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Abstract: With the rapid development of vehicular networks, vehicle-to-everything (V2X) communi-
cations have huge number of tasks to be calculated, which brings challenges to the scarce network
resources. Cloud servers can alleviate the terrible situation regarding the lack of computing abilities
of vehicular user equipment (VUE), but the limited resources, the dynamic environment of vehicles,
and the long distances between the cloud servers and VUE induce some potential issues, such as
extra communication delay and energy consumption. Fortunately, mobile edge computing (MEC), a
promising computing paradigm, can ameliorate the above problems by enhancing the computing
abilities of VUE through allocating the computational resources to VUE. In this paper, we propose a
joint optimization algorithm based on a deep reinforcement learning algorithm named the double
deep Q network (double DQN) to minimize the cost constituted of energy consumption, the latency
of computation, and communication with the proper policy. The proposed algorithm is more suitable
for dynamic scenarios and requires low-latency vehicular scenarios in the real world. Compared
with other reinforcement learning algorithms, the algorithm we proposed algorithm improve the
performance in terms of convergence, defined cost, and speed by around 30%, 15%, and 17%.

Keywords: mobile edge computing; vehicle-to-everything; deep reinforcement learning; double
deep q network

1. Introduction

With the emergence of enormous numbers of intelligent devices, the mobile applica-
tions are blooming unbelievably, such as face recognition, natural language processing,
augmented reality, autonomous driving, etc. [1]. Although mobile applications bring
convenience and ease for users, the huge energy consumption and high latency of the
computation exceed the capacity of users [2]. In particular, the aforementioned effects on
vehicle-to-everything (V2X) communications are even more intolerable due to the high
mobility and the constrained resources of the vehicles. The V2X communications scenario
differs from other scenarios, such as text, voice, and video transmission. From Table 1, it is
easy to observe that the low latency is the key part to guaranteeing the safety of passersby
and passengers in V2X communications. In the IEEE 802.11p, namely, the present ve-
hicular communication standards, the low latency is considered as a crucial criterion of
V2X communications in 2009 [3]. Besides, since the global number of vehicles reached
more than one billion in 2010 [4], the latency caused by the intensive loads or tasks of
vehicular user equipment (VUE) is a bottleneck that needs to be broken through effectively.
Moreover, with the increasing number of vehicles, the energy consumed for computation
and transmission of the vehicles’ data exceeds our expectations continuously. Fortunately,
the terrible situation is being alleviated with the aid of cloud computing.
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Table 1. QoS requirements of advanced V2X applications supported by 5G-V2X.

Application
Scenarios

Max End-to-End
Latency (ms) Reliability (%) Data Rate (Mbps)

Vehicle Platooning 10–500 90–99.99 50–65
Advanced Driving 3–100 90–99.99 10–50
Extended Sensors 3–100 90–99.99 10–1000
Remote Driving 5 99.99 Uplink:25; Downlink 1

As a promising technology, cloud computing has attracted significant attention in
recent years for its multiple powerful resources, such as servers, storage devices, and
network hardware [5]. As a result, cloud computing has become a vigorous and crucial
paradigm of today’s communication service architecture. Cloud computing, which is
viewed as the centralized data center commonly, provides enough computational resources
for VUE that requires more computing abilities. Although cloud computing satisfies the
more demands on computational resources, the long distance between the cloud server
and VUE and the data transmission of the network will still cause some potential problems
when the vehicles offload the huge volume of computing tasks to the cloud computing
servers [6]. These issues hinder the achievement of low latency goals. Additionally, the
energy consumption of the cloud servers and data centers contributes much to the total
cost [7]. The cloud servers, as computing and data centers, may consume as much energy
as 25,000 households. Furthermore, the energy costs of powering a typical data center
double every five years [8]. A lot of efforts have been focused on how to explore more
and more energy-efficient alternatives. Accordingly, mobile edge computing (MEC) is
considered to reduce the energy consumed by cloud servers so that the more energy for
the transmission can be saved.

Improving energy efficiency by closing the distance between distributed servers and
VUE is a better solution than endlessly increasing the computing and storage resources for
the centralized servers. MEC servers deployed at the cellular edge leverage their ability
to provide the computational resources to reduce the latency caused by the long distance
and the transmission of the tremendous data [9]. Specifically, the cloud servers could not
meet the new demands of the Internet of Things (IoT) devices and applications. Moreover,
the energy consumption of offloading tasks or data to MEC servers is less than that of the
cloud servers for the shorter distance [10]. Motivated by the superiority of MEC, huge
numbers of researchers are discussing the problem of how to utilize energy effectively
with the help of the MEC computing paradigm widely. In light of the considerations about
MEC, the European Telecommunications Standards Institute (ETSI) even formed the MEC
Industry Specification Group (MEC ISG) standardization organization in late 2014 [11].

Unfortunately, the dynamic vehicular environment varies significantly and rapidly,
so we cannot get the exact states of the environment. In particular, the states of vehicular
environment rapidly and unpredictably change when vehicles move at high speed [12],
which make it difficult for the conventional model-based methods to obtain reasonable and
precise decisions. Furthermore, a few pieces of literature pay attention to the time-varying
environment. For this unpredictable environment, model-free reinforcement learning
algorithms are introduced to tackle the above problem [13–15]. In this paper, we study
the total cost optimization constituted of energy consumption and latency caused by
computation and communication. Nevertheless, this is non-deterministic polynomial
hard (NP-hard). So far, NP-hard problems are still tough to solve by exact algorithms.
Therefore, the most common approaches to solve them are approximation algorithms. We
propose a joint optimization algorithm based on a deep reinforcement learning algorithm
named the double deep Q network (double DQN). We deployed it on cloud servers i.e., a
MEC controller, to make decisions and allocate all MEC servers’ resources in a centralized
manner, rather than calculating the data offloaded from the VUE. Finally, the simulation
results show that the joint optimization algorithm based on double DQN has a better
performance compared with algorithms based on other reinforcement learning and deep
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reinforcement learning techniques. Overall, the main contributions in this paper can be
summarized as follows.

• To solve the dynamic problem caused by the high speed of the vehicular environment,
we propose a joint optimization algorithm based on double DQN, which compre-
hensively considers joint optimization, including offloading strategy, allocation of
computational resources, and communication resources. Through building the neural
networks to approximate the reward value of the whole system, our algorithm solves
the joint optimization problem that traditional methods find hard to solve.

• We modify the reward function of double DQN and then use it iteratively to make
the proper policy to minimize the long-term average cost so that the agent can obtain
the correct guide in the interaction with the environment and gain a greater benefit
from interactions.

• To fasten the training phase, we adopt offline training and on-ine implementation in
this paper to accelerate the speed of the running and reduce the latency of computation.
Besides, we also clean the redundant action space by discarding several inefficient
actions for a faster training speed. The less time spent in the training phase, the faster
the agent can react to adapt to the new vehicular environment. Therefore, vehicles
can avoid potential risks.

The remainder of this paper is organized as follows. In Section 2 we review the related
work and explain the motivations of this paper. A detailed introduction to the model
system and problem formulation are described in Section 3. In Section 4, we introduce
some brief background about deep reinforcement learning and present our proposed
algorithm. Then the parameters, results, and analysis of simulations in this paper are
represented in Section 5. In the final section, Section 6, we conclude the entire paper.

2. Related Work

Actually, a considerably large number of researchers and papers have paid a lot of
attention to this field. The two main resources, the computation offloading and commu-
nication resources, need to be considered for optimization. To read easily and clearly, we
classified the papers we refer to into two categories intuitively. In Table 2, we offer the
summary comparison of the references based on some features, such as year, focus on com-
putation offloading and communication resources, and the methods used. Computation
offloading denotes the main topic of the current reference is the related work about compu-
tation offloading, such as matching the MEC servers and user equipment, for computation
offloading decisions. Meanwhile, communication resources means the main topic of the
reference is work about allocating wireless communication resources, such as selecting
channels, assigning the transmission power, etc.

2.1. Computation Offloading

The first category considers how to generate or select a proper computation offloading
strategy to minimize the different objectives—for instance, the defined cost, latency, or
energy consumption. The authors in [16] studied the multi-user computation offloading
problem for mobile edge cloud computing in a multi-channel wireless interference envi-
ronment, and adopted one powerful mathematical tool, game theory, to achieve efficient
computation offloading in a distributed manner. The authors of [17] also used one of the
game theory approaches: a potential game to minimize the cost was constituted of energy
consumption, latency, and even monetary cost. Some methods of convex optimization
theory, such as the Lagrange method, were used to optimize their corresponding objectives,
e.g., minimizing energy consumption in [10], reducing the consumption of the system
consisted in [18], and enhancing the system computing capacity in [19]. Additionally,
Alahmadi et al. proposed an interesting vehicular cloud network architecture where a
group of vehicles near a traffic light cluster and form a temporal vehicular cloud by aggre-
gating their computational resources in that cluster to minimize the processing and network
power consumed in the data center of a cloud operator in [5]. Besides, aiming to achieve a
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trade-off between minimizing task completion time and data exchange costs, the authors
modeled an undirected weighted graph between vehicular clouds and tasks. Although the
above references optimized the corresponding computation offloading decisions in their
papers, the communication resources were not taken into account. The licensed spectrum
is limited, so it is impractical to ignore the optimization of the communication resources.

2.2. Jointly Optimizing the Computation Offloading and Communication Resources

The second category considers optimizing the computation offloading and the
communications resources jointly to minimize the corresponding objectives. Zhao et al.
studied how to jointly optimize the computation offloading strategy and the computational
resources allocation strategy to minimize the system cost in [6]. Other than the conventional
optimization methods, the methods of the game theory, such as the coalition game, the
potential game, and the bargaining game, were used to optimize the corresponding objects
in [20]. Zhang et al. developed a joint cloud and wireless resource allocation algorithm
based on an evolutionary game considering mobile terminals’ energy consumption and
time delay, and monetary cost in a mobile edge computing environment in [21]. Although
the papers of the second category consider optimizing the computation offloading and
communication resources simultaneously, it is still difficult to solve the unpredictable and
dynamic vehicular environment caused by the high speed of the vehicles. However, the
dynamic vehicular environment cannot be neglected.

Table 2. Comparison of references of computation offloading (CO) and communication resources (CR). (
√

) indicates that
the topic is covered. (×) indicates that the topic is not covered.

Year Reference
Focus

MethodsComputing
Offloading (CO)

Communication
Resources (CR)

2015 [20]
√ √

Coalition Game
2015 [16]

√
× Game Theory

2015 [17]
√

× Potential Game
2017 [5]

√
× Mixed Integer Linear Programming (MILP) model

2017 [10]
√

× Convex Optimization Theory
2017 [21]

√ √
Evolutionary Game

2017 [19]
√

× Queueing Networks Theory and Convex Optimization Theory
2019 [22]

√
× Deep Reinforcement Learning (DRL)

2019 [6]
√ √

Game Theory and Convex Optimization Theory
2020 [23]

√
× Convex Optimization Theory

2020 [18]
√

× Graph Theory

Several studies utilized deep reinforcement learning in vehicular ad hoc networks
to optimize their objects. Although their scenarios differ from that in this paper, the
methods in their papers could help us to build the neural networks. Qi et al. provided
a optimal offloading policy that mainly considers the future data dependency of the
following tasks with the help of deep reinforcement learning algorithms in vehicular ad
hoc networks in [22]. The authors of [24] used deep spatio-temporal residual networks with
a permutation operator to predict the network traffic in order to reduce the capital expense
and operating expense costs of commercial 5G-V2X networks. The authors of [25] adopted
Q-learning to allocate transmission power, subchannels, and computing resources in a
software-defined networking assisted MEC network architecture for the vehicular network.

3. Model System and Problem Formulation

In this paper, as shown in Figure 1, we consider a MEC-enabled V2X system allowing
VUE to offload their computing tasks to the MEC servers. This system operates in slotted
time t ∈ {0, 1, 2, . . . }. LetM = {1, 2, . . . , M} denote the set of MEC servers (i.e., there
are M base stations, since each base station is equipped with only one MEC server). The
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sets of VUE and cellular users are represented as V = {1, 2, . . . , V} and N = {1, 2, . . . , N},
respectively. We consider an orthogonal frequency division multiple access (OFDMA)
system for the cellular network, while VUE can reuse the identical resources. Thus, there is
an interference between the cellular users and the VUE. Besides, there is the interference
from the adjacent cells with the multi-cell scenario assumption in this paper.

Figure 1. System model of the multi-cell scenario with multiple mobile edge computing (MEC) servers.

3.1. Task Model

We assume that each VUE could generate one indivisible task to compute at one
slot; i.e., the VUE only has two choices, offloading it to MEC to compute or computing
locally. We employ a three-tuple Dv = (dv, cv, Tmax

v ) to express the VUE v’s task, where dv
denotes the data size of the task, cv means the computational resources that VUE needs,
and Tmax

v stands for the maximum delay that the system could endure. αv,m ∈ {0, 1} is
used to indicate the offloading decision; αv,m = 0 represents the VUE computes task locally;
otherwise, VUE offloads task to one MEC server to compute. Furthermore, we define
θ = {αv,m|v ∈ V , m ∈ M} as the decision variable and X = {αv,m ∈ θ|αv,m = 1} as the
offloading decision.

3.2. Local Computing Model

The local computing model is chosen as αv,m = 0. At this time, task Dv is computed
by the local VUE, whose CPU frequency is expressed as f l

v. The local computing delay can
be formulated as

Tl
v =

M

∑
m=1

(1− αv,m)cv

f l
v

, ∀v ∈ V. (1)

For a piece of VUE, the energy that is consumed by local computing is proportional to
the coefficient of energy effect κ, and can be given as [26]

El
v =

M

∑
m=1

(1− αv,m)κ
(

f l
v

)2
cv. (2)

According to (1) and (2), the total overhead, i.e., total cost, of local computing model
on VUE v, in terms of computational time energy, Cl

v can be calculated as [26]

Cl
v = βl

1Tl
v + βl

2El
v, (3)

where 0 ≤ βl
1, βl

2 ≤ 1 represent computational time and energy of VUE v, respectively.
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3.3. Task Offloading Model

The task offloading model includes three phases, the task transmitting phase, the task
computing phase, and the task return phase.

3.3.1. Task Transmitting Phase

As aforementioned, VUE reuse the identical resources with cellular users in a multi-
cell scenario. Consequently, not only the interference from cellular users who share the
same spectra in the local cell, but also the interference from cellular users who reuse the
identical resources in the adjacent cells is considered in this paper. The transmission
power of VUE is defined as P = {pv|0 ≤ pv ≤ Pmax, ∀v ∈ V}, where Pmax is the maximum
transmission power. Then we derive the rate Rv according to Shannon theory

Rv = B log

(
1 +

pvhv

∑V
i=1,i 6=v ρi pihi + I + σ2

)
, (4)

where pv, pi represent the transmission power of VUE v and that of cellular user i, respec-
tively. hv is the channel gain from VUE v to MEC servers, and ρi is an indication variable.
Notice that ρi = 1 when VUE v reuses the resources of cellular user i, otherwise, ρi = 0.
σ2 is the power of noise. In addition, I denotes the interference of devices located in the
adjacent cell using the identical resources. This inter-cell interference is calculated as

I = ∑
u∈ψ

puhu, (5)

where ψ denotes the set of VUE that shares resources with VUE v. pu is defined as the
transmission power of VUE u that associates with the adjacent cell. In this paper, OFDMA
is applied for a multi-cell scenario; hence, we consider the inter-cell interference caused by
only one set of VUE in the adjacent cell. hu means the channel gain from VUE v to VUE u.

The Rayleigh fading channel model is utilized in this paper. Due to the high mobility
of vehicles, the distance between senders and receivers rapidly changes, so we modify the
channel gain as the following equation [27]∣∣hi,j

∣∣2 = G ·
∣∣di,j + vi,j · tw

∣∣α · |h0|2, (6)

where G denotes the antenna gain, di,j is the distance from sender i to receiver j, vi,j is
the relative velocity of sender i to receiver j. tw is the waiting interval between the time
point when the data are ready to transmit and the time point when the data start to be
transmitted, which is assumed to be a constant in this paper. h0 is the gain of Rayleigh
fading channel.

According to (4) and (6), we derive the delay cost of task transmission as

Tt
v =

M

∑
m=1

αv,mdv

Rv
∀v ∈ V, (7)

3.3.2. Task Computing Phase and Task Return Phase

In the task computing phase, the MEC servers will compute the VUE’s tasks, and
then return the results to the corresponding users. The allocation policy of MEC server
m is defined as F = { fm,v|m ∈ M, v ∈ V}, where fm,v > 0 represents the computational
resources that are allocated to VUE v by the MEC server m. Hence, the computing delay of
the task that is offloaded from VUE v to MEC server m is given by

Te
v =

M

∑
m=1

αv,mcv

fm,v
, ∀v ∈ V. (8)
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Compared with the delay of the task offloading phase, that of the task return phase
is trivial due to the large rate of the downlink channel, so we ignore the delay of the task
return phase.

Then we derive the sum delay cost and the sum energy cost according to (7) and
(8), respectively

Tu
v = Tt

v + Te
v (9)

Eu
v = pvTt

v. (10)

The sum cost of VUE v in the task offloading model in regard to time spend and
energy consumed is computed as [28]

Cu
v = βu

1 Te
u + βu

2 Eu
v , (11)

where 0 ≤ βu
1 , βu

2 ≤ 1 represent the sum delay and the energy consumed by transmis-
sion, respectively.

Finally, we define Csum to denote the sum cost of all VUE in local computing model
and task offloading model, meanwhile give the equation of Csum as follows:

Csum =
V

∑
v=1

(
Cl

v + Cu
v

)
. (12)

3.4. Problem Formulation

In this paper, we optimize jointly the task offloading decision X and the transmission
power policy P of VUE, along with the computational resources allocation policy F of MEC
servers. The optimization problem is defined to minimize the sum cost of all VUE, and
then given by

min{X,P,F} Csum
s.t.
C1 : αv,m ∈ {0, 1} ∀v ∈ V, m ∈ M
C2 : ∑

m∈M
αv,m ≤ 1 ∀v ∈ V

C3 : Tl
v + Tu

v ≤ Tmax
v ∀v ∈ V

C4 : pv ≤ Pmax ∀v ∈ V
C5 : fm,v> 0 v ∈ V, m ∈ M

C6 :
V
∑

i=1
fv,m ≤ fm ∀m ∈ M

C7 : fm ≤ Fm ∀m ∈ M

(13)

C1 represents the offloading decision of VUE. C2 demands that VUE v just chooses at
most one MEC server to offload its task. C3 indicates the constraint of the entire procedure
delay. C4 is the constraint of the maximum transmission power of VUE v. C5 ensures
every VUE could obtain several computational resources of MEC servers. C6 requires
that the allocating computational resources should not exceed the remnant computational
resources of MEC server m. C7 presents that the remnant computational resources should
be less than the maximum computational resources that MEC servers can provide.

There are many ways to solve the (13), which is a mixed integer nonlinear program-
ming problem, such as dividing this origin problem into several subproblems, and then
obtaining the sub-optimal solution with the help of the optimal solution of these sub-
problems, or getting the sub-optimal solution of the origin problem via some heuristic
algorithms. However, the aforementioned methods have better performance in the statistic
scenario, which is contrary to the dynamic scenario of this paper.

Due to the mobility, the unpredictable states of vehicles lead to imprecise information
of states at different time intervals. Although the optimal solution could be calculated
by conventional optimal methods, these methods consume more intolerable time and
space. To tackle this problem, we propose an approach based on double DQN, which is
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viewed as the evolution of deep Q networks, to solve the origin problem (13) directly in
this paper. The proposed approach based on deep reinforcement learning will be detailed
in the following Section 4.

4. Joint Optimization Based on Deep Reinforcement Learning

In this section, we propose a joint optimization algorithm based on deep reinforcement
learning to optimize the aforementioned problem. Firstly, we give a brief introduction of
the background on deep reinforcement learning.

4.1. Background on Double Deep Q Networks
4.1.1. Q Learning

As an effective tool with which to solve complex issues, especially the model-free
based problems, reinforcement learning has been said to be an important part of machine
learning. By leveraging reinforcement learning, it is convenient to obtain satisfactory
performance. As a famous and classical reinforcement learning algorithm, deep Q networks
were proposed by Watkins in 1992 to find a simple way for agents to learn how to act
optimally in controlled Markovian domains [13]. For a policy π, define Q values or
action-values under state s executing action a as

Qπ(x, a) = Rx(a) + γ ∑
y

Pxy[π(x)]Vπ(y), (14)

whereRx(a) denotes the immediate reward under state s executing action a, γ ∈ (0, 1) is
the discount factor. With the increase of the iterative time in (14), the value of the second
half of (14), which means how much the proportion of the future reward dominated in the
whole decision procedure, will also increase exponentially. Pxy[π(x)] means the transfer
probability from state y to state x through action policy π[x]. The equation (14) also can be
explained intuitively as that the agent expects to obtain the immediate rewardRx(a) via
executing policy π[x], and then it moves to the state x, which is worthy Vπ(y) to it, with
probability Pxy[π(x)].

However, (14) is not suitable for model-free problems because of the existence of
transfer probability. Fortunately, taking the Markovian property into consideration, the
temporal differences (TD) method that learns from the continuous environments step
by step was proposed by R. Sutton in 1988 [14]. The Q-learning iterative equation for
model-free problems is given by

Qπ(s, a) = Qπ(s, a)+

α

(
Rx(a) + γ max

a′
Qπ∗

(
s′, a′

)
−Qπ(s, a)

)
,

(15)

where α = 1
N(s) ∈ [0, 1] is a discounted factor. N(s) originates from Monte-Carlo (MC)

methods and represents the number of the iterative times start from the original state s0 to
the current state s.

4.1.2. Deep Q Networks

Although reinforcement learning has an anticipated effect, with the rapid extension
of state space of agents, the Q table increases sharply so that it will spend a lot of time
to search the policy corresponding to the maximum Q value, which is called the curse of
dimensionality. To this end, the Google DeepMind group proposed a novel approach named
deep Q networks, which replaces the Q table with approximation by neural networks [29].
The DQN algorithm frame diagram is shown as Figure 2. The crucial ideas behind the
DQN algorithm are (1) to approximate the value function via neural networks to avoid the
curse of dimensionality; (2) target net produces labels to train the evaluate net directionally;
(3) randomly pick up experiences from experience replay to train in order to break the
correlation among them. Loss function always is regarded as a significant part of deep
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reinforcement learning algorithms, because it builds a bridge over the gap between the
evaluate net and the target net. The loss function of DQN is defined as

LossDQN =
(
r + γQ

(
s, argmaxa Q

(
s′, ·, θ′

)
, θ′
)

−Q(s, a, θ)),
(16)

where four-tuple (s, a, r, s′) represents experience that is sampled randomly from the
experience reply, θ and θ′ are the weights of the evaluate net and target net respectively.

Loss Function

Environment Evaluate Net Target Net

Experience Replay

'( , , , )s a r s

s

Gradients of Loss Function

( , ; )Q s a q
'

' ' 'max ( , ; )
a
Q s a q

( , )s a 's r

Copy Weights
argmax ( , ; )

a
Q s a q

Figure 2. DQN algorithm frame diagram.

4.1.3. Double Deep Q Networks

Even though the outperformance in solving model-free problems, DQN is still cas-
tigated by the overestimate owing to the insufficiently flexible function approximation
and noise [15]. In particular, the performance of DQN algorithm will get worse when the
overestimate does not occur uniformly [30]. For addressing this problem, Google DeepMind
group utilized the idea behind [31] that proposed by Hasselt in 2010 to modify the DQN
algorithm and proposed double DQN, which is envisioned as the evolution of DQN algo-
rithm [32]. As shown in Figure 3, the major difference between DQN algorithm and double
DQN algorithm is the loss function. The loss function of double DQN is given by

LossDoubleDQN =(r + γQ(s, argmaxa Q(s
′
, ·, θ), θ

′
)

−Q(s, a, θ)).
(17)

Then the evaluate net is updated by adopting mini-batch gradient descent (MBGD)
in every step and copies its weights to target net every several steps. The gradient is
written as

∇θ LossDoubleDQN =(r + γQ(s, argmax
a

Q(s′, ·, θ), θ′).

−Q(s, a, θ))∇θQ(s, a, θ),
(18)

where ∇θ f (·) represents the gradient vector of f (·) with respect to θ.



Sensors 2021, 21, 372 10 of 18

Target NetEvaluate Net

Experience Reply

g q q q= + × -'( ( ,argmax ( ', , ), ) ( , , ))
Double DQN

a

L r Q s Q s Q s a

input s

input s

input s
s a Sr

Find Q(a)
Find argmax Q(s )

Figure 3. Double DQN algorithm frame diagram.

4.2. Joint Optimization Algorithm Based on Double DQN

In this paper, we jointly optimize the task offloading decision vector X, the trans-
mission power policy P of VUE, and the computational resources allocation policy F of
MEC servers with the help of double DQN algorithm. Then the MEC controller deployed
in the cloud is viewed as the agent, which could make the decision and coordinate the
communications resources and the computational resources of all MEC servers.

To elaborate our proposed algorithm clearly and conveniently, several definitions
about Markov decision process are defined below.

4.2.1. State

At the beginning of every slot, the MEC servers will add their remnant computational
resources as one part of the state. As the size of every task is time-varying, thus the remnant
computational resources are different. Furthermore, the computational resources of the
current slot only correlate with that of the prior slot, which satisfies the Markovian property.
The definition of state space is written as

S(t) = {ki(t), cv(t), dv(t)} ∀v ∈ N, ∀i ∈ M, (19)

where S(t) denotes the state space at slot t, and ki(t) is the remnant computational resources
of MEC server i at slot t. The cv(t) and dv(t) indicate the size of a task and the necessary
computational resources of VUE v.

4.2.2. Action

To avoid the huge action space caused by the continuous action, we make the action
discretization. For the task of VUE in this paper, there are three models, i.e., local computing,
offloading task to the local MEC server, and offloading task to the adjacent MEC server
could be chosen. Then we define the action vector A as

A(t) = {X, f1, · · · , fi, · · · , fN , p1, · · · , pi, · · · , pN}, (20)

where X represents the offloading decision vector of the VUE, fi means the computational
resources that the MEC server allocates to the VUE i, and pi denotes the transmission
power of VUE i. Notice that all the above action variables are decided centralizedly by the
MEC controller.
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4.2.3. Reward

For the agent, the reward plays a primary role in guiding the interaction between the
agent and environment. Consequently, we modify the immediate reward according to the
conventional reward construction and rewrite an appropriate reward equation below

R(s, a) =
Clocal − Csum(s, a)

Clocal
, (21)

where Clocal means the sum local cost of all VUE. The definition of Clocal is shown as

∑
v∈V

Cl
v = ∑

v∈V

(
βl

1Tl
v + βl

2El
v

)
. (22)

Combining the TD methods of (15) with the immediate reward of (21), we rewrite the
original object (13) as

Qπ(s, a) = Eπ

[
T

∑
t=1

γt−1R(t)

]

= Eπ

[
T

∑
t=1

γt−1
(

Clocal(t)− Csum(t)
Clocal(t)

)]
.

(23)

Then modify the above object with the help of Bellman Equation as following

Qπ(s, a) =(1− α)Qπ(s, a) + α(R(s, a)

+ γ max
a′

Qπ(s′, a′)). (24)

For MEC controller, the destination of interacting with the environment and learning
from experience is to find the optimal policy to maximize the long-term discounted sum
reward, i.e., maximize the Equation (24). Then the optimial policy can be expressed below

π∗ = arg max
a∈A

Qπ(s, a). (25)

To explore the remainder of the action space sufficiently, the ε-greedy algorithm is
utilized in this paper, which could achieve the trade-off between the exploitation and
the exploration with the probability ε. Although the discretization of action is used
in this paper, the action space is still enormous as the result of the increase of action’s
dimension. Accordingly, we remove several inefficient policies to accelerate the speed of the
training phase and alleviate the latency caused by these inefficient policy. For instance, the
inefficient allocation policies will be abandoned, because these inefficient policy allocate
the computational resources for VUE to exceed the maximum remnant computational
resources of MEC servers.

Furthermore, since the high mobility of vehicles, the current cell that VUE associate
might alter at next slots, which will trigger the exponential extension of the the action
space with the increase of VUE quantity. Consequentially, we make the preprocess for
the action space before the MEC controller decides the policy, e.g., the VUE will choose
the local computing model firstly when the delay of local computing Tl

v is less than the
maximum delay that the system can endure Tmax

v . With the aforementioned preprocess for
action space, the train speed and the size of action space can be improved significantly.

4.3. Four Phases of Joint Optimization Algorithm

Since the whole procedure of we proposed algorithm is too long to be read clearly, for
convenience and concise representation of the process, we separate the entire procedure
into four subphases, as shown in Figure 4.
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Local Computing 
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Local Computing 

Model

Figure 4. Four subphases diagram.

4.3.1. Preprocess Subphase

As mentioned above, the VUE produce at most one task every slot, then they will
judge whether they need the help from MEC servers. If the delay of local computing is
less than the maximum delay that they can endure, i.e., Tl

v ≤ Tmax
v , they will choose the

local computing model. Notice that the offloading policies of their task are regarded as
inefficient actions at this time, i.e., the MEC controller will not consider offloading the task
of these VUE to MEC servers. Simultaneously, other VUE report the information about the
data size of task dv and the computational resources cv that these VUE require to the local
MEC server.

4.3.2. Interaction Subphase

After receiving the information about the task of VUE, the MEC servers combine this
information and the information about their remnant computational resources together.
Then the MEC servers send combined information to the MEC controller immediately. As
the centralized decision-maker, MEC controller will discard the allocation policies, which
allocate the computational resources for VUE to exceed the maximum computational
resources of MEC servers. Next, the MEC controller concatenates the reported information
as the state and input it into neural networks. Then, according to our proposed algorithm,
the neural networks will output an appropriate policy including the offloading decision X,
the transmission power policy P, and the computational resources allocation policy F. At
the end of this subphase, all MEC servers receive the policy from the MEC controller and
broadcast it to the VUE in the current cell. For reducing the latency of interaction subphase,
we train the double DQN offline, just deploy it online.

4.3.3. Task Offloading Subphase

With the instruction of the MEC servers, the VUE offload the task to the assigned
MEC server with the corresponding transmission power. As displayed in Figure 4, the
single gray flash symbol indicates that there is interference produced by VUE reusing the
identical radio resources with cellular users. Apart from the single flash symbol, the double
gray flash symbols represent the coexistence of the interference produced by reusing the
same radio resources and the interference produced by the user, who is in the adjacent cell
and reuse the identical communication resources with this VUE coexist.
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4.3.4. Computational Resources Allocating Subphase

In the computational resources allocating subphase, the MEC servers will allocate the
suitable computational resources to the corresponding tasks according to the computa-
tional resources allocation policy F. Although the initial computational resources of every
MEC servers is identical, the remnant computational resources is different for the varied
size of tasks.

5. Simulations and Analyses

In this section, the simulation results of our proposed joint optimization algorithm
based on double DQN (JOADD) are presented in comparison to two algorithms based on
other reinforcement learning or deep reinforcement learning, which are named the joint
optimization algorithm based on DQN (JOAD) and the joint optimization algorithm based
on Q-learning (JOAQ). The simulations are based on the Keras program in Python form.
Keras is a deep learning API written in Python, running on top of the machine learning
platform TensorFlow. The version of Python used in our work was 3.6.

As aforementioned, a multi-cell scenario with multiple pieces of VUE is considered
in this paper. Assume that M = 3 MEC servers are available to provide services for VUE.
Each MEC server has varying maximum computational resources which range from 1 to
6 GHz/s in different scenarios. The total number of pieces of VUE is also varying, whereas
each VUE’s local computational resources are constant, namely, fv = 1 GHz/s. The size
of VUE’s task dv is assumed as a discrete value that is sampled uniformly from [500, 800]
kbits. Meanwhile, the number of CPU cycles cv that the task requires is proportional to the
size of the task. The detailed values of all above parameters are listed in Table 3.

Table 3. Parameters of communications.

Parameters Value

R 500 m
N0 −174 dBm/Hz
B 500 kHz
tw 1
fv 1 GHz/s
dv [500, 800] kbits
cv [900, 1100] Megacycles
M 3
V 6, 7, 8, 9, 10
F 1, 2, 3, 4, 5, 6 GHz/s
P 100, 120, 140, 160, 180, 200 mW
V 40, 60, 80, 120, 140 kM/h

βl
1, βl

2, βu
1 , βu

2 0.5

Moreover, the architecture of neural networks is also a crucial part of fitting the core
of the algorithm, namely, the Q table. However, there is no theoretical and mathematical
support to guide one through how to build the best neural networks. Consequently, we
built the double DQN with the help of our experience. The double DQN consists of four
layers, including one inputs layer, two dense layers as the hidden layers, and one dense layer
as the outputs layer. The number of neurons of the inputs layer and that of the outputs
layer are identical; the numbers are equal to the dimension of the state space and that of the
action space respectively. The other parameters about neural networks are listed in Table 4.
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Table 4. The parameters of neural networks.

Parameters Value

γ 0.1
α 0.09
ε 0.99

mini-batch 32
reply experience buffer’s size 500

optimizer Adam
activity function ReLu

We present the convergences of three algorithms under the same conditions in Figure 5.
As shown, after about 300 iterations, the fluctuation of JOAQ begins to decline first. Then
about 400 iterations, the JOADD and JOAD start to flatten their fluctuations. The reason for
the above phenomenon is that the Q-learning turns the continuous states into discrete ones
to reduce the size of state space to avoid the curse of dimensionality. For the same reason,
JOAQ might miss a better policy due to the discretization of the space. However, JOAD
and JOADD utilize the neural networks to approximate the discrete Q-table; thus, above
algorithms have better performance than JOAQ. Furthermore, in the light of eliminating
the overestimate, JOADD has better performance.

Figure 5. The convergence of different algorithms.

Figure 6 illustrates the effect on cost under different maximum transmission power of
VUE. As shown in this figure, the cost of local computing is a straight line on the top in
orange. The reason for this phenomenon is that all tasks will be computed in the local MEC
servers rather than being offloaded to the other MEC servers in the adjacent cells when
the local computing model is selected. Hence, the cost of the local computing strategy is
constant. Meanwhile, the cost of the random offloading strategy in this figure is displayed
as a fluctuant polygonal line in red. That is because the random offloading strategy
picks the offloading policy from all available policies randomly. When VUE obtains more
computational resources that the MEC controller decided on, the MEC servers will speed
up the computation; therefore, the cost reduces, and vice versa—the cost will rise. Finally,
it is easy to observe that the cost of JOAD and that of JOADD grow with the increase of
the maximum transmission power. Although the delay cost of task transmission decreases
as the maximum transmission power increases, the total cost is linear with respect to
the transmission power and more than the delay cost, which is logarithmic with respect
to the power. Furthermore, due to eliminating the overestimation, JOADD is always
better than JOAD.
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Figure 6. The effect on cost of different maximum transmission power.

Figure 7 shows the performances of different algorithms under different numbers
of pieces of VUE. Obviously, the cost of all algorithms increases with the growth of VUE
quantity. The cost of the VUE computation strategy is linear with respect to the number of
pieces of VUE. The reason for the above phenomenon is that all pieces of VUE compute
their tasks using constant local computational resources. Moreover, there is almost no
difference between JOADD and JOAD when the number of pieces of VUE is small. In
contrast, the difference rises as the number of pieces of VUE increases. Specifically, the
cost of JOADD is about 30% less than that of the local computation strategy when the
number of pieces of VUE equals 10. Even though the cost always rises, JOADD improves
in performance significantly through balancing the load of MEC servers with the more
efficient policy.

Figure 7. The effect on cost of the number of pieces of VUE.

We studied the performance under different maximum computational resources of the
MEC server in Figure 8. The performance of the VUE computation strategy is independent
of the varying computational resources of MEC servers because the tasks are computed
by themselves. Thus, the cost of it is constant. As a result of offloading tasks to MEC
servers, the cost of JOADD and that of the local computation strategy decrease with the
growth of the maximum computational resources of MEC servers. In addition, the cost
of JOADD reduces faster than that of the other algorithms due to providing more flexible
and better allocation policy. Although JOADD has an almost identical performance to
the local computation strategy when the maximum computational resources of MEC
servers are 1 and 6 GHz/s respectively, the reasons are different. When the maximum
computational resources are equal to 1, the cost of JOADD and that of the local allocation
strategy have little difference for the lesser amounts of computational resources. Moreover,
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the cost of JOADD and that of the local computation strategy are more than that of the
VUE computation strategy due to the delay cost of the transmission. Besides, there is no
obvious difference between the performance of JOADD and that of the local allocation
strategy, because the computational resources are sufficient to satisfy the locally computing
requirement. Specifically, the cost of JOADD is down to around 15% than that of the local
computation strategy when the maximum computational resources equals 4 GHz/s.

Figure 8. The effect on cost of the different maximum computational resources of the MEC server.

Figure 9 shows the performance under the different vehicle speeds. Although the
speed is not the variable that needs to be optimized, it can affect the channel gain according
to (6). When the tasks are computed by VUE, no matter how fast the vehicles are, the
cost always is a constant. However, the performance of all offloading strategy declines as
the speed increases, no matter offloading to the local MEC server or other MEC servers.
Moreover, when the speed of the vehicles reaches the normal speed (60–80 km/h), the cost
of JOADD is less than that of the local offloading strategy by around 17%.

Figure 9. The effect on cost of the different speeds of vehicles.

6. Conclusions and Future Work

In this paper, we studied a joint optimization problem in a multi-cell scenario with
multiple pieces of VUE. This problem is one of the common NP-hard problems, which
cannot be solved in the polynomial time. Consequently, we rewrote the origin object with
the help of the concept of reinforcement learning. Then we proposed an algorithm based
on double DQN to jointly optimize the decision variables, including the task offloading
decision and the transmission power policy of VUE, and the computational resources
allocation policy of MEC servers. Furthermore, to accelerate the speed of the training
neural networks and reduce the latency of the algorithm, we cleaned the action space
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by discarding several inefficient actions. The simulation results demonstrate that our
proposed algorithm outperforms algorithms based on other reinforcement learning or
deep reinforcement learning methods. In the different scenarios, our proposes algorithm
improved the performance in terms of convergence, defined cost, and speed by around
30%, 15%, and 17% compared with other algorithms, respectively. Our work is helpful for
the applications of MEC in the V2X communications scenarios and breaking through the
bottlenecks of cloud-based processing, i.e., long latency and massive data transmission.

Although task offloading decisions based on the dynamic vehicle environment are
solved by our proposed algorithm basically, there are some limitations in our work to be
left for future work. This paper considered a binary decision to decide whether to offload
the whole task to MEC servers for calculation. However, the detailed offloading decisions,
i.e., partial offloading decisions, are practical but more intricate, and will be left to future
work. The optimization of the weights of delay and energy consumption will be left as our
future work as well.
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