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Abstract: Osteolysis adjacent to total hip replacement (THR) prostheses is a major cause of their
eventual failure. Periprosthetic osteolysis is associated with the production of bioactive particles,
produced by the wear of articulating prosthesis surfaces. Wear particles invade the periprosthetic
tissue, inducing inflammation and bone resorption. Previous studies have shown that osteocytes,
the most numerous cell type in mineralised bone, can respond to wear particles of multiple orthopaedic
material types. Osteocytes play important roles in bone resorption, regulating bone resorption by
osteoclasts and directly through osteocytic osteolysis, also known as perilacunar remodelling. In this
study, we perform a histological analysis of bone biopsies obtained from cohorts of male and female
patients undergoing either primary THR surgery or revision THR surgery for aseptic loosening.
The osteocyte lacunae area (Ot.Lac.Ar) and percentage lacunar area/bone area (%Ot.Lac.Ar/B.Ar)
were significantly larger overall in revision THR bone than bone from similar sites in primary THR.
Analysis by patient gender showed that increased Ot.Lac.Ar, indicative of increased perilacunar
remodelling, was restricted to female revision samples. No significant differences in osteoclast
parameters were detectable between the cohorts. These findings suggest previously unrecognised
gender-specific mechanisms of bone loss in orthopaedic wear particle-induced osteolysis in humans.

Keywords: periprosthetic osteolysis; aseptic loosening; total hip replacement; osteocyte; osteocytic
osteolysis; wear particles

1. Introduction

Osteoarthritis is a common joint disorder that leads to total hip replacement (THR) surgery
when non-operative treatments fail. THR alleviates pain and restores mobility to the joint, however,
failure of the implant can occur, commonly due to loosening [1]. Aseptic osteolytic lesions have
been identified as a main cause of loosening in implants [2–7]. Osteolytic lesions are visualised as
radiolucent areas within the bone architecture, more commonly seen in the cancellous bone above
the acetabular component of an implant [8]. The lesions become devoid of bone and infiltrated with
granulomatous tissue that contains multiple cell types including macrophages, fibroblasts, osteoclasts
and inflammatory cells [6,9].

The production of bioactive wear particles has been identified as a main cause of osteolysis [10].
Polyethylene (PE) and metal particles formed by the abrasive wear of bearing surfaces and modular
component fretting have been shown to infiltrate the periprosthetic tissue [11], be highly bioactive and

J. Clin. Med. 2020, 9, 53; doi:10.3390/jcm9010053 www.mdpi.com/journal/jcm

http://www.mdpi.com/journal/jcm
http://www.mdpi.com
https://orcid.org/0000-0002-0673-5791
https://orcid.org/0000-0002-3123-9861
http://www.mdpi.com/2077-0383/9/1/53?type=check_update&version=1
http://dx.doi.org/10.3390/jcm9010053
http://www.mdpi.com/journal/jcm


J. Clin. Med. 2020, 9, 53 2 of 15

cause adverse tissue reactions [12]. Both metal and PE particles have been shown to induce biological
reactions, including promoting both bone resorption and inflammatory pathways, whilst inhibiting
bone formation [13–16].

The analysis of bone biopsies from patients, who have undergone revision surgery, has led
to the identification of changes in the bone microenvironment caused by wear particles, including
the upregulation of key inflammatory genes and osteoclastic markers, as well as the detection of
wear particles within the mineralised bone surrounding implants [17]. Data are emerging that
osteocytes, the most abundant cell type in the bone, play active roles in periprosthetic osteolysis [18,19].
Through the lacunocanalicular network, osteocytes can sense mechanical strain and biochemical
signals, and in response, influence both bone formation and resorption by sending regulatory stimuli
to surface osteoclasts, osteoblasts and bone lining cells [20,21]. In females, the osteocyte plays an
important physiologic role to release calcium from the bone matrix during lactation, through the
process of osteocytic osteolysis, also known as perilacunar remodelling [22]. This occurs through
the osteocytic production of key bone degrading enzymes, including matrix metalloproteinases
(MMP’s) [23], cathepsin K [22] and carbonic anhydrase II [24], which degrade both the organic and
inorganic components of the bone mineral matrix, increasing the lacunar area and releasing calcium
into the circulation [25]. This process may also be regulated by calcitonin, traditionally thought to
be a regulator of osteoclastic bone resorption [26]. We have previously identified that osteocytes
also respond to wear particles of multiple orthopaedic material types, including both conventional
and cross-linked UHMWPE, Ti6Al4V and CoCrMo, by the upregulation of both pro-osteoclastic and
osteocytic osteolysis pathways [19,27].

In a previous study, we showed histological evidence of osteocytic osteolysis with increased
osteocyte lacunar area in a case series of patients undergoing revision THR surgery for aseptic
loosening with confirmed radiographic evidence of periprosthetic osteolysis [19]. In the current study,
we examine osteocyte histology in a larger cohort of patients, undergoing revision for aseptic loosening,
with confirmed radiographic evidence of periprosthetic osteolysis, and compare it to a gender and
age-matched cohort of patients undergoing primary THR. We confirm here that osteocytic osteolysis is
a feature of periprosthetic osteolysis, however this process appears to occur predominantly in females,
suggesting for the first time that cellular mechanisms of pathological bone loss may be gender specific.

2. Experimental Section

2.1. Ethical Statement

Patients were recruited into this study with informed written consent and with the ethics approval
by the Human Research Ethics Committees of the Royal Adelaide Hospital and the University of
Adelaide (RAH Approval No. 130114 and 140216a).

2.2. Patient Demographics

Twenty patients undergoing primary THR for osteoarthritis and twenty-one patients undergoing
revision THR for aseptic loosening associated with radiographic evidence of periprosthetic osteolysis
were recruited at the Royal Adelaide Hospital. All revision patients had a pre-operative CT scan for
planning purposes, patient demographics are shown in Table 1. Due to the advanced age of a revision
THR patient, the primary THR patients were included within the age range, eliminating any significant
difference between the cohort ages. The patient number also included comparable numbers of males
and females. Revision THR patient implant details, shown in Table 2, show a varying selection of
implant manufacturer and metal alloy type. All prostheses contained a conventional UHMWPE liner,
however prosthetic details for two patients are unknown.



J. Clin. Med. 2020, 9, 53 3 of 15

Table 1. Patient demographics for primary and revision cohorts. THR: Total hip replacement.

Age Range Mean Age Number Per Group

Primary THR 69–89 74 20 (M 10, F 10)

Revision THR 69–91 80 21 (M 10, F 11)

Male Primary THR 70–83 75 10

Male Revision THR 69–87 79 10

Female Primary THR 69–89 75 10

Female Revision THR 69–91 80 11

Table 2. Revision THR patient implant details. UHMWPE: Ultra-high molecular weight polyethylene;
XLPE: Cross-linked polyethylene; CPT: collarless, polished, double taper; PCA: Porous Coated Anatomic;
HGP: Harris-Galante Porous; CLS: Cemented Locking System.

Patient Sex Age Acetabular
Cup Name

Cup
Material Liner Stem Name Stem Material Particle

Type

1 F 69 Trilogy Titanium UHMWPE CPT© Co-Cr Alloy Metal

2 F 74 PCA Vitallium UHMWPE PCA Vitallium Not detected

3 F 76 HGP Titanium UHMWPE Zimmer
Anatomic II Titanium Both

4 F 79 Exeter Steel UHMWPE Exeter Steel Metal

5 F 82 HGP Titanium UHMWPE HGP Titanium Both

6 F 82 Unknown Unknown UHMWPE Unknown Unknown Both

7 F 83 Exeter All-Poly Cup UHMWPE Exeter polished
monoblock Stainless Steel PE

8 F 84 None None None Exeter
Hemiarthroplasty Stainless Steel Metal

9 F 86 Trilogy Titanium XLPE MULLER Stainless steel
and Titanium Both

10 F 89 MULLER All-Poly Cup UHMWPE MULLER Co-Cr-Mo-Ni Both

11 F 91 Unknown Unknown Unknown Unknown Unknown Not detected

12 M 69 Howmedica
All-Poly Cup All-Poly Cup UHMWPE Howmedica

Osteonics ODC Co-Cr Alloy Metal

13 M 71 Charnley All-Poly Cup UHMWPE Unknown Unknown Not detected

14 M 73 PCA Vitallium UHMWPE PCA Vitallium Both

15 M 76 Biomet Titanium UHMWPE Unknown Unknown PE

16 M 77 PCA Vitallium UHMWPE PCA Vitallium Both

17 M 81 Charnley All-Poly Cup UHMWPE Charnley Stainless Steel PE

18 M 83 Trilogy Unknown UHMWPE CPT Co-Cr Alloy Not detected

19 M 84 CLS Titanium UHMWPE CLS Titanium PE

20 M 87 Meridian Vitallium UHMWPE Vitaloc Vitallium PE

21 M 87 Unknown Unknown Unknown Unknown Unknown PE

2.3. Osteocyte and Osteoclast Histomorphometric Analysis of Human Bone Biopsies

Intraoperative trephine or curette biopsies ranging in size from 4 to 20 mm in length and 3 to 10 mm
in breadth were taken from the periacetabular bone prior to reaming for insertion of the acetabular
component, in the patients undergoing primary THR, and after removal of the failed implant and the
granulomatous tissue, in the patients undergoing revision THR. The biopsies were fixed in 10% neutral
buffered formalin for 48 hours and then decalcified (10% EDTA/1% paraformaldehyde) for 2 weeks.
Sections (5 µm) were cut and stained with toluidine blue and TRAP, as described previously [19],
and imaged using NanoZoomer (Hamamatsu Photonics, Shizuoka, Japan) at 40x magnification.
Osteocyte lacunae perimeters and bone perimeters were manually traced for each section, using
a Bamboo Pen and Touch (Wacom, Kazo, Saitama, Japan) [19], and quantified using the Freehand
region measurement tool in the NanoZoomer software (Hamamatsu Photonics, Shizuoka, Japan) to
generate the histomorphometric measurements of total bone area (B.Ar), mean osteocyte lacunar
area (Ot.Lac.Ar), percent osteocyte lacunar number/bone area (N.Ot./B.Ar (%)), and percent osteocyte
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lacunar area/bone area (Ot.Lac.Ar/B.Ar (%)) and were quantified using Image J software (U. S. National
Institutes of Health, Bethesda, MD, USA). For osteoclast measurements, the osteoclast number/bone
area (N.OC./B.Ar (%)) and osteoclast area/bone area (OC.Ar/B.Ar (%)) area were similarly measured by
manual tracing of TRAP-stained sections [19]. Measurements were performed on at least two sections
per patient/stain, and the entire section was examined in all cases.

2.4. Statistical Analysis

Statistical differences between the osteocyte parameters (normally distributed) were assessed
using Student’s t-tests (GraphPad software v7.02). Statistical differences between N.OC./B.Ar (%) and
OC.Ar/B.Ar (%) were assessed using the Mann–Whitney U non-parametric test. Significant differences
were accepted for p values < 0.05.

3. Results

3.1. Radiographic Evidence of Osteolysis in Patients Undergoing Revision THR

Pre-operative CT scans obtained for all 21 revision THR patients showed evidence of osteolysis.
Representative CT images showing examples of osteolytic zones are shown in Figure 1.

Figure 1. Representative radiographs of four revision patients with osteolytic lesions (white arrows).
Corresponding patient and implant details are listed in Table 2 and are as follows: (A) Patient 1,
(B) Patient 2, (C) Patient 8 and (D) Patient 14.

3.2. Analysis of Human Bone Biopsies from Patients Undergoing Primary THR and Revision THR Surgery

Representative images of bone morphometry of primary THR and revision THR biopsies are
shown in Figure 2A–C,D–F, respectively. Histological analysis of the bone biopsies showed metal
wear particles evident within granulomatous tissue adjacent to the bone (Figure 2E). Particles of either
metal or UHMWPE were observed by microscopy in 17 of the 21 biopsies taken from the patients in
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the revision cohort; in seven patients’ samples both particle types were detected (five female, two
male). Metal particles were detected in eight of the female biopsies and in three male biopsies (n = 11),
evidence of UHMWPE particles were detected in six female biopsies and in seven male biopsies
(n = 13). Metal particles were additionally identified in Haversian canals (Figure 2E). Evidence of
osteocyte lacunae coalescence was also observed (Figure 2F).

Figure 2. Bone biopsies were obtained from Primary THR (A–C) and Revision THR surgeries (D–F)
and stained with toluidine blue. Images depict sections from three individual patients per group.
Revision THR biopsies shown enlarged osteocyte lacunae with the presence of PE particles (2D), as well
as metal particles and granuloma in 2E (red arrows). Evidence of osteocyte coalescence is discernible in
2F (black arrows).

3.3. Osteocyte Characteristics of Primary and Revision THR Ccohorts

Osteocyte lacunar areas (Ot.Lac.Ar) were measured for each patient. These are shown for
males (Figure 3A–B) and females (Figure 3C–D), in the primary or revision cohorts, respectively.
Quantification of the percentage of osteocytes per total bone area revealed no significant difference
between the primary and revision THR cohorts, irrespective of gender (Figure 4A). However, there
was a significant increase in the mean Ot.Lac.Ar in the revision compared to the primary THR cohort
(Figure 4B). Due to the 3D ellipsoid shape of an osteocyte lacunae, the measurement of the 20% largest
osteocyte lacunar area (Top 20% Ot.Lac.Ar) was considered, which corresponds to the likely mid-cross
sections of lacunae in a section [28]. This measure was also significantly increased in the revision
biopsies compared to the primary THR biopsies (Figure 4C). The percentage osteocyte lacunar area per
total bone area (Ot.Lac.Ar/B.Ar (%)) was also significantly increased in the biopsies from revision THR
(Figure 4D). Examination of size distribution revealed a greater number of large lacunae (60–300 µm2)
in biopsies from the revision THR group compared to the primary THR group (Figure 4E).
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Figure 3. Column scatter plots of quantified osteocyte lacunar areas (Ot.Lac.Ar (µm2)) for each patient
biopsy with corresponding patient age: (A) male Primary THR patient biopsies; (B) male Revision THR
patient biopsies; (C) female Primary THR patient biopsies and (D) female Revision THR biopsies. THR:
total hip replacement.
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Figure 4. Osteocyte characteristics for human Primary THR compared to Revision THR biopsies:
(A) osteocyte number per bone area (N.Ot./B.Ar (%)); (B) average osteocyte lacunar area (Ot.Lac.Ar
(µm2)); (C) the top 20% lacunar areas (Top 20% Ot.Lac.Ar (µm2)); (D) the percentage lacunar area
per total bone area (Ot.Lac.Ar/B.Ar (%)) and (E) histogram of the osteocyte lacunar size distribution
(Ot.Lac.Ar (µm2)), ranging from 60 to 300 µm2. Data shown are means ± standard errors of the mean
(SEM). Significant differences are denoted by **p < 0.01, ***p < 0.001.
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3.4. Osteocyte Characteristics of Female THR and Male THR Bone Biopsies

A further analysis was conducted on the basis of patient gender. There was no difference between
groups in terms of number of osteocytes per bone area (Figure 5A). The analysis of the average lacunar
area revealed significantly larger lacunae in the female revision cohort, compared to female primary
THR cohort (Figure 5B). Similarly, the top 20% Ot.Lac.Ar measure was significantly larger in the
female revision THR samples compared to the female primary THR samples (Figure 5C). In contrast,
there were no differences in the corresponding Ot.Lac.Ar measurements between male revision and
primary THR cohorts (Figure 5B–C). However, the percentage lacunar area per total bone area was not
significantly different between cohorts when analysed on the basis of gender (Figure 5D).

Figure 5. Gender-specific analysis of osteocyte lacunar properties: (A) osteocyte number per bone
area (N.Ot./B.Ar (%)) for Male Primary THR, Male Revision THR, Female Primary THR and Female
Revision THR biopsies; (B) average lacunar area (Ot.Lac.Ar (µm2)); (C) the top 20% lacunar area (top
20% Ot.Lac.Ar (µm2)) for each cohort; (D) The percentage lacunar area per total bone area in all cohorts
(Ot.Lac.Ar/B.Ar (%)). Data shown are means ± standard error of the mean (SEM). Significant differences
are denoted by *p < 0.05.
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3.5. Osteoclast Analysis of Primary and Revision THR Bone Biopsies

Bone sections were stained for TRAP-positive osteoclasts; representative images for the primary
and revision cohorts are shown in Figure 6A–B. The presence of osteoclasts in these samples was a
relatively rare event, demonstrated by the very low values for %N.OC./B.Ar., in general less than 0.005%,
being approximately 6000-fold lower than the corresponding percentage for osteocytes (N.Ot./B.Ar.(%)),
which, as shown in Figure 5A, was between 25–30%. There was no difference between the overall
primary and revision THR cohorts in terms of N.OC./B.Ar (%) (Figure 6C). Likewise, there was no
gender-specific difference in this measure (Figure 6E). There was however, a significantly greater
variance in N.OC./B.Ar (%) between male and female revision samples (F-test, p < 0.001), suggesting
dysregulated osteoclastogenesis in the male revision samples. The percentage osteoclast area per total
bone area (OC.Ar/B.Ar (%)) was also quantified, and no significant difference was observed between
the primary and revision cohorts (Figure 6D), or between the gender cohorts (Figure 6F).
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Figure 6. Bone biopsies were obtained from Primary THR (A) and Revision THR surgeries (B) and
stained with TRAP. Images depict sections from two individual patients per group, TRAP positive
osteoclasts were observed (black arrow) in both Primary THR and Revision THR cohorts. Osteoclast
characteristics for human Primary THR compared to Revision THR biopsies: (C) the osteoclast number
per bone area (N.OC./B.Ar (%)) for primary THR compared to revision THR cohort; (D) osteoclast
area per bone area (OC.Ar/B.Ar (%)) for primary THR compared to revision THR cohort; (E) osteoclast
number per bone area (N.OC./B.Ar (%)) for Male Primary THR, Male Revision THR, Female Primary
THR and Female Revision THR cohorts; (F) osteoclast area per bone area (OC.Ar/B.Ar (%)) for Male
Primary THR, Male Revision THR, Female Primary THR and Female Revision THR cohorts. Data
shown are means ± standard error of the mean (SEM).
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4. Discussion

There is an emerging role for osteocytes in the development of periprosthetic osteolysis [5,19].
In this study, we analysed bone biopsies taken from sites adjacent to osteolysis in patients undergoing
revision THR for aseptic loosening. Microscopic examination of bone biopsies confirmed the presence
of particulate material in 17/21 revision THR patients, linking the production of wear particles and
the development of osteolysis in these patients [10,29,30]. Histological analysis revealed significantly
increased mean osteocyte lacunar size in the revision THR bone when measurements from both male
and female biopsies were combined, compared to those in cases of primary THR, consistent with our
previous report [19]. Additionally, there was an overall substantial increase in the % lacunar area per
total bone area in the revision THR biopsies compared to primary samples.

A significant finding of this study is that evidence for increased osteocytic osteolysis in revision
THR was restricted to the female samples, and differences in osteocyte lacunar size were not observed
in the corresponding male samples. This suggests that the female osteocyte response to either wear
particles or another catabolic influence in this disease, may be preferentially directed towards osteocytic
osteolysis. In comparison, the percentage osteocyte lacunar area as a function of the total bone
area was not altered in female bone, and the observed increase in this measure in revision samples
appeared restricted to males, although this was not significant in the gender-specific analysis. Analysis
of osteoclast parameters of both primary and revision cohorts showed no significant difference in
osteoclast number per total bone area or percentage osteoclast area per bone area. Analysis of the
gender cohorts also showed no significant differences; however, a qualitatively greater number of
osteoclasts were observed in the male revision THR samples compared to female revision THR.
Males have a reported increased risk of developing osteolysis [31], possibly due to their increased
physical activity [32], which could contribute to an increase in the production of osteolysis-associated
wear particles.

The reason(s) for the difference in osteocyte responses between the genders is not clear. However,
as the women in the cohorts examined were all postmenopausal, this suggests that hormonal changes
associated with post-menopause may play a role. A major physiological role of osteocytic osteolysis
is the release of calcium from the perilacunar matrix during lactation, as previously described in
mice [22,23,26,33]. It is possible that this process is linked to the action of the pituitary hormone
prolactin, which together with the decrease in oestrogen levels, is known to be essential for the onset
of lactation [34]. Additionally, it has been shown that prolactin receptors have been identified in
osteoblasts, and activation of these receptors inhibits osteoblast activity and has also been shown
to induce the expression of RANKL relative to its inhibitor OPG [35]. Therefore, it seems plausible
that changes in prolactin levels may stimulate osteocytic responses that have not been previously
described. It has also been shown that increased levels of other pituitary hormones play important roles
in regulating bone mass, including follicle stimulating hormone, which has been shown to regulate
osteoclastic bone resorption in mice and, importantly, correlates with increased markers of bone
resorption in perimenopausal women [36]. Thus, the hormonal changes that occur during menopause
may predispose female osteocytes to induce perilacunar remodelling in general, contributing to the
loss of bone [37]. In the specific case of periprosthetic osteolysis, these hormones may also interact
with the effects of particles to produce a catabolic phenotype in osteocytes, however a mechanism
for this is currently unknown. Furthermore, we observed evidence of lacunae enlargement to the
extent of coalescence, implying that in females, osteocytic osteolysis can potentially contribute to the
macroscopic lesions’ characteristic of this pathology.

Multiple particle types have been shown to induce the expression of osteocytic osteolysis
mediators [19,27]. Therefore, these findings further support a key role for osteocytic bone resorption
in wear particle disease. The revised patient prostheses within this cohort consisted of a variety of
implant types with varying alloys, including Ti6Al4V and vitallium (CoCrMo). Additionally, all but
one patient’s prosthesis in this study included a conventional UHMWPE liner. Investigation of bone
biopsies obtained from this cohort showed histological evidence of metal wear particle invasion



J. Clin. Med. 2020, 9, 53 12 of 15

into the bone in 11/21 cases, identified primarily in the patients with a cobalt chrome alloy implant.
Furthermore, histological analysis under polarised light also showed the presence of birefringent
UHMWPE particles in 13/21 biopsies, as previously reported [19]. Interestingly, 7/21 patients’ biopsies
showed evidence of both metal and UHMWPE particles. Metal particles were visible in the Haversian
canals, as well as in the granuloma surrounding the bone. The close proximity of wear particles to bone
would enable direct contact with osteocytes. We have previously reported that human osteocyte-like
cells were capable of physically attaching and engulfing UHMWPE particles [18]. More recently, it was
demonstrated that human osteocytes internalise viable Staphylococcus aureus bacteria [38], which at
500–700 nm are similar in size to bioactive wear particles. We cannot rule out that all revision patient
biopsies in this study contained sub-micron sized wear particles that we could not detect.

There are several limitations to this study. The patients recruited were from two separate cohorts,
primary THR and revision THR for loosening, and the changes in osteocyte measures may have
been pre-existing. Alternatively, the surgical implantation of a prosthesis into the joint space in the
revision THR group could have potentially altered the intrinsic characteristics of the bone. During the
procedure, surgical reaming removes the cortical shell and exposes the underlying trabecular bone.
This alone may lead to inflammatory effects that could affect osteocyte lacunar area and porosity,
although we are not aware of published data regarding this. However, we found a clear difference
between males and females suggesting that these possibilities did not contribute to the effects seen.
This study is also cross-sectional; a longitudinal study would be preferable, however the unpredictable
and long-term nature of this pathology and the increased use of wear-resistant materials, such as
XLPE, would make this difficult. Furthermore, we have not identified a basis for the gender-specific
effect. While none of the patients in this study were reported as having clinical signs of metallosis or
metal hypersensitivity, factors such as BMI, drug status, levels of physical activity and underlying
comorbidities were not taken into account. Conditions including diabetes mellitus [39], a history of
smoking [40] and obesity [41] have all been shown to affect bone health, and thus could potentially
contribute to the changes observed. A larger cohort of patients with sufficient statistical power to
allow multivariate analysis of all potentially contributing factors would help elucidate the influence
of gender on the possible mechanisms of bone loss. Another potential confounder of this and future
studies is the wide variety of hip implants and materials used, as evident in Table 2, and therefore the
multiple possible types and combinations of wear particles released. A larger cohort of patients would
likely provide further insight into which particles and combinations of particles are most clinically
relevant in this context

5. Conclusions

In conclusion, this study provides evidence for different modes of bone loss between male
and female patients with periprosthetic osteolysis associated with aseptic loosening. Wear
particle-associated bone loss consists of both osteoclastic and osteocytic bone resorption, with osteocytes
playing key roles in both pathways. However, our current findings suggest that the latter process
may be specific to females. It is conceivable that female osteocytes are pre-programmed to undergo
osteocytic osteolysis under conditions of rapid or pathologic bone loss, as this mechanism is important
for the release of calcium during lactation. Alternatively, the altered hormonal status of women through
post-menopause may drive this process. Further investigation is required to elucidate the mechanisms
of gender specificity of bone loss and the conditions under which this occurs. In summary, osteocytes
may contribute to the development of osteolysis through stimulation of resorptive pathways in response
to wear particles, contributing to the aseptic loosening of implants, in a gender-specific manner.
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