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Abstract: Bioactive peptides play important roles in metabolic regulation and  

modulation and many are used as therapeutics. These peptides often possess disulfide 

bonds, which are important for their structure, function and stability. A systematic network 

of enzymes—a disulfide bond generating enzyme, a disulfide bond donor enzyme and  

a redox cofactor—that function inside the cell dictates the formation and maintenance of 

disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and 

proteins in prokaryotes and eukaryotes are remarkably similar and share several 

mechanistic features. This review summarizes the formation of disulfide bonds in peptides 

and proteins by cellular and recombinant machinery. 
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1. Introduction 

Disulfide bonds are common structural motifs in many bioactive peptides and proteins including 

hormones, neurotransmitters, growth factors, enzyme inhibitors, and antimicrobial peptides [1–3]. 

They play a critical role in maintaining the overall fold of the peptides and proteins and are thereby 

often important for the function and stability of proteins and peptides. In nature, such bonds are usually 

formed during the posttranslational modification stage with the assistance of appropriate enzymes and 

co-factors whereas, in the laboratory, disulfide bonds in native proteins can be formed randomly  

in basic buffer via air oxidation or by regioselective methods. This review discusses biological means 

of disulfide bond formation in biological systems. 

2. Folding of Peptides and Proteins in Normal Cells 

Cysteines, sulfhydryl-containing amino acids, which are located an appropriate distance or next to 

one another within a polypeptide chain, will form a disulfide bond through their oxidisable thiol 

groups. This bond will impart a fold in the chain of the protein or bend in its structure. Disulfide bond 

formation and its effect on protein folding has been a subject of great interest for at least half  

a century [4]. The first reported study by Anfinsen in 1973 revealed that disulfide bond formation 

inside the cell is spontaneous and that the amino acid sequence is sufficient to determine correct 

folding of the peptide or protein [4,5]. It was subsequently shown that there are several active  

disulfide bond-promoting enzymes and cofactors functioning in the cell [6,7] meaning that disulfide 

bonds are usually formed by a systematic network of intracellular enzymes [8]. These enzyme systems 

form a new disulfide bond or reshuffle the existing mispaired disulfide bond in substrate peptides 

(Figure 1). 

 

Figure 1. Schematic representation of general mechanisms by which a disulfide bond  

is formed by an intra-cellular enzyme-cofactor system: (A) Formation of new disulfide 

bonds; and (B) reshuffling of existing bonds by isomerase activity. 

Typically, these systems consist of a disulfide bond generating enzyme, a disulfide bond donor 

enzyme and a redox cofactor [9]. Interestingly, while these enzymes have very low homology, their 

functional motifs differ only marginally [10]. A minimum assembly requires C–(X)n–C (where  
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X = amino acid; n = 1–3) motif in the active site associated with a redox co-factor. In some 

periplasmic enzyme systems, an arginine residue has been observed to stabilize the charge transfer 

complex between the cysteine and co-factor [11–13]. 

2.1. Mechanisms of Disulfide Bond Formation 

The formation of disulfide bonds in bacterial (prokaryotic) cells is well characterized [14,15]. 

Generally, bacterial proteins are synthesized by ribosomal mRNA translation and disulfide bonds are 

subsequently formed as posttranslational modifications catalyzed by various enzymes located in the 

periplasm [16] or cytoplasm [17,18]. In higher animals the same process is performed in specific cell 

organelles, such as mitochondria, the endoplasmic reticulum (ER) and chloroplasts (Figure 2, Table 1). 

 

Figure 2. Cellular representation of enzyme systems and respective organelles. 

Table 1. Cellular compartments and enzyme systems for disulfide bond formation. 

Site 
Disulfide Bond 

Transferring Enzyme 
Disulfide Bond 

Generating Enzyme 
Cofactor 

Prokaryotic DsbA DsbB Ubiquinone 

Periplasm 
DsbC DsbD Ubiquinone 
DsbG DsbD - 

Endoplasmic 
reticulum 

PDI Ero1 FAD 
PDI Erv2 FAD 

Mitochondria Mia40 Erv1 FAD 

Chloroplast 

PSII LTO1 
Phylloquinone or 

Hydroquinone 

PSII LQY1 
Zn (believed to be  

a cofactor) 

PSI and PSII CYO1 
Zn (believed to be  

a cofactor) 

Extracellular space QSOX QSOX FAD 
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2.1.1. Periplasmic System 

In prokaryotic cells, disulfide bond formation predominantly occurs through a network of periplasmic 

enzymes, the thiol-disulfide oxidoreductase family, called disulfide bond forming enzymes (Dsb) [19,20]. 

A series of disulfide oxidoreductase enzymes, including DsbA, DsbB, DsbC and DsbD, have been 

identified over the last 25 years. Elucidation of the crystal structure of E. coli DsbA enabled 

investigation into the mechanism of disulfide bond formation [21]. This enzyme system introduces  

a disulfide bond to a newly synthesized protein by means of DsbA-DsbB and ubiquinone (UQ) [22]. 

DsbA is the primary disulfide bond donor and its active state is the oxidized form with the  

Cys30–Cys33 disulfide bond. It is kept in the oxidized, active state by membrane bound protein, DsbB, 

which transmits electrons from DsbA to UQ. DsbB has been predicted to have two periplasmic loops 

and each of the loops contains one pair of essential cysteines: Cys41–Cys44 and Cys104–Cys130. 

While the Cys104–Cys130 pair is involved directly in the disulfide exchange with DsbA, the  

Cys41–Cys44 pair is the target of oxidation by UQ [13,23–26]. 

DsbA is known to have no proofreading activity and can form incorrect disulfides in proteins with 

multiple cysteines. These incorrect disulfide bonds are corrected by a protein disulfide isomerase, 

DsbC, which is kept in the reduced and active configuration by a membrane-bound protein, DsbD. The 

DsbC/DsbD isomerization pathway is considered to be isolated from the DsbA/DsbB pathway [27–31]. 

2.1.2. Endoplasmic Reticulum System 

In organisms such as fungi and mammals where protein folding is compartmentalized and complex, 

disulfide bond formation takes place in specialized organelles such as the ER and mitochondria [32]. 

The main reasons are: first, the cytosolic environment is reducing due to the high concentration  

of thioredoxin reductase and glutathione reductase, and second, the availability of supporting systems 

for appropriate protein folding for disulfide bond formation [33,34]. Ero-1 is the predominant disulfide 

bond-generating enzyme in ER and Erv2 principally in fungal cells [35]. The most studied transfer 

enzyme is protein disulfide isomerase (PDI) and the most studied enzyme system in such cells is  

“PDI-Ero1” [36]. 

Even though there is very poor sequence homology, the structural features of Ero-1 and Erv2 are 

similar to DsbB where one “C–(X)n–C” motif generates a disulfide bond together with FAD (flavin 

adenine dinucleotide) and another “C–(X)n–C” maintains unidirectional propagation of redox equivalents. 

Moreover, both these enzymes are associated with FAD where an isoalloxazine ring is embedded within 

the active site [37]. In Ero-1, the first cysteine pair is located in the “C–X–X–C–X–X–C” motif which 

generates a disulfide bond [38,39]. In the second cysteine pair, “C–(X)n–C”, the residues between two 

cysteines varies between paralogs of Ero-1 [40]. Similarly, the catalytic core of Erv2 has “C–X–X–C” 

and “C–(X)n–C” (where n = 1–4) motifs. However, there is no arginine residue as is found in the active 

site of the DsbB enzyme. 

The mammalian ER contains two paralogs of Ero1, three Erv2-like proteins [35] and about twenty 

PDI family proteins [41]. Transfer of disulfide bonds is carried out by PDI. This oxidoreductase 

enzyme is found to play a role in isomerization as well as producing a disulfide bond in newly 
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synthesized peptides and proteins. PDI contains two thioredoxin-like domains, a and a', each of which 

contains an active site within the CXXC motif [42]. 

2.1.3. Mitochondria 

The mitochondrial inter-membrane space (IMS) has a similar environment to that of the cytoplasm 

of mammalian (eukaryotic) cells. Thus, there is a special enzyme system working in the IMS  

of mitochondria. The sulfhydryl oxidase Erv1 is a disulfide bond generating enzyme and the redox 

dependent receptor Mia40 acts as transfer protein [43–45]. Disulfide bonds are introduced to the 

substrate protein via a “C–P–C” motif of Mia40 [46,47]. Mia40, also known as Tim40, was identified 

as a protein that mediates sorting of Tim proteins [48,49] and the folding of coiled-coil helix  

coiled-coil helix (CHCH) proteins [43], such as COX [50,51] in mitochondria [52,53]. Thus, it is 

important to maintain the Mia40 CPC motif in an oxidized form, which is ensured by sulfhydryl 

oxidase, Erv1 [54,55]. As with Ero1, Erv1 also contains FAD as a cofactor, which generates a disulfide 

bond between “C–X–X–C” motifs of Erv1 [56,57]. 

2.1.4. Chloroplasts 

Like other eukaryotic organisms, disulfide bond formation in plant cells is carried out in the ER [58,59], 

and mitochondria [60,61]. However being photosynthetic cells, they possess chloroplasts where there 

is a huge burden to fold hundreds of enzymes in order to maintain photosynthetic activity [62]. Thus, 

chloroplasts contain a specialized enzyme system for protein oxidation and folding [63,64]. 

Vitamin K epoxide reductases (VKOR) are members of a large family of enzymes that exist  

in a wide range of organisms including bacteria, archaea, vertebrates and plants [65]. Members of this 

family can mediate disulfide bonding via different mechanisms [66]. However, they all comprise  

a conserved “C–X–X–C” motif similar to DsbB enzymes in bacteria. This can be oxidized to generate 

a disulfide bond by transferring electrons to quinone [67]. Arabidopsis VKOR homolog known,  

as lumen thiol oxidoreductase1 (LTO1) is a plant homologue associated with a quinone moiety  

in thylakoid. LOT1 reduces quinone to generate a disulfide bond in the “C–X–X–C” motif, which  

is then transferred to a luminal subunit of Photosystem II (PSII) [68]. There is evidence of quinones 

such as phylloquinone (vitamin K) [69] and hydroquinone [70] playing roles in the redox cycle. 

However, the mechanism of electron transfer is not clearly understood. 

Other known enzymes include low quantum yield of PSII1 (LQY1), a small Zn-finger protein 

involved in repair mechanisms by disulfide bond formation [71], and CYO1 (a Japanese word  

“shi-yo-u” which means cotyledon), an integral membrane protein of thylakoid associated with PSI 

and PSII [72]. Both of them possess a Zn finger motif [71,72], and are assumed to have PDI activity. 

However, a lack of structural information limits an understanding of the exact mechanism underlying 

the electron transfer. 

2.1.5. Extracellular Space 

Quiescin sulfhydryl oxidase (QSOX) is one of the most important enzymes that carries out disulfide 

bond formation and protein folding in extracellular and subcellular spaces. QSOX binds a FAD 
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cofactor [73] which enables the generation of disulfide bonds. It also contains thioredoxin [74] motifs 

which aid in transferring the disulfide to the substrate protein [75]. In mammals, cells secrete QSOXs 

into the extracellular space after modification by the Golgi complex [76]. Human QSOX1 has two 

thioredoxin domains, one of which contains a “C–X–X–C” motif similar to prokaryotic DsbA [74]  

and eukaryotic PDI [77]. 

3. Folding of Disulfide-Containing Bioactive Peptides and Proteins via Recombinant Technology 

Recombinant DNA-mediated polypeptide production remains a popular approach for obtaining 

properly folded disulfide-containing protein and peptides. Many reviews are available that address  

the effect of various parameters such as different host organisms [78,79], expression vectors [80], 

expression rate [81,82], and purification [83,84]. With respect to host systems, many cell lines are 

available for expressing recombinant peptides and proteins such as E. coli [85], Chinese hamster ovary 

cells [86], human embryonic kidney cells [87], and S. cerevisiae [88]. The wide range of molecular 

biology options with E. coli systems provides many options to ensure proper disulfide bond  

generation [89,90]. E. coli expression is fast and inexpensive to scale-up but not all proteins are 

amenable to expression in this system [91,92]. 

A major challenge in obtaining a recombinant protein is correct folding. A protein synthesized  

in a recombinant cell is often produced in reduced form, which is then oxidized (refolded) using 

suitable folding conditions [93,94]. The target crude peptide/protein can be obtained in reduced form 

and then refolded with the aid of various enzymes as disulfide catalyst systems [95,96]. Alternatively, 

oxidative folding is possible without the use of any enzyme [97,98]. However, such refolding can  

be a problematic step. Misfolding is a major issue with cysteine-containing polypeptides resulting  

in low yields. This limitation has necessitated the development of new methodologies to enable the 

acquisition of correctly folded protein or peptide in its native form in high yields. To assist the 

refolding, various tactics have been employed including inclusion body formation [99,100],  

co-expression of supporting enzymes [101,102] and chemical assistance [100].  

3.1. Co-Expressing Supporting Enzymes/Peptides 

In a recombinant DNA cell, a nascent polypeptide is produced by translation. It is then either folded 

in the cytoplasm or translocated to a suitable oxidative environment such as the bacterial periplasm. 

Disrupting reducing pathways in the cytoplasm has been shown to allow disulfide bond formation  

in the cytoplasm of E. coli [103]. Furthermore, co-expression of Dsb enzymes was found to improve 

the yield of desired folded protein [89]. These approaches have been extensively used in the expression 

of disulfide-containing proteins such as chitinase [104], endopolygalcturonase, [105] and anti-freeze 

proteins [106]. Overexpression of thioredoxin has been shown to act as an oxidant, helping to maintain 

oxidative conditions in the cytoplasm [107] and resulting in improved yields of folded proteins [108,109]. 

The most common practice for expressing disulfide-containing proteins in bacterial hosts is to “hijack” 

the membrane translocation machinery and secrete the polypeptide after translation [110]. A precursor 

peptide is produced which can be translocated and then folded into its active form. In this case, peptide 

oxidative folding takes place conveniently but the crucial barrier is the translocation of nascent peptide 

into the periplasm. A leader peptide sequence is essential for this purpose. The correlation between 
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hydrophobicity of the leader peptide and export mechanism can be a more efficient means of 

translocating the precursor peptide [111]. A leader peptide could be an endogenous signal peptide 

sequence [112–114], a phage-pIII leader peptide [115] or even a designed synthetic sequence [116]. 

Another more convenient tactic is the folding of a precursor peptide assisted by co-expression of 

disulfide bond forming enzymes [117], foldases [118] or even periplasmic chaperones [119]. 

Although continuous optimization has led to improved yields of expressed and folded protein, there 

are many more challenges in expressing multiple enzymes/peptides in a recombinant system. These 

include nonspecific binding of chaperones [120,121], incorrect folding of soluble target protein [122] 

or direct excretion of translation product into the culture medium [123,124]. Thus at times it can  

be advantageous to use chemicals to assist the folding of recombinantly-produced peptides. 

3.2. Chemical Assistance in Recombinant Folding 

Bearing in mind that the main obstacle to the expression of cysteine-containing recombinant 

proteins is a pronounced tendency to aggregate [125], low molecular weight chaperones have been 

shown to aid the folding of target proteins either by assisting cellular enzymatic systems or acting  

as independent chaperones [126,127]. Examples of this approach include the folding of immunotoxins  

by glycine betaine [128], cytochrome by sucrose [129], and proinsulin by L-arginine [130]. Recent 

studies have also shown that small molecules can be used to improve yields of recombinant folded 

peptides [131–133]. These include urea and lithium chloride which can minimize the extent of side 

products generated during oxidative folding [134]. The use of glutathione ester instead of glutathione 

contributed to improved folding ability of egg lysozyme [135]. Water-soluble reagents such as 

selenoxides have been successfully used in synthetic as well as recombinant peptides and protein [136]. 

4. Conclusions 

Disulfide bond formation is critical for the proper folding of bioactive peptides and proteins.  

The increasing understanding of the intricate, complex in vivo disulfide bond forming process is 

providing important insights into the mechanisms of diseases that are caused by protein misfolding and 

may contribute to the development of corrective measures with therapeutic applications. This review 

aims to provide readers with comprehensive details and updated knowledge on how the disulfide 

network is formed and maintained in biological systems. 
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