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Abstract
Preoperative neoadjuvant chemoradiotherapy, combined with total mesorectal excision, has become the standard treatment for
advanced localized rectal cancer (RC). However, the biological complexity and heterogeneity of tumors may contribute to cancer
recurrence and metastasis in patients with radiotherapy-resistant RC. The identification of factors leading to radioresistance and
markers of radiosensitivity is critical to identify responsive patients and improve radiotherapy outcomes. MicroRNAs (miRNAs)
are small, endogenous, and noncoding RNAs that affect various cellular and molecular targets. miRNAs have been shown to play
important roles in multiple biological processes associated with RC. In this review, we summarized the signaling pathways of
miRNAs, including apoptosis, autophagy, the cell cycle, DNA damage repair, proliferation, and metastasis during radiotherapy in
patients with RC. Also, we evaluated the potential role of miRNAs as radiotherapeutic biomarkers for RC.
Keywords: MicroRNAs; Rectal cancer; Radiotherapy; Mechanisms
Introduction

Colorectal cancer (CRC) is the third most common cancer
and the second most common cause of cancer-related
deaths globally, with>1.9 million new cases (10.0%) and
935,000 deaths (9.4%) reported in 2020.[1] According to
the NCCN Guidelines (2020), the rectum was defined as
below the virtual line from the promontory of the sacrum
to the upper margin of the symphysis, as determined by
magnetic resonance imaging, rectal cancer (RC) accounts
for approximately 39% of CRC cases.[1,2] Although
preoperative neoadjuvant chemoradiotherapy combined
with total mesorectal excision has become the standard
treatment for advanced localized RC,[2] previous studies
have indicated that only approximately 15% to 20% of
patients with RC achieved a complete pathological
regression, whereas the remainders have incomplete
response or no response.[3,4] Evidence from the previous
studies suggests that radiotherapy resistance may be
regulated through the mechanisms of apoptosis, autoph-
agy, the cell cycle, andDNAdamage repair.[5-8] Therefore,
it is of great importance to explore the mechanisms of
radiotherapy resistance in RC, to understand the path-
ways of tumor cell survival inhibition in patients
undergoing radiotherapy, and to develop new therapeutic
strategies targeting these mechanisms.
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MicroRNAs (miRNAs), a family of small non-coding
RNAs, are approximately 22 nucleotides in length and
they exert their effects by binding to complementary
sequences on the 3’-untranslated regions (3’-UTRs) or the
open reading frames of target genes. miRNAs regulate
gene expression at the post-transcriptional level, leading
to the degradation of target mRNAs or the inhibition of
mRNA translation.[9] In some cases, miRNAs interact
with long noncoding RNAs to form a network that
regulates tumorigenesis.[10-12] It is believed that up to 30%
of human genes are regulated by miRNAs. They play key
roles in the regulation of biological processes, such as
apoptosis, cell differentiation, development, and cell
proliferation.[13,14] miRNAs are secreted into bodily fluids
with minimal degradation; they are highly stable during
storage; and they are easy to quantify using quantitative
polymerase chain reaction, microarray, bead array, or
sequencing approaches.[15,16]

Findings from many previous studies have indicated that
miRNAs may be markers of the response to cancer
treatment, which may facilitate the development of new
strategies to overcome therapeutic resistance. Recent
studies have shown that miRNAs may be involved in
the regulation of radiotherapy sensitivity in RC. Zhang
et al[17] found that miR-124 increased the radiosensitivity
of CRC cells by blocking the expression of paired related
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homeobox 1. The expression level of miR-15b has been
shown to predict the degree of postoperative tumor
degeneration and the sensitivity of CRC cells to chemo-
therapy/radiotherapy. Double cortin-like kinase 1
(DCLK1) is a direct target gene of miR-15b, and its
expression level is negatively correlated with the prognosis
of patients with RC.[18] miR-149-3p sensitizes CRC cells
to radiation by inhibiting WAP four-disulfide core protein
2 (WFDC2).[19] Previous studies have revealed various
possible mechanisms by which miRNAs are involved in
the response to radiation. Here, we summarize the findings
related to miRNAs involved in RC radiotherapy.We focus
on miRNAs involved in regulating apoptosis, autophagy,
DNA damage repair, the cell cycle, cell proliferation, and
metastasis in response to ionizing radiation (IR). Further-
more, we provide an overview of the roles of miRNAs and
their target genes in the resistance to RC radiotherapy, and
we discuss the value of using miRNAs as biomarkers of
radiosensitivity and the potential of miRNAs as targets of
improved treatment strategies.
miRNAs Affect the Response to RC Radiotherapy by
Regulating Apoptosis

Apoptosis refers to programmed cell death that is initiated
after the damage toDNAor cellular organelles, such as the
mitochondria and endoplasmic reticulum.[20] Apoptosis
usually occurs after the exposure of cells to stress
conditions, such as oxidative stress, IR, chemotherapy
drugs, hypoxia, or high temperature.[21] It is modulated
via different signaling pathways that affect extrinsic or
intrinsic mediators of apoptosis. Previous studies have
shown that apoptosis is an indicator of cell radiosensitivity
and an important prognostic factor for radiotherapy
outcomes.[22,23] Moreover, miRNAs have been found to
regulate apoptosis after IR. Here, we summarize the
miRNAs involved in the regulation of apoptosis after IR
[Table 1 and Figure 1].

The phosphatidylinositol 3-kinase/AKT (PI3K/AKT) path
way is known to regulate cell survival and increase
radiation resistance.[24,25] Previous studies have shown
that phosphatase and tensin homolog deleted on chromo-
some 10 (PTEN), a natural inhibitor of PI3K, negatively
regulates the PI3K/AKT pathway, resulting in apoptosis.
There is evidence suggesting that miR-29a, miR-106b, and
miR-222 decrease the radiosensitivity of RC by negatively
regulating PTEN expression, to activate the PI3K/AKT
signaling pathway.[24,26,27] It has also been shown that an
miR-221 antisense oligonucleotide enhances IR sensitivity
by mediating the upregulation of PTEN.[28] Furthermore,
forkhead box O3 (FOXO3a), a member of the FOXO
family, is a downstream effector of the PI3K/AKT
pathway.[29] Khoshinani et al[27] showed that FOXO3a
is involved in the regulation of the radiation resistance of
RC as a direct target gene of miR-155. Moreover, Chen et
al[30] demonstrated that exosomal miR-590-3p derived
from cancer-associated fibroblasts (CAFs) increases the
radiation resistance of RC by positively regulating the
chloride channel accessory 4-dependent PI3K/AKT sig-
naling pathway in vivo and in vitro.Another study showed
that, in vitro, the lncRNA, TTN antisense RNA 1,
promotes the radiotherapy resistance of CRC cells by
2018
negatively regulating miR-134-5p and increasing the
expression levels of p21-activated kinase 3,[31] which
may be associated with the P21 and AKT/glycogen
synthase kinase-3b/b-catenin pathways.

Several miRNAs also affect apoptosis through other
signaling pathways and participate in the regulation of
the radiotherapy sensitivity of RC. Some members of the
Bcl-2 protein family, such as Bad, Bid, and Bax, promote
apoptosis, whereas others, such as Bcl-2, Bcl-x, and Bcl-w,
prevent apoptosis.[32] Yang et al[7] reported that miR-100
promotes the X-ray-induced apoptosis of CCL-244 cells
and regulates the expression of apoptosis-related proteins,
including increasing the expression levels of the pro-
apoptotic proteins, P53 and caspase-3, and decreasing
the levels of the anti-apoptotic proteins, Bcl-2 and NF-kB,
further increasing the radiosensitivity of CCL-244 cells.
The forcedexpressionofmiR-195hasbeen shownto induce
apoptosis, upregulate Bax and g-H2AX levels, inhibit the
expression of Bcl-2, and increase the radiosensitivity of
CRC cells by downregulating coactivator associated
arginine methyltransferase 1 in vivo and in vitro.[33] Data
from the study reported by Shang et al[34] implied that
overexpressionofmiR-423-5ppromotes radiation-induced
apoptosis through downregulation of Bcl-XL, ultimately
increasing the sensitivity of HCT116 and RKO cells to IR.
The expression level of miR-630 in CRC cells is positively
correlated with radiosensitivity and the induction of
apoptosis.[35] BCL2L2 and TP53 regulating kinase
(TP53RK) have been identified as target genes of miR-
630. BCL2L2, also known as Bcl-w, belongs to the Bcl-2
protein family. The kinase, TP53RK, inhibits apoptosis
after mitotic stress. Zhang et al[35] reported that cAMP-
response element-binding protein/miR-630/BCL2L2 and
TP53RK constitute a novel signaling cascade that modu-
lates the radiosensitivity of CRC cell lines by inducing
apoptosis.

Other studies have also reported findings related to the
mechanism of apoptosis. CAF-derived exosomes upreg-
ulate the level of miR-93-5p and downregulate the level of
forkhead box A1, the target gene of miR-93-5p, further
inhibiting apoptosis and promoting the resistance of RC
to radiation in vivo and in vitro.[36] Ma et al[37] found that
the overexpression of miR-622 induces radiation resis-
tance in vitro. During the radiation response, the
retinoblastoma (Rb)-E2F1-P/CAF complex transcription-
ally activates pro-apoptotic genes. Rb overexpression has
also been shown to reverse radiation resistance induced by
miR-622 in vitro.[37] The results reported by Rana et al[38]

suggest that the activation of acid sphingolipids (sphin-
gomyelin phosphodiesterase 1, SMPD1) and the produc-
tion of ceramides are key processes in the regulation of
apoptosis in response to cellular stress, including radia-
tion. Low expression levels of miR-15a upregulate
SMPD1 levels, inducing apoptosis and increasing radio-
sensitivity. Low expression levels of miR-95 have been
shown to increase the radiosensitivity of LoVo cells and
promote apoptosis, which may be related to the inhibition
of forkhead box D1 protein activity.[39] It has been noted
that miR-122-5p significantly inhibits cell survival and
increases radiotherapy sensitivity and apoptosis by
silencing the apoptosis regulator, cell division cycle, and
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Table 1: Mechanisms and targets of miRNAs involvement in radiotherapy of RC.

MiRNA
Up/
Down Mechanism Target

Up/
Down

Sensitivity/
Resistance Sample type Reference

miR-15a Down Apoptosis SMPD1 Up Sensitivity Cell lines [38]

miR-29a Up Apoptosis PTEN Down Resistance Cell lines [26]

miR-95 Down Apoptosis FOXD1 Down Sensitivity Cell lines, CDX [39]

miR-134-5p Down Apoptosis PAK3 Up Resistance Cell lines [31]

miR-145 Down Apoptosis — — Resistance Tissue, cell lines,
PDX, CDX

[75,77]

miR-155 Up Apoptosis FOXO3a Up Resistance Cell lines [27]

miR-181a-p Up Apoptosis COS Down Sensitivity Cell lines [11]

miR-205-3p Up Apoptosis — — Sensitivity Cell lines [78]

miR-211-5p Up Apoptosis ErbB4 Down Sensitivity Tissue, cell lines,
CDX

[43]

miR-221 Down Apoptosis PTEN Up Sensitivity Cell lines [28]

miR-222 Up Apoptosis PTEN Down Resistance Cell lines [27]

miR-338-3p Down Apoptosis — — Resistance Cell lines [79]

miR-369-3p Down Apoptosis DYRK1A Up Sensitivity Cell lines [12]

miR-423-5P Up Apoptosis bcl-xL Down Sensitivity Tissue, cell lines [34]

miR-630 Up Apoptosis BCL2L2,
TP53RK

Up Sensitivity Cell lines [35]

miR-888 Down Apoptosis — — Sensitivity Tissue [80]

miR-106b Up Apoptosis, cell cycle PTEN, P21 Down Resistance Tissue, cell lines,
CDX

[24]

miR-100 Up Apoptosis, DNA
damage

— — Sensitivity Tissue, cell lines [7]

miR-122-5p Up Apoptosis, DNA
damage

CCAR1 Down Sensitivity Plasma, cell lines,
C57BL/6 mouse

[40]

miR-124 Down Apoptosis, DNA
damage

PRRX1 Down Sensitivity Tissue, cell lines,
CDX

[17]

miR-185 Up Apoptosis, DNA
damage

IGF1R, IGF2 Down Sensitivity Cell lines [41]

miR-195 Down Apoptosis, DNA
damage

CARM1 Down Sensitivity Cell lines, CDX [33]

miR-590-3p Up Apoptosis, DNA
damage

CLCA4 Down Resistance Tissue, cell lines,
CDX

[30]

miR-622 Up Apoptosis, DNA
damage

Rb Down Resistance Tissue, cell lines [37]

miR-1 Up Apoptosis, migration,
invasion

— — Sensitivity Tissue, cell lines [73]

miR-101-3p Up Apoptosis, migration,
invasion

— — Sensitivity Cell lines [10]

miR-93-5p Up Apoptosis, proliferation FOXA1 Down Resistance Tissue, cell lines,
CDX

[36]

miR-770-5p Up Apoptosis, proliferation PBK Down Sensitivity Cell lines, CDX [44]

miR-296-5p Up Apoptosis, proliferation,
cell cycle

IGF1R Down Sensitivity Tissue, cell lines,
CDX

[42]

miR-18a Up Autophagy ATM Up Sensitivity Cell lines [48]

miR-93 Up Autophagy ATG12 Down Sensitivity Tissue, cell lines,
CDX, plasma

[52]

miR-129-5p Up Autophagy beclin-1 Down Sensitivity Cell lines, CDX [50]

miR-183-5p Down Autophagy ATG5 Up Sensitivity Tissue, cell lines,
CDX

[51]

miR-210 Down Autophagy Bcl-2 Down Sensitivity Cell lines [55]

miR-31 Up Autophagy, apoptosis — — Sensitivity Tissue, cell lines [49]

miR-214 Up Autophagy, apoptosis ATG12 Down Sensitivity Tissue, cell lines,
CDX, plasma

[5]

let-7e Up Cell cycle, apoptosis IGF-1R Down Sensitivity Cell lines [58]

miR-31 Up DNA damage STK40 Down Sensitivity Tissue, cell lines [66]

miR-31-5p Down DNA damage hMLH1 Up Resistance Cell lines, (Cre; Apc)
mouse

[68]

miR-130a Up DNA damage, invasion SOX4 Down Sensitivity Cell lines, CDX [64]

miR-15b Up Migration, invasion,
proliferation

DCLK1 Down Sensitivity Tissue, cell lines,
CDX

[18]

miR-32-5p Down Migration, invasion TOB1 Down Sensitivity Tissue, cell lines [74]

miR-140-5p Up Proliferation — — Sensitivity Plasma, cell lines [70]

miR-451a-
5p

Up Proliferation CAB39,
EMSY

Down Sensitivity Tissue, cell lines [69]

miR-506-3p Up Proliferation — — Sensitivity Plasma, cell lines [70]

miR-149-3p Up — WFDC2 Down Sensitivity Tissue, cell lines,
CDX

[19]

CDX: Cell line derived xenograft; DNA: deoxyribonucleic acid; PDX: Patient-derived xenograft; miRNAs: MicroRNAs; RC: Rectal cancer; –: Not
applicable.
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Figure 1: miRNAs regulate apoptosis through the corresponding target genes and affect
the radiation sensitivity of RC. miRNAs: MicroRNAs; RC: Rectal cancer.
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apoptosis regulator 1.[40] Antisense noncoding RNA in the
INK4 locus negatively regulates radiosensitivity induced
by chitooligosaccharides in CRC cells by sponging miR-
181a-5p.[11] miR-185 and miR-296-5p trigger apoptosis
through the downstream IGF1R signaling pathway and
enhance the radiosensitivity of CRC cells.[41,42] Li et al[43]

found that eosinophil granule ontogeny transcript
(EGOT) expression levels are upregulated in RC tissues
and cells, and that its level of expression is related to the
pathological stage. The downregulation of EGOT may
inhibit the growth of Colo320 cells by regulating the miR-
211-5p/receptor tyrosine-protein kinase erbB-4 axis,
inducing the apoptosis of cancer cells, and enhancing
the effects of radiotherapy for RC in vivo and in vitro.[43]

Apoptosis induced by miR-214 significantly increases the
radiosensitivity of CRC cells.[5] When miR-369-3p
expression is downregulated, the downstream target gene,
dual-specificity tyrosine-phosphorylation-regulation ki-
nase 1A, is upregulated, promoting apoptosis and
increasing the radiosensitivity of CRC cells.[12] When
miR-770-5p is overexpressed, the apoptosis of MCF7 and
A549 cells increases, leading to a decrease in the relative
cell number. Moreover, miR-770-5p has been shown to
negatively regulate PDZ-bound kinase, increasing apo-
ptosis and the sensitivity of tumors to radiation.[44]
2020
Relationship Between miRNAs, Autophagy, and
Radiotherapy in RC

Autophagy is a highly conserved critical regulatory
process in which cells degrade aging proteins and damaged
organelles through lysosomes, resulting in the circulation
of cellular material and the maintenance of homeosta-
sis.[45] The formation of autophagosomes is regulated by
autophagy-related genes (ATGs), such as ATG12, ATG5,
and microtubule-associated protein light chain 3 (LC3).
ATG12 and ATG5 a conjugated complex that plays an
important role in autophagosome expansion.[46] Various
stimuli, such as starvation, hypoxia, DNA damage, and
IR, may activate autophagy. Previous studies have demon
strated that autophagy is tightly linked to various cellular
functions and that dysfunctional autophagy leads to
various diseases, including cancer.[47] In recent years,
there have been many investigations of the mechanism
whereby autophagy affects the radiosensitivity of cancer
cells [Table 1 and Figure 2].

Heterotopic overexpression of miR-18a in HCT116 cells
enhances IR-induced autophagy.[48] In addition, evidence
suggests that miR-18a overexpression results in upregu-
lation of the expression of the autophagy activator, ataxia
telangiectasia mutated, and the inhibition of the mamma-
lian target of rapamycin compound 1 activity. Yang et
al[49] found that the treatment of CAFs with an miR-31
mimic inhibited the expression of ATGs Beclin-1, ATG,
DRAM, and LC3, thus increasing the radiosensitivity of
CRC cells co-cultured with CAFs. Xu et al[50] indicated
that the overexpression of miR-129-5p inhibits Beclin-1, a
key autophagy-related gene, and inhibits autophagy.
However, the overexpression of Beclin-1 eliminates the
effect ofmiR-129-5p.These results suggest thatmiR-129-5p
significantly enhances the radiosensitivity of CRC cells by
inhibiting Beclin-1-mediated autophagy. Zheng et al[51]

reported that the upregulation of miR-183-5p expression
levels and thedownregulationofATG5expression levels are
associated with the poor prognosis of patients with RC. In
vitro and in vivo experiments have also shown that miR-
183-5p knockdown increases the radiosensitivity of CRC
cells by directly targeting ATG5. Liu et al[52] reported that
the overexpression of miR-93 inhibits IR-induced autoph-
agy and enhances the radiosensitivity of RC by down
regulating its target gene, ATG12. miR-214 has also been
found to significantly increase the radiosensitivityofCRCby
targeting ATG12, to inhibit autophagy and induce apopto-
sis.[5] Furthermore, the combination of Bcl-2 and Beclin-1
may prevent the inappropriate activation of autophagy,
while the disruption of this interaction may induce
autophagy.[53,54] Autophagy has been shown to contribute
to the decrease in radiosensitivity in hypoxic environments.
This finding suggests that, under hypoxic conditions,
hypoxia-inducible factor-1a induces miR-210 to down-
regulate the expression of Bcl-2 in CRC cells, thereby
increasing autophagy and reducing radiosensitivity.[55]
miRNAs are Involved in the Radiotherapy of RC by
Regulating the Cell Cycle

In normal cells, IR delays entry into the G1, S, and G2
phases of the cell cycle to allow DNA repair and prevent
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Figure 2: miRNAs regulate autophagy through the corresponding target genes and affect the radiation sensitivity of RC. miRNAs: MicroRNAs; RC: Rectal cancer.

Figure 3: miRNAs regulate cell cycle through the corresponding target genes and affect
the radiation sensitivity of RC. miRNAs: MicroRNAs; RC: Rectal cancer.

Chinese Medical Journal 2022;135(17) www.cmj.org
the accumulation of harmful genomic damage. The
phosphorylation of P53 by ATM induces the expression
and phosphorylation of the cyclin-dependent kinase
inhibitor, P21. This leads to the inhibition of CDK4/6-
cyclin D andCDK1-cyclin B, causing the cell cycle to arrest
at G1 and G2, respectively.[56] In addition, ATM- and
ATR-activated signal transducers, CHK1 and CHK2,
2021
promote the degradation of CDC25, leading to the
inhibition of CDK2-cyclin E and CDK1-cyclin B, thereby
promoting cell cycle arrest at G1 and G2, respectively.[57]

The efficient induction of cell cycle arrest promotes
radiosensitivity, suggesting that cell cycle progression after
IR contributes to the radiation resistance of tumors.[6]

Several miRNAs have been shown to play a role in cell
cycle regulation after IR in CRC [Table 1 and Figure 3].

The let-7 miRNA family of tumor suppressors is down-
regulated in different types of human malignancies,
including CRC. It has been shown that increasing let-7e
levels reduces IGF-1R protein levels and inhibits the
downstream signaling pathway, resulting in cell cycle
arrest at G1, and significantly reducing CRC cell
proliferation, survival, and radiation resistance.[58] In
addition, miR-296-5p overexpression inhibits cell prolif-
eration and cell cycle progression and promotes apoptosis
and radiosensitivity by down-regulating insulin-like
growth factor I receptor (IGF1R).[42] Zheng et al[24]

showed that the overexpression of miR-106b decreased
the expression levels of the direct targets of PTEN and
P21. Meanwhile, the restoration of PTEN or P21
expression in cells stably overexpressing miR-106b
reestablishes the effect of miR-106b on CRC cell radio-
resistance. These findings indicate that miR-106b medi-
ates G1 growth arrest and cellular senescence by targeting
P21.[24] In addition, this process is accompanied by
enhanced tumor promotion, suggesting that miR-106b
may be related to the resistance of RC to radiation
therapy.

Relationship Between miRNAs, DNA Damage Repair, and
Radiotherapy in RC

DNA double-strand breaks (DSBs) are the most deleteri-
ous type of DNA damage as they may initiate genomic
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Chinese Medical Journal 2022;135(17) www.cmj.org
instability, ultimately leading to cancer.[59] Two pathways
are specifically dedicated to the repair of DSBs: nonho-
mologous end-joining (NHEJ) and homologous recombi-
nation (HR) repair.[60,61] The repression of these efficient
repair systems permits the accumulation of DNA damage
in rapidly dividing cells (such as cancer cells), thus
inducing apoptosis. This mechanism plays an important
role in the radiotherapy of RC. Recently, the role of
miRNAs in DNA damage repair has been recognized,[62]

suggesting that miRNAs control the DNA damage
response by interacting with DNA repair genes. Here,
we summarize the miRNAs involved in DNA damage
repair following IR [Table 1 and Figure 4].

There is evidence that changes in miRNA-binding sites in
the 3’-UTR of base-resected repair genes may modulate the
prognosis and treatment response in patients with RC, due
to effects on DNA damage repair.[63] Overexpression of
miR-130a has been shown to inhibit the repair of cells after
radiation-induced DNA damage.[64] Moreover, there is
evidence that SRY-Box transcription factor 4, which is a
direct target of miR-130a, increases the activation of ATM
signals by increasing the expression level of NBS1 and
promoting the interaction between NBS1 and p-ATM,
therebymediatingDNAdamage repair.[64] In a study of the
relationship between miR-100 and radiotherapy for RC,
miR-100 was found to be involved in radiation-induced
apoptosis and to modulate the sensitization of CCL-244
cells to radiation by enhancing radiation-induced DNA
Figure 4: miRNAs regulate DNA damage repair through the corresponding target genes and af
Rectal cancer.

2022
damage repair.[7] miR-122-5p overexpression or CCAR1
silencing, combinedwith IR, significantly reduces the levels
of p-CHK2 and enhances radiosensitivity, indicating that
CHK2 is an important regulatory kinase in the DNA
damage response.[40,65] Zhang et al[66]reported that miR-
31 suppresses NF-kB signaling pathways by targeting
serine/threonine kinase 40, thereby improving RC radio-
therapy sensitivity. Moreover, it is possible to improve
sensitivity to radiation by promoting DNA damage after
radiotherapy. miR-185 regulates radiation-induced HR
and NHEJ by targeting IGF1R and IGF2 genes.[41] CAF-
derived exosomal miR-590-3p induces radiotherapy resis-
tance in RC through the CLCA4/PI3K/AKT axis, thereby
inhibiting the DNA damage response.[30] Overexpression
of miR-124 and miR-195, combined with radiotherapy,
increases the levels of phosphorylated g-H2AX.[33,67] miR-
31-5p inhibitors may modulate radiosensitivity through
IR-induced DNA damage repair.[68]

Relationship Between miRNAs, Other Mechanisms, and
Radiotherapy in RC

Unrestricted proliferation is the basis of cancer develop-
ment. In addition, the invasion and metastasis of tumor
cells are the major causes of RC-related deaths. Many
studies have shown that miRNAs play important roles in
pathways affecting tumor cell proliferation, invasion,
and metastasis, thus influencing the efficacy of radio-
therapy.
fect the radiation sensitivity of RC. IGF: Insulin-like growth factor; miRNAs: MicroRNAs; RC:
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Ruhl et al[69] found higher expression levels of miR-451a
and lower levels of calcium-binding protein 39 (CAB39)
and EMSY transcriptional repressor, BRCA2 interacting
(EMSY) in patients who responded to radiotherapy,
compared with patients who did not respond to
radiotherapy. Further exploration revealed that miR-
451a was induced by radiation, and it may affect the
proliferation of RC through the CAB39 and EMSY
pathways. A series of studies have shown that over-
expression of let-7e, miR-93-5p, miR-140-5p, miR-296-
5p, miR-506-3p, andmiR-770-5p significantly reduces the
proliferation of CRC cells after radiotherapy and
improves radiotherapy sensitivity.[36,42,44,58,70] Recent
studies have suggested that miR-1 may play an important
role in RC. The downregulation of miR-1 and metastasis-
associated in colon cancer-1 increases MET expression
levels and promotes RC metastasis.[71] Furukawa et al[72]

found that the miR-1-notch receptor 3-Asef pathway
plays an important role in CRC cell migration. Another
study reported that miR-1 mimics promote the expression
of Bax and E-cadherin and decreased the expression levels
of Bcl-2, MMP2, and MMP9, significantly inhibiting the
invasion and migration of CRC cells in conjunction with
radiotherapy.[73] miR-1 is thought to increase the
radiosensitivity of CRC cells by inducing apoptosis and
synergistically inhibiting invasive phenotypes. Ji et al[18]

showed that overexpression of miR-15b inhibits the
proliferation, invasion, and metastasis of CRC cells. Liang
et al[74] reported that miR-32-5p may be a prognostic tool
and therapeutic target for RC. miR-32-5p was found to
directly decrease the levels of transducer of ERBB2,1
mRNAby binding to its 3’-UTR, thus sensitizing RC to the
effects of radiotherapy and inhibiting metastasis.
Conclusions

With the development of biotechnologies, such as high-
throughput sequencing, bioinformatics analysis, genome
modification, and mouse models of disease, functional
studies can provide new insights into the anticancer
activity of miRNAs. By identifying downstream targets,
many studies have shown that miRNAs regulate various
signaling pathways (such as PI3K/AKT and Wnt/b-cat-
enin) that play roles in a series of various processes, such as
RC proliferation, metastasis, autophagy, and apoptosis,
and affect the efficacy of radiotherapy for RC. Moreover,
miRNAs are often involved in multiple mechanisms to
regulate the activity of cancer cells, thus inducing
radiotherapy sensitivity or resistance. These studies
provide a new theoretical basis for the study of
radiosensitivity and the identification of effective bio-
markers and promising therapeutic targets for RC.
However, many challenges remain, and the targets and
downstream pathways of some miRNAs are still being
explored.[75,76] In addition, most studies in this field are
still at the basic stage, with little progress in in-vivo studies
and translational direction. Moreover, most studies have
been limited to specific tumor types or treatment
modalities. Future studies should focus on exploring these
questions. First, for related miRNAs, there is a need to
further understand and evaluate genomic and functional
approaches for basic and translational research, to help
select appropriate and specific targets from a large number
2023
of candidates. More importantly, for suitable candidate
genes that have been identified and stable delivery vectors
that have been developed, there should be a greater focus
on clinical studies to assess patients’ responses to miRNA-
related therapies. This will improve our understanding of
the long-term effects and adverse reactions associated with
these therapies and help us to achieve translational results
in cancer research.
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