher risk score will lead to more fibroblasts and activated CD4 T cells but fewer myeloid dendritic cells, endothelial cells,
eosinophils, immature dendritic cells, and neutrophils. Conclusion. Our research found a 14-gene signature and established a
nomogram that accurately predicted the prognosis in patients with lung adenocarcinoma. Clinical decision-making and
therapeutic customization may benefit from these results, which may serve as a valuable reference in the future.

1. Introduction

Lung cancer is one of the most frequent malignancies with
high mortality and poor prognosis [1, 2]; 80% of lung
malignancies diagnosed were NSCLC [3]. LUAD accounts

for nearly 40% of NSCLC cases [4, 5], and its incidence is
continually increasing [6]. In recent years, several thera-
peutic advances have been made, including targeted ther-
apies and emerging immunotherapy [7, 8]. Although both
methods are effective in a restricted range of lung cancer
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subtypes, the rate of survival for LUAD is still poor [9].
According to statistics, LUAD has a poor prognosis that only
18% could survive longer than 5 years [10]. As a result, the
search for valid biomarkers might lead to the establishment
of individualized diagnosis and therapy for LUAD patients
[11]. ,e cancer tissue has many specific characteristics,
including accelerated cell cycle, alterations of the genome,
increase in cell mobility and invasive growth of the cells,
incapable of going through normal apoptosis process, and
depletion of normal cell functions. Because of these phys-
iological and pathological characteristics, it is difficult for
tumors to be treated.

Recently, it has been studied that ferroptosis is a rela-
tively new type of cell death. ,is process is often accom-
panied by significant iron buildup and lipid peroxidation in
dying cells [12]. It can be distinguished from apoptosis,
necrosis, and autophagy by certain key characteristics.
Firstly, it is iron-dependent and is induced by the buildup of
harmful lipid reactive oxygen species. In addition, poly-
unsaturated fatty acids are consumed during the process
[12]. With the rapid development of the role of iron ions in
cancer, new prospects have emerged for their use in cancer
therapy [13]. ,e expression of the S100 calcium-binding
protein A4 (FSP1) in lung cancer cell lines is related to
resistance to ferroptosis, suggesting that overexpression of
FSP1 may be a method for ferroptosis escape [14]. In ad-
dition, MAPK pathway activation is associated with the
susceptibility to ferroptosis triggered by cystine deprivation
in NSCLC cell lines [15]. Alvarez et al. [16] recently found
that inhibiting the iron-sulfur cluster biosynthesis enzyme
NFS1 induced ferroptosis in vitro and slowed tumor de-
velopment in LUAD. Additionally, Liu et al. [17] discovered
that brusatol, an inhibitor of NRF2, increased the response
rate of cystine deprivation-triggered ferroptosis through the
FOCAD-FAK signaling pathway in NSCLC cell lines. What
is more surprising is that the merger of brusatol and erastin
demonstrated a superior therapeutic effect on NSCLC. ,e
findings in these prior studies suggest that ferroptosis is
quite important for lung cancer treatment. Based on the
above research, we made the following hypothesis that
ferroptosis is connected with the prognosis of LUAD, and
thus ferroptosis-related genes may function as prognostic
biomarkers.

Hypoxia or oxygen deprivation is a feature of most solid
tumors because the growth of a tumor requires a large
amount of oxygen. As the rapid tumor growth outstrips the
supply of oxygen, an imbalance between decreased oxygen
supply and increased oxygen demand was formed. ,is is a
typical feature observed in the tumor microenvironment
(TME) that increases the aggressiveness of many tumors and
also causes abnormal blood vessel formation due to impaired
blood supply, leading to poorer clinical outcomes [18–20].
Many transcription factors are active in tumor cells when the
environment is hypoxic, and these transcription factors
regulate cell proliferation, motility, and apoptosis via a
variety of downstream signaling mechanisms [21].,is leads
to an immunosuppressive TME that reduces the effective-
ness of immunotherapy [22] and upregulates the expression
of PD-L1, further supporting cancer escape [23, 24].

Although several studies have shown that intratumoral
hypoxia and HIF1A expression affect overall survival (OS) in
LUAD [25–27], hypoxia-based cannot be used to estimate
who are at a high risk very early.

According to recent research, HIF1Amay influence lipid
metabolism and cause lipids to be stored in droplets, which
reduces peroxidation-mediated endosomal damage and
limits cellular ferroptosis [28]. Additionally, HIF-2α has
been reported to activate hypoxia-inducible lipid droplet-
associated (HILPDA) expression and selectively enrich
polyunsaturated lipids, thus promoting cellular ferroptosis
[29]. Furthermore, increased ferritin heavy chains under
hypoxic conditions can protect HT1080 tumor cells from
ferroptosis [30]. ,ese findings suggest a potential rela-
tionship between ferroptosis and hypoxia. But more research
is needed to further investigate how ferroptosis and hypoxia
interact with each other and how they can affect LUAD
patients’ prognosis.

A variety of models have been created to predict the
prognostication in LUAD according to the TME [31], fer-
roptosis [32], hypoxia [33], and tumor immunology [34].
However, to our knowledge, there is no reported prognostic
role of hypoxia and ferroptosis-interrelated features in
LUAD. To fill the gap and broaden the diagnostic and
therapeutic potential of LUAD, we performed a compre-
hensive analysis using TCGA and Gene Expression Om-
nibus (GEO), aiming to endorse the least prognostic genes
for LUAD. Finally, a signature on hypoxia- and ferroptosis-
interrelated genes was constructed to know the prognostic
value in LUAD patients.

2. Materials and Methods

2.1. Data Source. Transcriptomic data from 593 samples,
composed of 59 normal and 534 LUAD, from TCGA da-
tabase were used in this study. A total of 476 LUAD samples
had available survival data. ,e GSE31210 dataset [35, 36]
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc�GSE31210), containing transcriptomic data and survival
information for 226 LUAD patients, was obtained from the
GEO database to validate the established model.

2.2. Single Sample Gene Set Enrichment Analysis. ,e
MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/) was
performed to acquire the hallmark gene sets of hypoxias,
which consisted of 200 genes. ,e results show that there are
259 genes related to ferroptosis in total, which were gathered
from the FerrDb database (https://www.zhounan.org/
ferrdb/). ,e TCGA-LUAD database matched the expres-
sion patterns of the aforementioned genes. ,e ssGSEA
method (from the R package GSVA) was performed to
analyze all samples, and the hypoxia and ferroptosis scores
for each sample were then calculated [37].

2.3. Coexpression Network Construction. ,e TCGA-LUAD
transcriptome data were selected for the establishment of
gene coexpression networks using the R package WGCNA
[38]. Hypoxia and ferroptosis scores were used as
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phenotypic characteristics. To assess the correlation of all
samples in the TCGA-LUAD database, we performed a
cluster analysis to ensure the completeness of the samples.
As shown in Supplementary Figure 1(a), TCGA-44-3917-
01A-01R-A278-07 was identified as an outlier and therefore
was not included in this section of the subsequent analysis.
During the network construction phase, the soft thresh-
olding power β was obtained above 0.90, with the fit index of
the scale-free topology. A dendrogram of all genes was
established using the dissimilarity measure to group them
together (1-TOM) (Supplementary Figure 1(b)).We set 30 as
the minimum module size, and modules with similar gene
expressions were clustered and displayed in a tree diagram
with color assignments according to the dynamic tree-
cutting algorithm. To identify the modules associated with
hypoxia and ferroptosis scores, a heatmap of module-feature
relationships with correlation coefficients and P-values was
drawn. Modules that had a strong dependency on both
scores were identified as modules of interest, and the genes
in these modules of interest were defined as hub genes.

2.4. Analysis of Differentially Expressed Genes (DEGs).
Transcriptome data from 53 normal and 539 LUAD samples
were used as the foundation for comparison to analyze genes
expressed differently. DEGs were analyzed using the R
package limma, with significance criteria of |log2 fold change
(FC)|> 1 and P< 0.05 as significance thresholds.

2.5. Overlap Analysis. Overlap analysis was used to identify
common genes between the identified hub genes and DEGs,
which were defined as DE-hypoxia and ferroptosis score-
related genes for the subsequent analysis.

2.6. Functional Enrichment. Using Metascape (https://
metascape.org) [39], the researchers were able to confirm
the functional enrichment of DE-hypoxia and ferroptosis
score-related genes in this investigation. P< 0.05 was the
significant threshold.

,e active signaling was analyzed using gene set varia-
tion analysis (GSVA) [37], which could compute sample
gene set enrichment using a Kolmogorov–Smirnov-like rank
statistical analysis. In the present study, a GSVA assessment
was used to establish the t score and to allocate 50 hallmark
gene signature activity conditions to the groups with high or
low risk. At last, we compared the values. ,e cutoff value
was set to |t|> 2.

2.7. Identification and Establishment of the Gene Signature.
TCGA’s 476 LUAD cases were randomly separated into two
groups by using a 7 : 3 split ratio. One group was used for
training and another one for testing. ,e DE-hypoxia and
ferroptosis score-interrelated genes that are related to OS
were discovered using the TCGA training dataset. ,e
characteristics related to LUAD prognosis were determined
by using univariate Cox regression (UCR) analysis. P< 0.05
was considered as significant. After the LASSO-penalized
Cox regression (LCR) analysis of the proposed predictive

panels, 10-fold cross-validation was used. Risk scores can be
generated by using prognostic gene signature. In accordance
with the appropriate cutoff of the risk score, patients from
the TCGA training and TCGA test sets, as well as GSE31210,
were split into two groups. ,e AUC of the ROC curve and
Kaplan–Meier (KM) analyses were applied. External vali-
dation was performed using the GSE31210 dataset.

2.8. Nomogram Construction and Validation. To identify
whether the risk model can be influenced by clinical factors,
UCR andMCR analysis together with the survival R package
were performed. Following those analyses, a nomogram was
obtained usingMCR coefficients of the risk score and clinical
variables in the TCGA cohort, which was then analyzed. It
was necessary to create calibration curves to determine
whether OS for one, three, or five years were consistent with
the actual findings (bootstrap-based 1000 iterations
resampling validations). We developed these analyses based
on the R package rms.

2.9. ImmuneCells Infiltration (ICI). ,e ICI into two groups
was determined using the ssGSEA method and the R soft-
ware [40]. ,e analysis considered only values with a
P< 0.05.,e violin diagrams used to illustrate the changes in
ICI between separate categories were drawn with the ggplot2
package.

2.10. Patients and Tissue Samples. We performed experi-
mental validation on specimens from five LUAD patients
who underwent surgery at Yan’an Affiliated Hospital,
Kunming Medical University, to validate 14 hypoxia and
ferroptosis score-related signature expression status in
LUAD and adjacent normal tissues (ANT). ANTs were used
as controls. ,e institutional and national research com-
mittees were followed in the conduct of all procedures, as
well as the Helsinki Declaration. ,e hospital’s Ethics
Committee gave its approval before any of the operations
could be carried out (Permit No. 2017-014-01). All of the
patients who took part in the trial gave their informed
permission before participation.

2.11. RNA Isolation and qRT-PCR. ,e 20 tissues were
dissociated using TRIzol Reagent (Life Technologies); then,
total RNA was collected and determined the concentration
using NanoDrop 2000FC-3100 (,ermo Fisher Scientific).
Prior to performing qRT-PCR, the SureScript-First-strand-
cDNA-synthesis kit (GeneCopoeia) was used to reverse
transcription reaction. ,e qRT-PCR reaction was as fol-
lows: 4 μL of reverse transcription product, 2 μL of
5×BlazeTaq qPCR Mix (GeneCopoeia, Guangzhou, China),
0.5 μL primers, and 3 μL of ddH2O. A BIO-RAD CFX96
TouchTM PCR detection system (Bio-Rad Laboratories,
Inc., USA) was utilized to perform the PCR reaction as
follows: 95°C for 30 s, 40 cycles of incubation at 95°C for 10 s,
60°C for 20 s, and 72°C for 30 s. In this study, the primers
used were synthesized by Servicebio (Servicebio Co., Ltd.,
Guangzhou, China) as follows: for KLK11:5′-
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AGGGCTTGTAGGGGGAGA-3′, 5′-TGGGGAGGCTGTT
GTTGA-3′; for MAPK4: 5′-TCAAGATTGGGGATTTCG-
3′, 5′-TATGGGCTCATGTAGGGG-3′; for ITGA2: 5′-ATC
AGGCGTCTCTCAGTTTC-3′, 5′-GTTTTCTTCTTGGCT
TTCAC-3′; for WFDC2: 5′-CAGGCACAGGAGCAGAGA
AG-3′, 5′-TCATTGGGCAGAGAGCAGAA-3′; for TNS4:
5′-GGGGCTTTTGTCATAAGGG-3′, 5′-TTTGAAGTGG
ACCACGGTG-3′; for LAMA3: 5′-GGTTTTGGTCCGT
GTTCT-3′, 5′-ACTGCCCCGTCATCTCTT-3′; for SMAD
9: 5′-GGAGATGAAGAGGAAAAGTGG-3′, 5′-GAAAGA
GTCAGGATAGGTGGC-3′. GAPDH was chosen to be an
internal control, and the 2−ΔΔCt method was used to cal-
culate the hub genes’ relative expression level [41]. ,e
experiment was repeated in triplicate on independent
occasions.

2.12. Statistical Analysis. Statistical analysis was performed
using R 3.4.3 and GraphPad Prism V9. P-value <0.05 means
significant difference. To evaluate survival, both UCR and
MCR analyzes were used. Both hazard ratios (HRs) and 95
percent CIs were reckoned to identify genes that were related
to OS. Paired t-tests were performed for statistical differ-
ences in this study using GraphPad Prism V9.

3. Results

3.1. Filtering for Hypoxia Score- and Ferroptosis Score-Related
Genes in TCGA-LUAD Database. A total of 200 hypoxia-
interrelated and 259 ferroptosis-interrelated genes were
gained from MSigDB and FerrDB, respectively. ,e ex-
pression conditions of these genes in 593 samples (normal:
59, LUAD: 534) were then matched and utilized as the basis
for ssGSEA, which aimed to derive the hypoxia and fer-
roptosis scores in TCGA database. ,e ssGSEA outputs for
the detailed score results are shown in Supplementary
Table 1.

WGCNA was performed by applying the obtained
hypoxia and ferroptosis scores as phenotypic data. After
excluding the outlier samples, we constructed a sample-
clustering tree (Figure 1(a)). Herein, a scale-free network
was built when β� 3, which was defined as a soft threshold
parameter (Figure 1(b)). Finally, 23 modules were identified
according to the dynamic tree-cutting algorithm and were
labeled with different colors (Figure 1(c)). ,e turquoise
module was most irrelevant to ferroptosis score (cor� −0.69,
P � 3e − 10) and hypoxia score (cor� −0.63, P � 8e − 68),
whereas the red module correlated more strongly with both
ferroptosis score (cor of −0.47, P � 6e − 34) and hypoxia
score (cor� −0.49, P � 2e − 36) (Figure 1(d)). ,erefore,
these two models were identified as the modules of interest.
Collectively, 8314 genes (Supplementary Table 2) and 660
genes (Supplementary Table 3) were identified as hub genes
and considered as hypoxia and ferroptosis score-related
genes for subsequent analysis.

3.2. Identification of LUAD-Related DEGs. Differential ex-
pression analysis was used to acquire transcriptome data
from TCGA (59 normal and 534 LUAD samples), which was

produced using the R program limma.When LUAD samples
were compared to normal samples, a total of 1,969 eligible
DEGs were obtained, among which 906 were significantly
increased in LUAD samples, and 1,063 were significantly
decreased (Figure 2(a); Supplementary Table 4).

3.3. Analysis of DE-Hypoxia and Ferroptosis Score-Related
Genes. Based on the overlap analysis, we identified 152
common genes from the list of 8,974 hypoxia and ferroptosis
score-related genes and the list of 1,969 LUAD-related
DEGs, which were defined as DE-hypoxia and ferroptosis
score-related genes (Figure 2(b)). In LUAD, 86 of these
genes were upregulated, while 66 were inversed. ,e ex-
pression patterns of DE-hypoxia and ferroptosis score-re-
lated genes in the TCGA-LUAD database are described in
Supplementary Table 5.

Functional annotations obtained from Metascape indi-
cated that DE-hypoxia and ferroptosis score-related genes
were mainly augmented in “transcriptional misregulation in
cancer,” “spermatogenesis,” and “positive regulation of cell
projection organization” (Figures 2(c) and 2(d)).

3.4. Establishment of the Hypoxia and Ferroptosis Score-Re-
lated Signature. In the TCGA training set (n� 334), the
association of the 152 identified DE-hypoxia and ferroptosis
score-related genes with survival in LUAD patients was
analyzed using UCR. As shown in Table 1, only 17 of the 152
genes met the set significance threshold of P< 0.05. ,e HRs
of SMAD9, SNX30, STK32A, WFDC2, KLK11, and
CTD.2589M5.4 were all <1, indicating that they were po-
tential protective factors for LUAD. In contrast, ANGPTL4,
LAMA3, VGLL3, ITGA2, TNS4, KCNQ3, PHLDB2,
FAM83A.AS1, SLC16A3, FSTL3, and MAPK4, all with HR
>1, were possible oncogenes. We performed LLR analysis
based on 17 variables in the TCGA training set (Figures 3(a)
and 3(b)) to obtain the best genes for constructing the
prognostic signature. Ultimately, the hypoxia and ferrop-
tosis score-related signature involved 14 genes: MAPK4,
TNS4, WFDC2, FSTL3, ITGA2, KLK11, PHLDB2, VGLL3,
SNX30, KCNQ3, SMAD9, ANGPTL4, LAMA3, and STK32A.
We estimated the risk score of each individual in TCGA set
based on the coefficient of each gene (Figure 3(c); Supple-
mentary Table 6).

,e patients with LUAD in the TCGA training set were
separated into two groups with the cutoff value at 1.0803
(Supplementary Table 7). ,e allocation of risk scores is
shown in Figure 3(d). Association analyses revealed a sig-
nificant correlation (P< 0.05) between the T stage and
various risk groups in the TCGA training set (Table 2). A
significant association between a high-risk score and a poor
outcome (P< 0.0001; Figure 3(e)) was shown in the
Kaplan–Meier survival curves. ROC curves indicated that
hypoxia and ferroptosis score-related signature could be
used to predict OS in the TCGA training group (Figure 3(f )).
Additionally, the heatmap indicated that the expression
levels of KCNQ3, ITGA2, ANGPTL4, TNS4, FSTL3, LAMA3,
MAPK4, PHLDB2, and VGLL3 were upregulated with en-
hancing risk score, but the expression levels of KLK11,
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SMAD9, WFDC2, SNX30, and STK32A were reduced. Ad-
ditionally, in individuals with LUAD, T stages are also
relevant to these genes expression (Figure 4).

3.5. Validation Prognostic Signature with 14 Genes. We used
the same algorithm to compute the risk scores for the pa-
tients in the TCGA test cohort (n� 142; Supplementary
Table 8) and the GSE31210 dataset (n� 226; Supplementary
Table 9). According to cutoff values determined for each
dataset, patients were separated into two risk groups. ,e
results corroborated those from the TCGA training set.
Figures 5(a) and 5(d) indicated that mortality status was
more concentrated in the domain of high-risk scores. In
both validation datasets, Figures 5(b) and 5(e) showed that
high-risk patients had a considerably poorer outcome. In

both datasets, the 14-gene prognostic signature performed
well. ,e risk scores of AUCs for 1-, 3-, and 5-year OS
predictions were 0.666, 0.652, and 0.637 in the TCGA test
set, respectively (Figure 5(c)), while the AUCs of the 14-gene
signature were 0.741, 0.648, and 0.677 for the three kinds of
OS predictions, respectively, using the GSE31210 dataset
(Figure 5(f )). ,e distribution of LUAD patients with dif-
ferent groups according to each clinical feature in the TCGA
test set is shown in Table 3. Association studies revealed a
significant (P< 0.01) correlation between the clinical stage
and different risk groups in the GSE31210 dataset (Table 4).

3.6. Correlation Analysis of Risk Score with Clinical Charac-
teristics of LUAD. We observed the allocation of patient risk
scores according to different clinical characteristics.
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Figure 1: (a) Sample-clustering dendrogram with feature heatmap. (b) Network topology analysis with different soft threshold power.
(c) Cluster dendrograms of genes based on topological overlap of dissimilarities, andmodule colors were assigned. (d) Heatmap showing the
relationship between gene modules and phenotypic traits. Each row and column correspond to a module e-gene and a trait. ,e correlation
coefficient in each cell represents the same relationship with heatmap in decreasingmagnitude from red to green.,e number in parentheses
in each cell represents the correlation P-value.
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Figure 2: Continued.
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Interestingly, the distribution of patient risk scores was
highly related to the stages of the patients. Risk scores in
patients in stage III were increased compared to those in
stage I (P< 0.05; Figure 6(a)). In terms of the T stage
(Figure 6(b)), patients with LUAD in T4 had the highest risk

scores, which have a significant difference in T1 and T2,
but comparable to T3. Patients with LUAD in the T3 stage
had slightly higher risk scores than those in the T1 stage
(P< 0.01); in the N stage (Figure 6(c)), patients in the N2
stage had higher risk scores than those in the N0 stage

endopeptidase inhibitor activity
Transcridtional misreaulation in cancer
NABA MATRISOME ASSOCATED
multicellular organismal water homeostasis
MET promotescell motility
ABC transporters
CtBP complex
kidney development
BMP signaling
glycoprotein biosynthetic process
Vitamin D receptor pathway
epithelial cell apoptotic process
Plasma lipoprotein assembly, remodeling, and cleara
Fluoropyrimidine activity 
ossification
intracellular lipid transport
positive requlation of smooth musce cell miaration
epithelial cell proliferation
positive requlation of cell projection organization
spermatogenesis

(d)

Figure 2: (a) Volcano map of significant DEGs. Red spots: upregulated genes; blue spots: downregulated genes; gray: genes with no change
in expression. (b) Venn diagram showing the repetitious genes of DEGs and WGCNA. (c, d) Function analysis of DE-hypoxia and
ferroptosis score-related genes using Metascape.

Table 1: UCR analysis of the 152 identified DE-hypoxia and ferroptosis score-related genes explores 17 genes associated with LUAD patient
survival.

ID z HR HR. 95L HR. 95H P-value
MAPK4 4.21113029756985 1.46745295679297 1.22755540646437 1.75423298130611 2.54E− 05
TNS4 4.02119788604733 1.29938376610491 1.14367045280752 1.47629779843681 5.79E− 05
WFDC2 −3.79860720374219 0.811653740106402 0.728800938850636 0.903925555951741 0.000145511488661
FSTL3 3.68304906615447 1.40517139515741 1.17250302799022 1.68400985126077 0.000230460779083
FAM83A.AS1 3.19219681770566 1.38043585405413 1.13252613465791 1.68261295597717 0.00141195086371
ITGA2 3.1297146270081 1.26268315773328 1.0910870928145 1.46126626125743 0.001749761967554
KLK11 −2.89081539413551 0.817085437051864 0.712500352475736 0.937022149003037 0.003842437575419
SLC16A3 2.69059352882516 1.38307857948644 1.09206101692107 1.75164787259545 0.007132503883482
PHLDB2 2.67561048467087 1.36825660397289 1.08747876280116 1.72152891472853 0.007459328240577
VGLL3 2.48631904817044 1.24621454130366 1.04770025500438 1.48234256462046 0.012907219145633
SNX30 −2.41280356238469 0.718205289102291 0.548879152164541 0.939767588658339 0.015830348860021
KCNQ3 2.23280002150132 1.34420966442955 1.03680712106375 1.74275386929437 0.025562134874828
SMAD9 −2.20299987655253 0.660110772189965 0.456177215306126 0.955212616809054 0.02759475734267
ANGPTL4 2.17133207596654 1.15838922218355 1.01441557907091 1.32279670951033 0.029906079314469
LAMA3 2.05948665187877 1.18322521780815 1.00816336324203 1.38868557130958 0.039447642418345
CTD.2589M5.4 −1.98163055774902 0.831910477060721 0.693468992502609 0.997989887544674 0.047520604494006
STK32A −1.97258211072512 0.789000052327525 0.623465515365524 0.998485188403512 0.048543192818321
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Figure 3: (a–c) ,e LCR was used to figure out the lowest criteria (a, b) and coefficients (c). (d) Allocations of risk scores (based on the
hypoxia and ferroptosis score-related prognostic signature); (e)K-M survival curves. (f ) Hypoxia and ferroptosis score-related signature can
be utilized to predict OS in the TCGA training set according to ROC curves.
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Table 2: Association analysis shows that clinical characteristics correlate results with different risk groups in the TCGA training set.

Expression

Total (N� 309) High Low
P-value(N� 129) (N� 180)

Gender
Female 165 (53.4%) 66 (51.2%) 99 (55.0%) 0.582
Male 144 (46.6%) 63 (48.8%) 81 (45.0%)

Age (years)
≥60 229 (74.1%) 95 (73.6%) 134 (74.4%) 0.979
<60 80 (25.9%) 34 (26.4%) 46 (25.6%)

Pathologic stage
Stage I 168 (54.4%) 62 (48.1%) 106 (58.9%) 0.0815
Stage II 74 (23.9%) 30 (23.3%) 44 (24.4%)
Stage III 50 (16.2%) 28 (21.7%) 22 (12.2%)
Stage IV 17 (5.5%) 9 (7.0%) 8 (4.4%)

T stage
T1 102 (33.0%) 31 (24.0%) 71 (39.4%) 0.0128
T2 166 (53.7%) 76 (58.9%) 90 (50.0%)
T3 29 (9.4%) 13 (10.1%) 16 (8.9%)
T4 10 (3.2%) 8 (6.2%) 2 (1.1%)
TX 2 (0.6%) 1 (0.8%) 1 (0.6%)

M stage
M0 198 (64.1%) 82 (63.6%) 116 (64.4%) 0.47
M1 16 (5.2%) 9 (7.0%) 7 (3.9%)
MX 95 (30.7%) 38 (29.5%) 57 (31.7%)

N stage
N0 202 (65.4%) 75 (58.1%) 127 (70.6%) 0.16
N1 54 (17.5%) 26 (20.2%) 28 (15.6%)
N2 46 (14.9%) 25 (19.4%) 21 (11.7%)
N3 1 (0.3%) 0 (0%) 1 (0.6%)
NX 6 (1.9%) 3 (2.3%) 3 (1.7%)
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Figure 4: Continued.
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Figure 4: Heatmap of the relationship between the expression of 14 genes associated with hypoxia and ferroptosis scores and clinico-
pathological features in the (a) TCGA training, (b) TCGA test, and (c) GSE31210 dataset.
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(P< 0.01). Although the risk score in stage N3 was lower
than in stage N2 (P< 0.05), the sample size in stageN3 was
too small to be considered valid. Subsequently, the impact
of clinical characteristics on the OS in LUAD patients was
investigated using KM survival analysis. Specifically, in
the stratified analysis of stage (Figure 6(d)), patients with
a lower stage are more likely to have a better prognosis,
which showed the same trend with distribution of risk
score levels. In the stratified analysis of the T stage
(Figure 6(e)), the T1 stage had a better OS, whereas T3
and T4 stages exhibited a poor prognosis. ,e worst
prognosis in LUAD patients in the T4 stage was con-
sistent with the previous result that patients with T4 stage
had the highest risk score. In terms of the N stage
(Figure 6(f )), the N3 stage contained only one LUAD
sample, and therefore, its impact on patient prognosis
was ignored. Patients with the N0 stage had the longest
survival time compared with those with the N2 stage who
had the shortest survival time. ,e allocation of risk

scores and stratified prognosis according to other clinical
characteristics, including age, sex, and M stage, are de-
tailed in Supplementary Figure 2.

3.7. Subgroup Analysis of the Prognostic Signature. After
establishing a correlation between hypoxia and ferroptosis
score-related gene signatures and the aforementioned
clinicopathological traits, we aimed to measure whether
our model’s prognostic efficacy can be utilized for clinical
factors. Five patients were separated according to the in-
dicated subgroups, and then data stratification was exe-
cuted according to age, sex, pathological tumor stage,
pathological T stage, pathological N stage, and pathological
M stage. ,e hypoxia and ferroptosis score-related gene
signature was able to differentiate between prognoses in all
subgroups except for T3-T4 and M1 features, implying a
clinically and statistically significant prognostic value
(Figure 7).
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Figure 5: (a, d) Allocations of risk scores. (b), (e),e K-M survival curves showed that a high-risk score was related to less OS. Hypoxia and
ferroptosis score-related signature can be utilized to predict OS in the (c) TCGA test and (d) GSE31210 dataset according to ROC curves.

Journal of Oncology 11



3.8. Independent Prognostic Role of Risk Scores. We inves-
tigated whether the risk score could be the only prognostic
factor in LUAD patients using UCR and MCR. Based on the
data from in TCGA set, UCR analyses showed that the risk
score, stage, T stage, and N stage were significantly related to
LUAD prognosis (Figure 8(a)). Subsequently, the above-
mentioned variables (P< 0.05) were subjected to MCR
analysis.,e results identified hypoxia and ferroptosis score-

related gene signature (risk score) and stage as two inde-
pendent prognostic factors predicting prognosis in LUAD
patients (Figure 8(b)).

LUAD patients’ OS were predicted using a compound
nomogram incorporating the risk score and stage. ,is
approach was developed to provide a more accurate pre-
diction tool for clinical practice (Figure 8(c)). It was evident
from the calibration plots that the prognostic nomogram
model accurately predicted patient survival with only a slight
divergence from the actual outcomes (Figure 8(d)).

3.9. Differences in Hallmark Gene Sets between Two Group
Patients. According to the results of the analysis of signature
gene sets, signaling pathways converging in numerous bi-
ological processes were found to vary in two groups. No-
tably, hypoxia, TNFα signaling via NF-κB, mitotic spindle,
and glycolysis were decreased in the low-risk group. On the
other hand, the other group was preferentially associated
with bile acid metabolism, pancreatic beta cells, and KRAS
signaling (Figure 9 and Supplementary Table 10).

3.10. TME Infiltration Pattern of LUAD Based on Risk Score.
,e ssGSEA algorithms were used on the data to investigate
how risk scores affect TME components. As the results of
heatmaps and Wilcoxon tests performed on TCGA-LUAD
datasets, the infiltration of several TME contents, such as

Table 3: Association analysis shows that clinical characteristics correlate results with different risk groups in the TCGA test set.

Expression

Total (N � 135) High Low
P-value(N � 56) (N � 79)

Gender
Female 73 (54.1%) 28 (50.0%) 45 (57.0%) 0.532
Male 62 (45.9%) 28 (50.0%) 34 (43.0%)

Age (years)
≥60 97 (71.9%) 35 (62.5%) 62 (78.5%) 0.0658
<60 38 (28.1%) 21 (37.5%) 17 (21.5%)

Pathologic stage
Stage I 73 (54.1%) 25 (44.6%) 48 (60.8%) 0.159
Stage II 31 (23.0%) 13 (23.2%) 18 (22.8%)
Stage III 23 (17.0%) 13 (23.2%) 10 (12.7%)
Stage IV 8 (5.9%) 5 (8.9%) 3 (3.8%)

T stage
T1 48 (35.6%) 16 (28.6%) 32 (40.5%) 0.506
T2 68 (50.4%) 31 (55.4%) 37 (46.8%)
T3 13 (9.6%) 7 (12.5%) 6 (7.6%)
T4 5 (3.7%) 2 (3.6%) 3 (3.8%)
TX 1 (0.7%) 0 (0%) 1 (1.3%)

M stage
M0 91 (67.4%) 35 (62.5%) 56 (70.9%) 0.381
M1 8 (5.9%) 5 (8.9%) 3 (3.8%)
MX 36 (26.7%) 16 (28.6%) 20 (25.3%)

N stage
N0 86 (63.7%) 31 (55.4%) 55 (69.6%) 0.094
N1 27 (20.0%) 13 (23.2%) 14 (17.7%)
N2 18 (13.3%) 11 (19.6%) 7 (8.9%)
N3 1 (0.7%) 1 (1.8%) 0 (0%)
NX 3 (2.2%) 0 (0%) 3 (3.8%)

Table 4: Association analysis shows that clinical characteristics
correlate results with different risk groups in the GSE31210 dataset.

Expression
Total High Low

P-value(N� 226) (N� 106) (N� 120)
Gender
Female 121 (53.5%) 53 (50.0%) 68 (56.7%) 0.385
Male 105 (46.5%) 53 (50.0%) 52 (43.3%)

Age (years)
≥60 130 (57.5%) 58 (54.7%) 72 (60.0%) 0.505
<60 96 (42.5%) 48 (45.3%) 48 (40.0%)

Pathologic stage
I 168 (74.3%) 65 (61.3%) 103 (85.8%) <0.001
II 58 (25.7%) 41 (38.7%) 17 (14.2%)

Smoke
Ever-smoker 111 (49.1%) 58 (54.7%) 53 (44.2%) 0.147
Never-
smoker 115 (50.9%) 48 (45.3%) 67 (55.8%)
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Figure 6: Wilcoxon analysis of the differing risk score distributions among various (a) stages, (b) T stages, and (c) N stages in the TCGA-
LUAD cohort. ,e K-M survival curves of patients with different (d) stages, (e) T stages, and (f) N stages. ∗P< 0.05, ∗∗P< 0.01, and
∗∗∗P< 0.001.
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Figure 7: Continued.
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Figure 7: K-M survival analysis of the fourteen-gene risk score level in subgroups: (a) younger than 60 years old and older than 60 years old,
(b) male and female, (c) stages I-II and stages III-IV, (d) T1 2 stage and T3-4 stage, (e)N0 stage andN+ stage, and (f)M0 stage andM1 stage.
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eosinophils and immature dendritic cells, was increased in
the less-risk group, whereas the ICI of activated CD4 T cells
and others was more in the other group, as depicted in
Figure 10.

3.11. Validation of Seven Selected Prognostic Genes Based on
qRT-PCR. According to the expression profiles of the
identified DEGs (Supplementary Table 5), TNS4, WFDC2,
and ITGA2 were revealed to be all highly expressed, while
MAPK4, SMAD9, KLK11, and LAMA3 were all down-
regulated in LUAD samples from the TCGA dataset. As
shown in Figure 11, the high expression of TNS4, WFDC2,
and ITGA2 and the low expression of MAPK4, SMAD9,
KLK11, and LAMA3 in LUAD tissues (n� 10) were con-
firmed compared with the expression levels in the ANTs
(n� 10).

4. Discussion

As well known, lung cancer is one of the general forms of
malignancy globally. Nearly 80% of lung cancer patients
have NSCLC, and nearly 50% have LUAD [42]. LUAD is a
malignant tumor that affects the lungs and has a poor

prognosis [43]. Although there have been breakthroughs in
the treatment of patients with LUAD, the OS rate in these
individuals remains low.

Ferroptosis is a particular kind of programmed cell death
[17]. Ferroptosis-related research on lung cancer has mostly
focused on the identification of related biomarkers that could
induce ferroptosis [16, 44–46]. Hypoxia is also related to high
proliferation rates in tumor cells [47]. Tumor hypoxia has a
broad range of consequences, affecting a variety of biological
systems, including metabolic changes, angiogenesis, and
metastasis [48–50]. Numerous hypoxia-associated genes are
associated with lung adenocarcinoma [51, 52]. However, no
high-throughput research has been conducted to date to
explore the possible prognostic value of them in LUAD.

Here, the ferroptosis and hypoxia Z-scores of each
sample were estimated as clinical features based on the
expression of ferroptosis and hypoxia-related genes iden-
tified in each sample, respectively. We obtained 23 modules,
and the turquoise module showed no relationship with
ferroptosis scores (cor� −0.69, P � 3e − 10) and hypoxia
scores (cor� −0.63, P � 8e − 68), while the red module
correlated more strongly with both scoring phenotypes, with
ferroptosis score and hypoxia score. We then identified 152
common genes from the list of 8,974 hypoxia and ferroptosis
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Figure 9: Gene set variation analysis. Differences in hallmark gene set activities scored by GSVA between two groups. T values are figured
out using a linear model and the |t|> 2 as a cutoff value.
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score-related genes and 1,969 LUAD-related DEGs, which
were defined as DE-hypoxia and ferroptosis score-related
genes, respectively.

Functional annotations obtained from Metascape indi-
cated that DE-hypoxia and ferroptosis score-related genes
were mainly enriched in “transcriptional misregulation in
cancer,” “endopeptidase inhibitor activity,” and “positive
regulation of cell projection organization.” Overexpression
of oncogenic transcription factors has been proven in recent
research to change cells’ core autoregulatory circuitry, which
has long been recognized to induce tumorigenesis due to
mutations in transcription factor genes [53]. ,erefore, it is
possible to intervene in this pathway to prevent the devel-
opment of LUAD.

Of the 152 DE-hypoxia and ferroptosis score-related
genes, 7.3% (17/152) were associated with prognosis in
univariate Cox analysis. In addition, univariate Cox analysis
identified six genes as protective markers and 11 genes as risk
factors for patients with LUAD. Fourteen genes were iden-
tified using LASSO Cox regression (MAPK4, TNS4,WFDC2,
FSTL3, ITGA2, KLK11, PHLDB2, VGLL3, SNX30, KCNQ3,
SMAD9, ANGPTL4, LAMA3, and STK32A) to construct
prognostic-related gene signatures and develop prognostic
models to classify LUAD patients into two groups with
various risks. Herein, we suggested that lower-risk patients
seem to live longer. Additionally, we built a nomogram using
MCR analysis and proved its predictive ability using ROC
curves, calibration plots, and decision curves.

MAPK4 overexpression promotes LUAD progression
[54]. Tensin 4 (TNS4) is involved in MET-induced cell
motility and is connected to the GPCR signaling pathway.
According to one study, increased TNS4 expression leads
to poor treatment outcomes in gastric cancer patients [55].
WFDC2 is upregulated in lung cancer [56–58] and has thus
recognized the clinical application of WFDC2 as a serum
tumor marker in the early diagnosis and efficacy moni-
toring of lung cancer [59]. In addition, in a study of in-
dividuals with LUAD, Song et al. [34] reported that
WFDC2 was substantially related to the TNM stage of
LUAD and prognosis of patients. Recent studies have
reported substantial overexpression of FSTL3 in a subset of
cancers [60–62]. Additionally, in patients with NSCLC and
thyroid carcinoma, FSLT3 expression is substantially
linked to lymph node metastasis and poor prognosis
[60, 61]. ITGA2 overexpression is essential for tumor
development, metastasis, and motility, and this molecule
triggers the overexpression of the STAT3 signaling
pathway, thus promoting tumor progression [63]. KLK11
protein is expressed more in NSCLC serum, although
KLK11 mRNA levels are lower in cancerous lung tissues
than in ANTs [64]. Leakage of these secreted proteins into
the systemic circulation due to disruption of lung structure
during angiogenesis or development may be the reason for
this discrepancy between low mRNA levels and elevated
serum protein levels in lung cancer [65]. It has been well
studied that PHLDB2 is linked to a variety of malignancies
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Figure 10: (a, b) Heatmap illustrating the distributions of immune cell subsets, fibroblasts, and endothelial cells assessed via MCP-counter
(a) and ssGSEA (b) algorithms in the TCGA-LUAD cohort. (c, d)Wilcoxon analysis of the differing TME subtype distributions between two
groups in the TCGA-LUAD cohort. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.
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[66, 67]. PHLDB2’s primary role is to control migration
through interacting with the transcription factors
CLASPS, prickle 1, and liprin 1 [68, 69]. According to Ge
et al., patients with lower PHLDB2 expression have a better
prognosis [70]. VGLL3 is a unique Ets1 interacting partner
that inhibits adipocyte differentiation and controls tri-
geminal nerve development [71]. VGLL3 acts as a coac-
tivator of mammalian toxicity equivalency factors and is
implicated in many kinds of cancers, including breast,
colon, and lung cancers [72, 73]. Methylation, phos-
phorylation [74], and dephosphorylation of SMAD9 may
function in the progression of lung cancer [75]. Tumor
cell-derived human angiopoietin-like protein 4
(ANGPTL4) has been shown to disrupt vascular endo-
thelial cell connections, enhance pulmonary capillary
permeability, and facilitate tumor cell protrusion through
the vascular endothelium, which is involved in lung cancer
[76]. ,rough the synergistic action of AP-1 binding sites
[77], the epithelial enhancer mediates the production of
laminin subunit alpha 3 (LAMA3), which is associated
with tumor progression. Xu et al. [78] reported that it was
discovered that the inhibition of LINC00628 decreased
LUAD cell proliferation and drug resistance by lowering
the methylation of the LAMA3 promoter. STK32A is
important in cellular balance and transcription factor

phosphorylation, together with cell cycle regulation, and
its overexpression leads to enhanced NSCLC cell pro-
gression, as well as enhanced NF-κB p65 phosphorylation
and inhibition of apoptosis [79]. SNX30 encodes sorted
nexin-30 protein, a member of the sorted nexin, which a
large class of proteins localized in the cytoplasm with
membrane-bound potential via a phospholipid-binding
domain [80]. KCNQ3 encodes a protein that regulates
neuronal excitability, and GCSH encodes a mitochondrial
protein that forms the glycine cleavage system [81].
However, there is a lack of research on the mechanisms of
action of these two genes in cancer.

Following this assessment, KM survival studies dem-
onstrated that the 14 prognosis-associated genes may have a
contribution to the initiation and development of LUAD in
certain individuals. It came as a surprise to observe that risk
scores for the 14-gene prognostic profile were shown to be
strongly correlated with the OS in LUAD patients in two
cohorts split by the TCGA and one GEO validation cohort.
We discovered that modulation of the prognostic gene
profile was linked with the LUAD survival models (T, N,M,
stage, sex, and age) in our study. Furthermore, the nomo-
gram of independent risk factors, which included risk score
models, had a good predictive value and might assist cli-
nicians in making optimum treatment choices to enhance
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Figure 11:,e high expression of TNS4 (a), WFDC2 (b), and ITGA2 (c) and the low expression of MAPK4 (d), SMAD9 (e), KLK11 (f), and
LAMA3 (g) in LUAD tissues were confirmed compared to the paracancerous tissues.
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the OS rates of patients with LUAD in the future. ,ese
results suggest that hypoxia- and ferroptosis-related genes
were indispensable in the construction of prognostic models
for LUAD development and that they may have the potential
to act as OS biomarkers.

Our findings suggested that the signaling pathways that
converge in various biological processes differ between two
groups, and the hypoxia, TNFα, signaling via NF-κB,
mitotic spindle, and glycolysis were significantly down-
regulated in the less-risk group. Additionally, 14 prognosis-
related genes in LUAD, including one hypoxia-related
gene, ANGPTL4, were significantly expressed in the tumor
tissues. ,is finding reflects the dependence of LUAD on
hypoxia and the heterogeneity of hypoxia responses in the
low- and high-risk groups. Hypoxia heterogeneity indicates
its involvement in promoting a phenotypic variety of
cancer cells in the TME, which promotes metastasis and
therapeutic resistance. Li et al. [82] demonstrated that
suppressing NLRP2 boosted cell proliferation through NF-
κB signaling activation, thus resulting in an EMT pheno-
type in LUAD cells. ,erefore, the regulatory pathways
involved in NF-κB also function in the progression of
LUAD. ,e evidence implies that LUAD pathogenesis is a
complicated biological process involving multiple genes.
Apart from that, dysregulation of multiple genes may
contribute to the progression of LUAD by a variety of
distinct processes. ,e differences in GSVA signatures and
prognostic genes between the two groups have the potential
to be explored in a more in-depth study. ,ese discoveries
may, in general, open new avenues of investigation of
additional molecular mechanisms of LUAD for academics
and physicians.

Significant differences in immune infiltrating cell types
between two groups were shown in this study. Interest-
ingly, the enrichment fraction of activated CD4 T cells and
neutrophils was enhanced in the high-risk group, whereas
the enrichment fraction of eosinophil and immature
dendritic cells was found in the low-risk group. Immune
cells, neutrophils that infiltrate tumor tissue, called TANs,
also play a role in antitumor immunity. TANs stimulate T
cell responses in lung cancer rather than have an immu-
nosuppressive effect [83]. In LUAD, overexpression of
bridging granule genes is associated with a significant
enhancement in infiltration of activated CD4 and CD8 T
cells [84]. We hypothesize that the inflammatory response
induced by immune cells may function in accelerating
tumor cell mutations, which in turn may affect patient
prognosis. ,e specific mechanisms by which the tumor
immune microenvironment affects prognosis remain to be
explored.

Here, a prognostic model of LUAD with general ap-
plicability was successfully developed and validated based on
hypoxia and ferroptosis. In addition, we performed exper-
iments to validate the 14 molecules in the model. Of these,
seven molecules were validated by qRT-PCR to be signifi-
cantly different between tumor and paracancerous tissues.
However, our study has some limitations. Due to the lack of
studies on hypoxia and ferroptosis in tumors, the infor-
mation provided by MSigDB and FerrDB websites may be

inaccurate, as the references were manually obtained from
previous studies. More studies will do to validate the roles of
these fundamental prognostic genes’ hypoxia- and ferrop-
tosis regulation roles in LUAD [3]. Both cohorts (TCGA-
LUAD and 1 GEO cohort) were used to construct predictive
signature. ,is hypoxia- and ferroptosis-predictive signal
may be more reliable if examined in our research center’s
prospective clinical trial cohort.

5. Conclusion

Hypoxia and ferroptosis are two major mechanisms associated
with lung adenocarcinoma development. In this research, the
candidate genes associated with hypoxia and ferroptosis scores
were identified; as a result, we have found a 14-gene signature
and developed a predictive nomogram that could accurately
predict OS in individuals with LUAD. ,ese results may be
useful in facilitating the making of medical decisions and
personalizing therapeutic interventions.
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