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A B S T R A C T

Weeds might be defined as destructive plants that grow and compete with agricultural crops in order to achieve
water and nutrients. Uniform spray of herbicides is nowadays a common cause in crops poisoning, environment
pollution and high cost of herbicide consumption. Site-specific spraying is a possible solution for the problems
that occur with uniform spray in fields. For this reason, a machine vision prototype is proposed in this study based
on video processing and meta-heuristic classifiers for online identification and classification of Marfona potato
plant (Solanum tuberosum) and 4299 samples from five weed plant varieties: Malva neglecta (mallow), Portulaca
oleracea (purslane), Chenopodium album L (lamb's quarters), Secale cereale L (rye) and Xanthium strumarium
(coklebur). In order to properly train the machine vision system, various videos taken from two Marfona potato
fields within a surface of six hectares are used. After extraction of texture features based on the gray level co-
occurrence matrix (GLCM), color features, spectral descriptors of texture, moment invariants and shape fea-
tures, six effective discriminant features were selected: the standard deviation of saturation (S) component in HSV
color space, difference of first and seventh moment invariants, mean value of hue component (H) in HSI color
space, area to length ratio, average blue-difference chrominance (Cb) component in YCbCr color space and
standard deviation of in-phase (I) component in YIQ color space. Classification results show a high accuracy of
98% correct classification rate (CCR) over the test set, being able to properly identify potato plant from previously
mentioned five different weed varieties. Finally, the machine vision prototype was tested in field under real
conditions and was able to properly detect, segment and classify weed from potato plant at a speed of up to 0.15
m/s.
1. Introduction

Weeds are among one of the biggest challenges in agriculture given
their direct competition with crops in consuming resources such as soil
nutrients and water. Weeds tend to follow a pseudo random distribution
in various patches of land in agricultural fields. Proportional to the type,
volume and distribution of weed in field and also the characteristics of
soil –like soil humidity, nutrients in soil, and soil pH– so is the level of
agricultural crop product performance influenced (Papamichail et al.,
2002). An effective and applicable management that is consistent to the
correct period of fighting against weeds must be used in order to succeed.
Zimdahl (1993) believes that the best period for fighting against weeds is
the period starting after cultivating seeds and lasting until the
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competition of weeds affect the performance of agricultural crop yield.
This period is different regarding the type of weed and cultivated
product.

Therefore, these conditions must be carefully investigated before
determining the method and calendar in fighting weeds. Manual method
is the most elementary method for fighting weeds. In this method, the
removal of weed from field is performed using a human-operated tool.
This method is not applicable for current wide lands because of high cost,
being boring and needing high human force. Mechanical methods (using
tractor and agricultural implements) are applicable for fighting with
weeds for row crops, such as corn, sugar beets, wheat and potatoes.
About a 50% of weeds between two rows of crop can be controlled using
this methodology.
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Eyre et al. (2011) believe that the use of mechanical methods has
negative effects on agricultural products and environment, since they
destroy agricultural crops and generate soil erosion. Use of chemical
methods became common concurrent with herbicides discovery during
the end of 1940s and this method is still popular among farmers (Gianessi
and Reigner, 2007).

According the study of Gianessi and Reigner (2007), the use of her-
bicides in the state of Mississippi had a $10M saving as compared to
manual control of weeds. Despite herbicides were successful in control-
ling weeds, they had destructive effects on environment, human health,
animals and plants. For this reason, different researchers are nowadays
following several methods that may minimize these destructive effects of
general herbicide application. Site-specific spraying can be considered as
one of the most important methods that is being investigated by different
researchers these days. In this method, herbicide spray is minimized and
only applied where necessary, only to weeds. In order to make this
method operational, machine vision is often a proper choice among re-
searchers in the field.

Machine vision has numerous applications that have been previously
mentioned by several authors, such as (Banerjee et al., 2018; Mukherjee
et al., 2017a, 2017b; Sudeep et al., 2018; Bhattacharyya et al., 2018), to
cite a few. In addition, neural networks play a main role in machine
vision field. Application of Neural Networks has been previously
mentioned by various authors, such as (Jayasinghe et al., 2019; Kim
et al., 2019; Dash et al., 2018), to cite a few.

Generally speaking, machine vision systems are often formed by two
main parts. First part is responsible for identifying plants and extracting
features from them while second part is responsible for their classifica-
tion (Hamuda et al., 2016). In this regard, a number of researchers have
identified weeds by using spectral reflectance, see Pantazi et al. (2016)
for instance. They implemented a method based on machine vision by
emphasizing that weeds have a destructive effect on yield of agricultural
products and were able to identify maize plant and the following ten
weed types: Ranunculus repens, Cirsiumarvense, Sinapisarvensis, Stellar-
iamedia, Tarraxacumofficinale, Poaannua, Poligonumpersicaria, Urticadio-
ica, Oxaliseuropaea and Medicagolupulina. In their suggested method,
weeds and corn are separated using the difference in spectral reflection.
Spectral features were extracted using an imaging system of high-spectral
response mounted on a platform. The speed of platform movement was
0.09 m/s, 164 samples were used from maize plant and also for each
weed type (110 train and 54 test samples) for classification purposes.
They used four mixtures of Gaussians classifiers, self-organizing feature
maps (SOFM), support vector machine (SVM) and auto-encoder network
as classifiers. Results showed that the methods of mixture of Gaussians
and SOFM identified maize crops with 100% accuracy; while the
methods of SVM and auto-encoder network did with accuracies of only
29.63% and 59.26%, respectively. Correct classification percentage for
different species of weed was in the range 31%–98% (mixture of
Gaussians), 53%–94% (SOFM), 12.98%–68.52% (SVM) and 9.63%–

68.52% (auto-encoder network). In summary, suggested method has
maximum accuracy above 90% only in identifying 4 weed types; thus, in
the event of being used in field, system error is rather high in identifying
the remainder weed types.

The use of color features and their combinations was intended in
order to separate weed and crop in (Kazmi et al., 2015). They identified
sugar beet and thistle weed using vegetation indices. They used an or-
dinary visible-range camera under natural light conditions and took 474
photos of sugar beets and thistle weed. These images were divided based
on the level of illumination, age and scale, into six different groups. First
and second groups include seventh week cultivated sugar beet date,
location of camera 45 cm above ground level and under both sunlight and
shadow conditions. Third and fourth groups comprise tenth week sugar
beet in shadow with camera at distances of 60 and 70 cm above ground
level; finally, fifth and sixth groups include twelfth week sugar beet,
position of camera at 70 cm above ground level and under two illumi-
nation conditions of direct sunlight and shadow. A total of 14 color
2

indicators were extracted from each image. Among these 14 extracted
features, 3 selected features were used for classification purposes,
comprising excess green, green minus blue and color index for vegetation
extraction features. Two methods of linear discriminant analysis and
Mahalanobis distance were used to classify both types of plants. Results
showed that the classifier system performed with an accuracy of 97.83%,
in the best case. This accuracy is acceptable, but using color indices solely
for identifying several kinds of weed in open-air field may not be
sufficient.

Using machine vision for fighting weeds between rows in row crops is
under attention of many researchers. Generally speaking, fighting weeds
between rows in row crops includes two main stages. First stage is the
identification of crop row and the second is the identification of plants
between each two adjacent rows. In this regard, Tang et al. (2016), after
investigating uniform herbicide spraying on all field surface, concluded
that this spray method causes the pollution of environment and decreases
the quality in agricultural crops, in addition to wasting herbicide and
working forces; therefore, they suggested the automatic identification of
weeds and selective spraying for sustainable development of agriculture.
Their research was implemented concerning site-specific spray under
different light conditions in maize farms. In this research, 1300 photos
were taken under different light conditions (sunny and cloudy). Camera
was installed on tractor console. For identifying central line of crop row,
the combination of two methods (vertical projection and linear scanning
methods) was used. The classic weeds infestation rate (WIR) method was
used for real-time identification of crop rows via minimizing the rate of
Bayesian error. Results showed that the suggestedmethod has superiority
as compared to Bayesian and SVM. Results are not applicable for iden-
tifying different weed types from each other, because only crop row is
identified and all plants between rows are identified as weeds, regardless
of their type.

Guerrero et al. (2012) performed a study on separation of green-color
plants from background. They believe that, automatic separation of weed
and crop in precision agriculture is a very important issue, being inves-
tigated by different researchers these days. Nowadays, optical imaging
sensors have an increasingly important role; authors suggested a new
method based on SVM for identifying plants using masked and
un-masked green color spectral component. Learning phase of suggested
method includes three main stages:

1. Identification of greenness using the value of threshold determined
via Otsu's method for obtaining binary image (two classes were
determined).

2. Identification of support vector used for each class using SVM.
3. Calculation of mean value for all sets of support vector that causes the

creation of a valid threshold for separating masked and unmasked
plants.

Results showed that the performance of the suggested system is
acceptable and has no problem to be used in machine vision systems.
However, this method has only the capability of separating green plants
from background and needs to be further extended for proper use in
specific location operations.

Herbicide application is among most important issues that can
directly affect human health. Herbicides have long been used as one of
the main methods to eliminate weeds. With the development of mecha-
nization, herbicides were applied uniformly in all parts of farms land.
Two major drawbacks of uniform spraying are as follows: first, there may
be some parts of land which lack of weeds, however, they are also
sprayed unnecessary due to uniform field spraying. Second, there is no
possibility of weed-type dependent spraying and this ultimately increases
the final costs of agriculture yield production. In order to overcome the
shortcomings mentioned, the use of precision agriculture is recom-
mended. Precision agriculture has different roles including optimal site-
specific spraying of different herbicides in cultivable lands. Therefore,
the alternative method used in precision agriculture is consistent
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Figure 2. Specific hand-build chamber for potato field filming purposes.
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spraying with the type, location and number of weeds. As a consequence,
the type, location and number of weeds need to be identified before
spraying.

The aim of this study is to present an automatic machine vision
prototype in the visible range based on video processing and network-
cultural classification algorithm for accurate identification and classifi-
cation of Marfona potato plant and five weed species, as listed next:
Malva neglecta (mallow), Portulaca oleracea (purslane), Chenopodium
album L (lamb's quarters), Secale cereale L (rye) and Xanthium strumarium
(coklebur),which could exist in stack and inside crop row in potato field,
in order to detect, segment and classify them for potential site-specific
herbicide spraying application, among other possible purposes.

2. Materials and methods

The proposed weed detection, segmentation and classification system
prototype has two main sub-systems, comprising video processing and
3

classification. Figure 1 shows the flowchart of proposed visible-range
automatic video identification and classification of weed species in po-
tato field prototype.
2.1. Farm settings and data collection

First stage in designing the proposed machine vision system prototype
for potentially spraying different herbicides on different weed is data
collection. For this reason, first a specific purpose chamber was designed
(Figure 2) in order to properly record video data. This chamber is
constituted of two main parts: lighting and video camera. Camera used
was model DFK 23GM021, 1/3 inch Aptina CMOS sensor (MT9M021),
1280�960 (1.2 MP), up to 115 fps, ImagingSource, GigE color industrial
camera, Germany. Lighting condition was set up by white color LED
lamps with an intensity of 327 lux. During filming, the camera was
attached to body tightly at a fixed height of 45 cm from ground level. An
oilskin enclosed all chamber to avoid environmental lights from entering
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Figure 3. Four video frame examples of potato plant and five different invasive species recorded in potato field with DFK 23GM021, 1/3 inch Aptina CMOS sensor,
1280�960, ImagingSource, GigE (Germany) color industrial camera: (a) left: Malva neglecta and Secale cereale L, (a) right: Portulaca oleracea and Xanthium strumarium,
(b) left: Solanum tuberosum (Marfona potato plant) (b) right: Chenopodium album L.

Table 1. English and scientific name of five different potato field invasive (weed) plant species and the number of weed plants in each class (totaling 4299 invasive
plants).

English name Plant specie

rye lamb's quarters purslane mallow cocklebur

Scientific name Secale cereale L Chenopodium album L Portulaca oleracea Malva neglecta Xanthium strumarium

Number 654 509 202 1502 1432
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the chamber. Two agricultural fields of Marfona potato variety were
selected for filming (total area of 6 ha) in Kermanshah province, Iran
(longitude: 7.03�E; latitude: 4.22ºN). It is worth noting that filming was
performed in the sixth week after potato seedtime. Filming speed was set
at 0.15 m/s, approximate. Fields had 5 different weed types (Figure 3).
Table 1 shows common English and scientific names as well as number of
different weed plants used in this work, totaling 4299 different plants
among the five weed species.
2.2. Segmentation and post-processing

Videos recorded in farms need to be analyzed at frame level. Indeed,
various image processing operations must be applied on them. The first
step is image segmentation. Generally speaking, segmentation comprises
two stages. First segmentation stage is plant separation from background
and second segmentation stage is object identification (object defined as
continuous pixels in a frame) in each frame. Regarding background
removal, a proper separation threshold was applied. In this study, after
investigating different frames and applying different thresholds, we
concluded that best fixed threshold can be defined in Eq. (1):

Rði; jÞ�Gði; jÞ j Bði; jÞ � Gði; jÞ (1)

Eq. (1) states that the pixels with green component larger or equal to
red or blue components, will remain in image (foreground) and other-
wise pixels will be considered as background and thus removed from
image. Regarding object identification, all available objects in a frame
are identified and kept in order to perform other subsequent image
processing operations. Figure 4 shows an object identification
4

segmentation example. As it can be observed in this figure, four objects
are identified. Each object must be converted to binary image in order to
properly extract shape features; during segmentation state, some noise is
still visible on image that must be removed using post-processing oper-
ations. In this study, the noise removal was performed using a closing
operation and a binary image was generated with high accuracy. Figure 5
shows an example of different image segmentation stages. Finally, a total
of 4784 video frame objects were recognized after segmentation
operation.

2.3. Feature extraction

In order to identify objects extracted from video frames, there is the
need to use features extracted from objects. For this purpose, object
features were conveniently extracted from five different feature types:
texture features based on the gray level co-occurrence matrix (GLCM),
color features, spectral descriptors of texture, moment invariants and
shape features.

2.3.1. Texture features based on GLCM
GLCM texture features are extracted based on loci of pixels with equal

value. For example, consider the matrix shown in Figure 6(a); this matrix
has four gray levels (1, 2, 3, 4). Figure 6(b) shows horizontal co-
occurrence matrix corresponding to Figure 6(a) matrix. Co-occurrence
matrix is a 4�4 size matrix, since there are four different gray levels.
In Figure 6(b) matrix, the element (1,1) is equal to 1, because there is
only one state in Figure 6(a) in which a pixel with the value 1 is in the
right side of another pixel with value 1. Several features are extractable
based on this matrix. In this study, eight features including, difference



Figure 4. An example of object identification: (a): original image {original.fig}, (b): grayscale image {gray.fig} and (c): binary segmented image {binay.fig}. Frame
image objects Cartesian coordinates are also displayed. The origin of coordinates in set in the upper left corner of image. Note: Corresponding interactive Matlab .fig
figure file names, are indicated between brackets.
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variance, correlation, sum of squares, sum of variances, inverse differ-
ence normalized momentum, cluster prominence, standard deviation and
the coefficient of variation, are extracted, as shown next.

After calculating co-occurrence matrix gði;jÞ, normalization step takes
place using Eq. (2) (Marques, 2011), and further used for feature
computation as shown next:

Ngði; jÞ¼ gði; jÞP
i

P
jgði; jÞ

(2)

where gði; jÞ is co-occurrence matrix and 0 � i; j � L� 1 being L the total
number of gray levels.

‒ Difference variance (DVAR): difference variance is a measure of
local variability that is calculated using Eq. (3):

DVAR¼ �
XL�1

i¼0

px�yðiÞði� DENTÞ2 (3)

where DENT is the so-called Difference Entropy defined next:

DENT ¼ �
XL�1

i¼0

px�yðiÞln
�
px�yðiÞ

�
(4)

px�yðiÞ in Eq. (4) is in turn calculated using Eq. (5), from normalized co-
ocurrence matrix:
5

px�yðiÞ¼
XL�1 XL�1

Ngði; jÞ ji� jj ¼ k; for k¼ 0; 1; 2; 3;…; L� 1 (5)

i¼0 j¼0

‒ Variance: Variance shows distribution of the degree of dispersion of
gray levels in co-occurrence gray level matrix. If gray levels of image
are severely extended, sum of squares is big (Abouelatta, 2013).
Variance is calculated using Eq. (6).

Variance¼
XL�1

i¼0

XL�1

j¼0

ði� μÞ2Ngði; jÞ (6)

being μ the mean value.

‒ Standard deviation: is defined as the square roof of variance:

Standard deviation ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p
(7)

‒ Correlation: is a degree of linear dependency in gray levels on
neighbor pixels and/or specific points. Correlation with a value near
to one shows linear relation between gray levels of pixel pairs. Cor-
relation is calculated as shown next using Eq. (8):
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Figure 6. An example of the method for co-occurrence matrix creation in the
GLCM texture features framework: (a): original matrix, (b): co-ocurrence matrix.
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Correlation¼
XL�1 XL�1 Ngði; jÞ ði� μiÞ j� μj

σ σ
(8)
i¼0 j¼0

� � ��

i j

where μi and μj are mean and σi and σj are standard deviation values of
rows and columns, respectively, in normalized co-ocurrence matrix Ngði;
jÞ.

Co-ocurrence matrix mean is defined next in Eq. (9):

mean¼ μ ¼
XL�1

i¼0

XL�1

j¼0

iNgði; jÞ (9)

‒ Sum of variance: sum of variance is total difference to mean value
and is defined as shown in Eq. (10) (Shidnal, 2014):

Sum of variance¼
X2L

i¼2

ði� SENTÞpxþyðiÞ (10)

where SENT is Sum Entropy defined next:
6

SENT¼ �
X2L

pxþyðiÞln
�
pxþyðiÞ

�
(11)
i¼2

being pxþyðiÞ in turn defined next:

pxþyðkÞ¼
XL�1

i¼0

XL�1

j¼0

Ngði; jÞ; iþ j¼ k; k¼ 0; 1; 2; 3;…; 2ðL� 1Þ (12)

‒ Inverse difference normalized momentum (IDN): if the pixels of
gray level co-occurrence matrix are similar to each other, IDN has a
high value. Therefore, when the image is locally homogeneous, this
value will be big (Abouelatta, 2013). IDN is computed by using Eq.
(13) shown next:

IDN¼
XL�1

i¼0

XL�1

j¼0

Ngði; jÞ
1þ ði� jÞ2=L2

(13)

‒ Cluster prominence: this is a measure of the degree of asymmetry in
image; when value of cluster prominence is high; image has lowest
asymmetry and vice versa. Cluster prominence is defined next in Eq.
(14) (Yang et al., 2012):

Cluster prominence¼ �
XL�1

i¼0

XL�1

j¼0

�
iþ j� μi � μj

�4
Ngði; jÞ (14)

‒ Variability coefficient: this is defined as the ratio of the standard
deviation to co-occurrence matrix mean, see Eq. (9).

2.3.2. Texture spectral descriptors
Spectral measurement of texture is based on Fourier spectrum. This

spectrum describes alternative patterns and/or almost any 2-dimensional
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alternation in an image. Fourier spectrum is better described in the polar
coordinate system (based on radius r and angle θ), because anticipation
of spectral features with spectral description in polar coordinates as
Sðr; θÞ function is simple. In previous function, S is spectral function and r
and θ are variables of polar coordinate system; therefore, Sðr; θÞ function
can be considered as two one-dimensional functions SθðrÞ and SrðθÞ for
each direction θ and each frequency r, respectively. SθðrÞ shows a spec-
trum behavior along radius for constant values of θ, while SrðθÞ shows
spectral content along a circle centered at the origin of coordinates for
constant values r. Eqs. (15) and (16) result in overall texture description
based on the following two functions:

SðrÞ¼
Xπ

θ¼0

SθðrÞ (15)

SðθÞ¼
XR0

r¼1

SrðθÞ (16)

where R0 is the radius of a circle with center at the origin; this way, three
features including mean, standard deviation and variance, were calcu-
lated for SðrÞ and SðθÞ in this study.

2.3.3. Color features
One of the most important feature types for segmentation and also

classification of different plants is color features. Color features in
different color spaces give different results. It is well-known that if
filming is performed using RGB color space, other color spaces like HSV,
HIS, CMY, YCbCr and YIQ can be directly obtained using different matrix
convert equations from RGB color space color coordinates. In this study, a
total of 13 features were extracted from different color spaces. Extracted
color features follow next: standard deviation of hue component (H) in
HSV color space, mean value of hue component (H) in HSI color space,
mean yellow component (Y) in CMY color space, standard deviation of
yellow component (Y) in CMY color space, mean of all three components
in CMY color space, computed as CþMþY

3 , standard deviation of saturation
component (S) in HSV color space, mean value of hue component (H) in
HIS color space, mean blue-difference chrominance Cb component in
YCbCr color space, standard deviation of in-phase component (I) in YIQ
color space, mean green component (G) in RGB color space, standard
deviation of green component (G) in RGB color space, standard deviation
of blue component (B) in RGB color space, and standard deviation of red
component (R) in RGB color space.

2.3.4. Moment invariants
Direction of growth for plant leaves in agricultural fields is variable;

for example, a leaf can be oriented towards east and another one towards
west on the same stem of plant. At the same time, the size of plants is also
different, some of them are big, some average and some small. Given
camera movement in farm for site-specific management of weeds, the
above mentioned limitations are hard to solve since recording camera in
farm is moving; therefore, it seems reasonable that features that are in-
dependent of size and direction may have application in classification.
For this reason, in this study we used five moment invariants features:
first, second, sixth, seventh moment invariants and also the difference of
first and seventh moment invariants (Gonzalez et al., 2004). Eqs. (17),
(18), (19), (20), (21), (22), (23), (24), and (25) calculate these features,
as shown next:

φ1 ¼ ηpq þ η02 (17)

φ2 ¼ðη20 � η02Þ2 þ 4η211 (18)
7

φ6 ¼ðη20 � η02Þ
�ðη30 þ η12Þ2 �ðη21 þ η03Þ2

�þ 4η11ðη30 þ η12Þðη21 þ η03Þ

(19)

φ7 ¼ð3η21 � η03Þðη30 þ η12Þ
�ðη30 þ η12Þ2 � 3ðη21 þ η03Þ2

�

þ ð3η12 � η30Þðη21 þ η03Þ
�
3ðη30 þ η12Þ2 �ðη21 þ η03Þ2

�
(20)

where ηpq is defined as in next Eq. (21):

ηpq ¼
μpq
μγ00

p; q ¼ 0; 1; 2;… (21)

where

γ¼ pþ q
2

þ 1 pþ q ¼ 2; 3; 4;… (22)

Value of ηpq is calculated as shown next:

μpq ¼
X

x

X

y

ðx� xÞpðy� yÞqf ðx; yÞ (23)

where

x¼m10

m00
; y ¼ m01

m00
(24)

Finally, mpq in Eq. (24) is defined as follows:

mpq ¼
X

x

X

y

xpyqf ðx; yÞ p; q¼ 0; 1; 2; ::: (25)

2.3.5. Shape features
Because of the difference in shape of leaves in different weed plants,

using shape features may be beneficiary for their classification. For this
reason, 8 shape features were extracted: length, width, area, perimeter,
logarithm of length to width ratio, ratio of shape perimeter to outer
rectangle perimeter including object shape inside, width to length ratio,
and ratio of area to length, in accordance to the following definitions
(Gonzalez et al., 2004):

‒ Length: main oval axis that has second equal momentum with the
intended area (pixels).

‒ Width: minor oval axis that has second equal momentum with the
intended area (pixels).

‒ Area: number of existing pixels inside an image region.
‒ Perimeter: perimeter of an area is calculated counting the number of
pixels on its boundary.
2.4. Feature selection

Important criteria in online operations is processing time; therefore,
computation time must be minimized as much as possible. Site-specific
spray is one of online operations; using all extracted features increases
processing time and also may create mistake for classification system due
to poor generalization capability. For this reason, selection of features is
an appropriate way to solve this problem. Different meta-heuristic
methods exist for feature selection. In this paper, three methods were
used: hybrid artificial neural network - ant colony (ANN-ACO), hybrid
artificial neural network - simulated annealing (ANN-SA) and hybrid
artificial neural network - genetic algorithm (ANN-GA), as will be
described soon after.

The procedure has two parts: first all extracted (computed) features
are considered as a vector, and in the next step, smaller vectors of fea-
tures, for example, vectors with feature numbers 8, 6, 10, and others are
selected as being highly discriminant by means of various suboptimal



Table 2. Six color video frame image discriminant features selected by three
hybrid meta-heuristic methods: ANN-ACO, ANN-SA and ANN-GA.

Method Selected discriminant features

hybrid ANN-ACO length to width ratio, variance difference,
standard deviation H in HSV color space,
correlation, mean Y component in CMY
color space, sum of squares

hybrid ANN-SA mean CMY components, standard deviation
S in HSV color space, sum of variance, inverse
difference normalized momentum, cluster
prominence, variance difference

hybrid ANN-GA standard deviation of S component in HSV color
space, standard deviation of S component in HIS
color space, mean Cb component in YCbCr
color space, standard deviation of I component in YIQ color space
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feature selection methods, including GA, ACO and SA, and then those
selected features are sent as input to the multilayer perceptron neural
network for classification purposes. In fact, the input of the neural
network are the selected feature vectors from the GA, ACO and SA
methods, and network output are the classification of the six different
plants considered (five weed plants and Marfona potato plant). Input
samples to the network are split by a ratio of 70% training, 15% vali-
dation and remaining 15% testing (disjoint) sets. The mean square error
of each input vector into the multilayer perceptron neural network is
recorded and finally the vector having the least mean square error, is
chosen as the optimal vector and features within that vector are selected
as effective discriminant features, discarding all other features.

2.4.1. Ant colony (ACO)
Ant colony (ACO) is an optimization technique used for solving

optimization problems. It is based on ant movement in finding nutrients.
Ants travel a path in order to find food and they leave a material known
as pheromone proportional to the length of path and quality of nutrients.
Other ants smell pheromone and travel the same path and therefore the
value of pheromone is amplified; this way, the paths that have shorter
length from nest to food source have higher amount of pheromone and
are selected as optimal paths (Lin et al., 2016).

2.4.2. Genetic algorithm (GA)
Genetic algorithm (GA) is one of the most powerful optimization

methods inspired by nature behavior. Indeed, this algorithm is estab-
lished based on natural complement principles. As a general law, only
those strongest animals win in the fight on food and life and therefore
have the possibility of breeding. This superiority comes from individual
features and their genes. By breeding, these genes are replicated and
better children are generated. Therefore, by consecutive implementation
of selection of species, best population and breeding via them, new
populations with higher consistency and survival probability are created
resulting in better and more resources available by the members of so-
ciety (Garg, 2016).

2.4.3. Simulated annealing (SA)
Simulated annealing (SA) is based on annealing operation over

metals. Annealing operation is performed for achieving the most stable
and lowest energy state among available stable states for material. First,
the material is melted and then the temperature is slowly decreased step
by step (in each stage of temperature decrease, operation of temperature
decrease is stopped whenever material temperature reaches a low energy
equilibrium state) and this is continued until the material becomes solid.
If the level of temperature decrease is performed in a convenient manner,
annealing performance reaches to its optimal goal. On the contrary, if the
material is rapidly cooled, the body reaches a near to but sub-optimal
state that has not minimum energy (Zameer et al., 2014).
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2.5. Classification

An important last stage in machine vision systems is classification
stage. Indeed, discriminant features selected in previous stage are sent to
classification unit as input in order to identify different plants based on
those input features. If an appropriate classifier is not used, the machine
vision system will behave poorly. Different classifiers exist in statistical
areas and artificial intelligence for classification. Results showed that if
the amount of data is high, number of inputs in classifier is high and/or
the number of classes is high, then most artificial intelligence methods
behave better than statistical methods. In the current study, the hybrid
artificial neural network -cultural algorithm (ANN-CA) classifier is used
for classification purposes. Cultural algorithm performs optimization
actions similar to genetic algorithm. Whereas in genetic algorithm, nat-
ural and biologic evolution is intended, in cultural algorithm, cultural
evolution and influence of cultural and social space is considered and
optimized. In a society, the person who is more under attention and is
more recognized has more influence on cultural evolution. For instance,
influencing people may influence on the way of talking, walking and
dressing up, to name a few. Final aim of CA is finding these elites and
their development for cultural complement (Ali et al., 2016).

The multilayer perceptron neural network has five adjustable pa-
rameters in MatLab, which determine the accuracy of the network based
on its optimal setting, including: the number of neurons, the number of
layers, the transfer function, Backpropagation network training function,
and Backpropagation weight/bias learning function. In this study, the
number of neurons in each layer could be at least 0 and maximum 25; the
number of layers at least 1 and maximum 3; the transfer function for each
layer was selected from the following transfer functions list (MatLab):
logsig, purelin, hardlim, compet, hardlims, netinv, poslin, radbas, satlin, sat-
lins, softmax, and tribas; Backpropagation network training function was
selected from: trainlm, trainbfg, trainrp, traingd, traincgf, traincgp, traincgb,
trainscg, train, traingda, traingdx, trainb, trainbfgc, trainbr, trainbuwb, trainc,
traingdm, trainr, and trains (MatLab). Finally, Backpropagation weight/
bias learning function was chosen from: learngdm, learngd, learncon,
learnh, learnhd, learnis, learnk, learnlv1, learnlv2, learnos, learnp, learnpn,
learnsom, learnsomb, and learnwh (MatLab). The objective of using a CA
algorithm is to send different vectors among these parameters to sub-
optimal adjust the parameters of the multilayer perceptron neural
network. For example, consider vector v ¼ [5,6,12, tansig, poslin, tribas,
trainlm, learnk]. Previous vector selection implies that the structure of the
determined optimal neural network by the CA algorithm would have:
three hidden layers with number of neurons 5, 6, and 12, respectively,
and transfer functions are tansig, poslin, and tribas, respectively. It also
shows that Backpropagation network training function and Back-
propagation weight/bias learning function are trainlm and learnk,
respectively. After each vector is sent as input to the CA algorithm, the
mean of the mean square error of each tested vector will be recorded, and
finally the vector that has least average of squared error is chosen as an
optimal vector, being its members selected as optimal values of the
adjustable network parameters. Finally, at each stage in which the
selected feature input vector is sent to the multilayer perceptron neural
network classifier, the total input data samples are divided into three
disjoint training (70%), validating (15%), and testing (15%) sets.

3. Results and discussion

3.1. Selection of discriminant features

Selection of effective discriminant features is one of the most
important stages in machine vision system design. The lower the number
of features is, the higher the speed of machine vision system is. As
mentioned before, three methods are used in this study for selecting
effective features: hybrid ANN-ACO, hybrid ANN-SA and hybrid ANN-
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GA. Table 2 shows selected features using three previously mentioned
methods.

Now, in order to find most effective features among these three
groups, each group of features was sent for classification as input to
hybrid ANN-CA. Meta-heuristic algorithms including cultural algorithm
have different parameters which are often determined using try and
error, and therefore it is possible that these parameters are not optimal.
For this reason, particle swarm algorithm was used in this study for
finding optimal values of the two parameters in cultural algorithm, i.e.
alpha coefficient (a coefficient similar to mutation in genetic algorithm)
and acceptance ratio (number of individuals influenced on population).
Figure 7 shows three-dimensional graph for mean square error (MSE)
over these two parameters. In fact, for each adjustment on these two
parameters, hybrid ANN-CA classifier performed classification and the
MSE was computed. Results showed that optimal value for alpha coef-
ficient and acceptance ratio are equal to 0.692 and 0.834, respectively.
After optimizing these two parameters, selective features were entered by
each method as input for classification purposes with the help of a hybrid
ANN-CA. Figure 8 shows results on feature selection in classification
capability for the following three hybrid methods: ANN-GA, ANN-ACO,
and ANN-SA. Figure 8(a) shows results about MSE during 20 repetitions.
As it can be observed, selected features by the hybrid ANN-GA method
clearly outperforms other two methods. Figure 8(b) shows boxplots of
classification accuracy (correct classification rate CCR, in %), over 20
repetitions. Again, clearly hybrid ANN-GA is ahead of its partners. This
way, selective (discriminant) features can be used as effective selected
features by genetic algorithm and classifier model can be potentially used
for online operations on video detection and identification of weed
species, and on in-field site-specific spraying of herbicide, amongst
others. At the same time, Table 3 shows the optimal structure and size of
neural networks for each model: hybrid ANN-ACO, ANN-SA and ANN-
GA, comprising training and transfer functions.
3.2. Classification

3.2.1. Classification using hybrid artificial neural network - cultural
algorithm (ANN-CA) classifier

Last stage in the design of the here proposed machine vision system is
classification. In this study, hybrid ANN-CA is used for classification
9

purposes. All 4784 objects extracted from farm video are divided into
two groups of training and validation (80% of data, i.e. 3825 objects) and
test (20% of data, i.e. 959 objects). Table 4 shows classification results of
potato plant and five different types of weed that are classified by this
method, over the test set. In this table, class numbers 1 to 6 show 1-Malva
neglecta (mallow), 2-Portulaca oleracea (purslane), 3-Chenopodium album
L (lamb's quarters), 4-Secale cereale L (rye), 5-Marfona potato plant (So-
lanum tuberosum) and 6-Xanthium strumarium (cocklebur), respectively.
As it can be observed, classification results are displayed as a 6�6
confusion matrix, given that we have six different classes in problem at
hand. Confusion matrix compares true versus estimated classification
output. Table 4 shows that 16 object samples are misclassified from a
total 959 test set object samples. Highest level of wrong classification is
found in Chenopodium album L class. Among 120 samples of Chenopodium
album L weeds, 5 samples are misclassified with 4.17% classification



Table 3. Optimized classifier parameters in three different hybrid supervised learning architectures: ANN-ACO, ANN-SA, and ANN-GA.

Hybrid ANN
architecture

Number of
neurons

Number of
layers

Transfer
function

Backpropagation network
training function

Backpropagation weight/bias
learning function

ANN-ACO first layer: 15,
second layer: 15,
third layer: 15

3 first layer: tansig,
second layer: tansig,
third layer: tansig

trainlm learngdm

ANN-SA first layer: 15,
second layer: 15,
third layer: 15

3 first layer: tribas,
second layer: tribas,
third layer: tribas

trainlm learngdm

ANN-GA first layer: 15,
second layer: 12,
third layer: 15

3 first layer: tansig,
second layer: tansig,
third layer: tansig

trainlm learnwh

Table 4. Classification 6 � 6 confusion matrix for hybrid ANN-CA (test set): true and estimated (est.) class. Plant class numbers: 1-Malva neglecta, 2-Xanthium stru-
marium, 3-Secale cereale L, 4-Chenopodium album L, 5- Solanum tuberosum (Marfona potato plant) and 6-Portulaca oleracea.

true est. All data Correct classification rate (%) Overall correct classification rate (%)

1 2 3 4 5 6

1 299 1 0 0 0 1 301 99.33 98.33

2 3 281 0 3 0 0 287 97.91

3 1 1 129 0 0 0 131 98.47

4 0 5 0 115 0 0 120 95.83

5 0 0 0 0 79 0 79 100

6 1 0 0 0 0 40 41 97.56

Table 5. Classification 6� 6 confusion matrix for LDA method (test set): true and estimated (est.) class. Plant class numbers: 1-Malva neglecta, 2-Xanthium strumarium,
3-Secale cereale L, 4-Chenopodium album L, 5- Solanum tuberosum (Marfona potato plant) and 6-Portulaca oleracea.

true est. All data Correct classification rate (%) Overall correct classification rate (%)

1 2 3 4 5 6

1 289 10 0 0 0 2 301 96.01 86.86

2 16 244 2 25 0 0 287 85.02

3 1 0 129 1 0 0 131 98.47

4 0 57 6 57 0 0 120 47.50

5 6 0 0 0 73 0 79 92.40

6 0 0 0 0 0 41 41 100

Table 6. Classification 6 � 6 confusion matrix for Random Forest method (RF) (test set): true and estimated (est.) class. Plant class numbers: 1-Malva neglecta, 2-
Xanthium strumarium, 3-Secale cereale L, 4-Chenopodium album L, 5- Solanum tuberosum (Marfona potato plant) and 6-Portulaca oleracea.

true est. All data Correct classification rate (%) Overall correct classification rate (%)

1 2 3 4 5 6

1 292 7 0 0 0 2 301 97.00 96.56

2 3 276 0 8 0 0 287 96.17

3 2 2 127 0 0 0 131 96.95

4 2 5 0 112 0 1 120 93.33

5 1 0 0 0 78 0 79 98.73

6 0 0 0 0 0 41 41 100
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error. Lowest level of wrong classification is found in Solanum tuberosum
(Marfona potato plant) class, where all object samples are correctly
classified. Results showed that Xanthium strumarium and Chenopodium
album L weeds have high similarity under selected features (3 samples of
Xanthium strumarium are misclassified in Chenopodium album L class and 5
samples of Chenopodium album L are misclassified in Xanthium strumarium
class). Malva neglecta and Portulaca oleracea weeds are very well
discriminated: only 1 sample of Malva neglecta is misclassified in Portu-
laca oleracea class and again only 1 sample of Portulaca oleracea mis-
classified in Malva neglecta class. Finally, it is worth noting that the
hybrid ANN-CA overall correct classification rate was 98.33% true and
estimated (est.) class, over the test set.
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3.2.2. Classification using linear discriminant analysis (LDA)
In order to compare the performance of hybrid ANN-CA classifier,

well-known statistical Fishers' LDA method - also known as normal
discriminant analysis and Fisher discriminant is, in short words, based on
the computation of the quotient of the between SB over the within Sw
scatter matrices, and is in turn closely related to all three, the well-known
J5 feature selection methodology (Devijver and Kittler, 1982), ANOVA
and principal component analysis (PCA)- was used (Fisher, 1936).

Classification results using LDAmethod are shown in Table 5. Highest
error is found in Chenopodium album L class, with 57 object samples
misclassified in Xanthium strumarium class. Remember that only 5 sam-
ples of Chenopodium album L class were misclassified using hybrid ANN-



Table 7. Classification 6� 6 confusion matrix for SVMmethod (test set): true and estimated (est.) class. Plant class numbers: 1-Malva neglecta, 2-Xanthium strumarium,
3-Secale cereale L, 4-Chenopodium album L, 5- Solanum tuberosum (Marfona potato plant) and 6-Portulaca oleracea.

true est. All data Correct classification rate (%) Overall correct classification rate (%)

1 2 3 4 5 6

1 294 2 0 2 0 3 301 97.67 83.11

2 32 155 5 92 0 3 287 54.00

3 1 1 128 1 0 0 131 97.71

4 0 4 2 114 0 0 120 95.00

5 6 0 0 0 73 0 79 92.41

6 7 0 0 0 2 32 41 78.05

Table 8. Plant species classification performance criteria: sensitivity, accuracy and specificity values, in both LDA and hybrid ANN-CA systems (test set). Plant class
numbers: 1-Malva neglecta, 2-Xanthium strumarium, 3-Secale cereale L, 4-Chenopodium album L, 5- Solanum tuberosum (Marfona potato plant) and 6-Portulaca oleracea.

LDA Hybrid ANN-CA

Plant specie Sensitivity (%) Accuracy
(%)

Specificity (%) Sensitivity (%) Accuracy (%) Specificity (%)

1-Malva neglecta 96.01 95.97 92.63 99.33 99.26 98.35

2-Xanthium strumarium 85.02 88.33 78.45 97.91 98.64 97.57

3-Secale cereale L 98.47 98.82 94.16 98.47 99.79 100

4-Chenopodium album L 47.50 90.35 68.67 95.83 99.16 97.56

5-Solanum tuberosum (Marfona plant) 92.40 99.28 100 100 100 100

6-Portulaca oleracea 100 99.76 95.35 97.56 99.79 97.56

S. Sabzi et al. Heliyon 6 (2020) e03685
CA as Xanthium strumarium class. Last example clearly shows the weak-
ness of LDA in the classification problem on hand. In addition, LDA
method has correctly classified the samples in Chenopodium album L class
with only 47.5% CCR. On the contrary, highest CCR of LDA methods is
found in samples of Portulaca oleracea class with 100% CCR. Finally,
results showed that among total 959 test set object input samples, 126
samples were wrong classified resulting in an overall CCR of 86.86%,
over the test set.

3.2.3. Classification using Random Forest (RF)
Table 6 shows classification confusion matrix using Random Forest

method (test set). As one can see, from 959 samples, 34 samples mis-
classified by Random Forest method. This means that 3.55 % of all
samples were misclassified. RF is an ensemblemodel implying that it uses
the results from various different models to compute an output response.
In most cases the result from an ensemble model will be better than the
result from anyone of the individual models under consideration
(Dahinden and Ethz, 2011; Horning, 2010).

3.2.4. Classification using support vector machines (SVM)
Table 7 shows classification confusion matrix for SVM method (test

set). Overall correct classification rate of this classifier is 83.11%. This
means that from 959 samples, 162 samples were misclassified. This
method work based on statistical learning theory that can be applied to
classification and regression problems (Yang and Ahuja, 2000).
Table 9. Plant species classification performance criteria: sensitivity, accuracy and spec
numbers: 1-Malva neglecta, 2-Xanthium strumarium, 3-Secalecereale L, 4-Chenopodium

Class RF

Sensitivity (%) Accuracy (%)

1-Malva neglecta 97.01 98.19

2-Xanthium strumarium 96.17 97.37

3- Secalecereale L 96.95 99.57

4- Chenopodium album L 93.33 98.30

5- Solanum tuberosum (Marfona potato plant) 98.73 99.89

6- Portulaca oleracea 100.00 99.68
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3.3. Comparison of performance in classifiers

Test data was used in order to investigate the performance of classi-
fiers. Investigating the performance of classifiers is usually done by two
methods: confusion matrix (including sensitivity, specificity and accu-
racy) criteria and receiver operating characteristic (ROC) curves.

3.3.1. Classifiers performance in terms of sensitivity, specificity and
accuracy: ANN-CA, LDA, RF and SVM

First, we address the definition of the following three criteria: sensi-
tivity, specificity and accuracy. Sensitivity, also known as the true posi-
tive (TP) rate, is the fraction of correctly classified samples that belong to
a certain class; specificity, also known as the true negative (TN) rate, is
the fraction correctly classified samples not belonging to a certain class;
Accuracy is defined as the overall (both TP and TN) correctly classified
fraction. These three criteria are defined in formal terms next using Eqs.
(26), (27), and (28):

Sensitivity ¼ TP
TP þ FN

(26)

Specificity ¼ TN
FP þ TN

(27)
ificity values, in both Random Forest (RF) and SVM systems (test set). Plant class
album L, 5- Solanum tuberosum (Marfona potato plant) and 6-Portulaca oleracea.

SVM

Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%)

98.75 93.76 97.67 91.60

97.89 85.13 54.00 98.92

100 98.76 97.71 98.96

99.03 88.74 95.00 87.77

100 99.00 92.40 99.72

99.66 98.15 78.05 99.22



Table 10. Correct classification rate comparison of proposed method (ANN-CA) with two examples in the literature on classification of crops and weed. Note: please
note the databases used are different in each case, so a valid direct numerical comparison is not possible.

Method Total number of samples Number of invasive plant species Number of misclassified plant samples Correct classification rate (%)

Proposed prototype 959 (test set) 5 16 (ANN-CA) 98.33

Pantazi et al. (2016) 540 10 134 (Gaussian) 75.19

Hlaing and Khaing (2014) 35 4 6 82.86
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Figure 9. ROC curves for the six plant species and both machine learning approaches, over the test set. (a): ANN-CA {ANN-CA.fig}, (b): LDA {LDA.fig}, (c): SVM
{ROC_SVM.fig}, and (d): RF {ROC_Randomforest.fig}. Note: Corresponding interactive Matlab .fig file names, are indicated between brackets. Plant class numbers: 1-
Malva neglecta, 2-Xanthium strumarium, 3-Secalecereale L, 4-Chenopodium album L, 5-Solanum tuberosum (Marfona potato plant) and 6-Portulaca oleracea.
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Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(28)
where, TP is equal to the fraction of samples in each class that are
correctly classified, TN is the number of samples on main diagonal of
confusion matrix minus the number of the samples that are correctly
12
classified in the intended class over the total number of samples, false
negative (FN) rate is the sum of horizontal samples of the investigated
class minus the number of samples that are correctly classified in the
intended class over the total number of samples and false positive (FP)
rate is the sum of vertical samples of investigated class minus the number
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Figure 10. Classification system error in each class, (a): hybrid ANN-CA classifier, (b): LDA classifier, Classes are marked with a specific color from one to six. Plant
class numbers: 1-Malva neglecta, 2-Xanthium strumarium, 3-Secalecereale L, 4-Chenopodium album L, 5- Solanum tuberosum (Marfona potato plant) and 6-Portu-
laca oleracea.
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of samples that are correctly classified in the intended class over the total
number of samples (Wisaeng, 2013). Tables 8 and 9 show the six plant
classes under consideration sensitivity, specificity and accuracy criteria
values hybrid ANN-CA, and LDA, (Table 8) and RF and SVM (Table 9)
classifiers, respectively. Highest level of sensitivity for LDA method is
found in Portulaca oleracea class with 100% value, meaning that classifier
has correctly classified all samples in this class. Regaring hybrid ANN-CA
classifier, highest level of sensitivity is found in potato plant (Solanum
tuberosum) class with a 100% value. As it can be observed, lowest level of
sensitivity in LDA is found in Chenopodium album L class with a value of
only 47.5%. Highest level of accuracy using LDA method is found in
Portulaca oleracea with a value of 99.76%, while for hybrid ANN-CA,
highest level of accuracy is equal to 100% found in potato plant
13
(Solanum tuberosum) class. Later fact means that neither none of objects
in potato plant (Solanum tuberosum) class are misclassified in other
classes nor a single sample of weed plants are misclassified as potato
plant (Solanum tuberosum) class. Finally, highest level of specificity in
LDA classifier is found in potato plant (Solanum tuberosum) class with a
value of 100%. On the other hand, in hybrid ANN-CA classifier, highest
level of specificity is found in two classes: potato plant (Solanum tuber-
osum) and Secale cereale L classes, implying that no single sample from
other plant classes is misclassified as belonging to these two classes.

In a similar way and briefly speaking, Table 9 shows plant species
classification performance criteria: sensitivity, accuracy and specificity
values, in both RF and SVM systems (test set). As one can see the values of
sensitivity, accuracy and specificity of Random Forest method are over
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95 % implying that the performance of this method is acceptable, but
inferior to that of ANN-CA. Table 9 also evidences that the performance
of SVM classifier is worse among all four methods here compared.

In conclusion, hybrid ANN-CA classifier superiority was found as
compared to LDA, RF and SVM classifiers; being it possible to claim that
given the performance of ANN-CA classifier this prototype could poten-
tially be applied in online identification and classification of potato plant
and five different weed types in potato field.

3.3.2. Receiver operating characteristic (ROC) curves
As it was previously mentioned, in order to investigate the perfor-

mance of classifiers, 959 samples (20% of all data available) are
considered as test data. Figure 9 shows the graph of ROC curves for
hybrid ANN-CA, LDA, SVM and RF classifiers. As it can be observed on
Figure 9, for each class, a curve plot is depicted totaling six different
graphs. Horizontal axis of graph is 1-specificity (FP) and its vertical axis
represents sensitivity (TP), thus ROC curves are plotted in the
14
ð1�specificity; sensitivityÞ plane. As a general rule, the closer graph is to
bisector line, the weaker classifier performance in that class is, being
bisector line ROC curve the worst case possible of tossing a coin on air to
decide whether that object belongs to class or not, with an area under
curve (AUC) of 0.5. ROC curves are independent of the number of sam-
ples in each class and investigates the performance of classifier only
based on the number of samples that are misclassified in that certain
class. In Figure 10, class number is shown beneath each color polygon.
Class numbers are listed next: 1-Malva neglecta, 2-Xanthium strumarium, 3-
Secale cereale L, 4-Chenopodium album L, 5- Solanum tuberosum (Martona
potato plant) and 6-Portulaca oleracea. As it can be observed in Figure 10,
with hybrid ANN-CA, Xanthium strumarium class has the highest number
of error samples while with LDA, Chenopodium album L has the highest
number of classification errors, and therefore the AUC for these two
classes is lower than that in other classes; Figure 9 proves previous
statement where each class ROC is shownwith a specific color. Product�
sign inside each polygon in Figure 10 shows the number of samples that



Figure 12. Six video frame examples (a) {1.fig}, (b) {2.fig},
(c) {3.fig}, (d) {4.fig}, (e) {5.fig}, and (f) {6.fig}, of the
proposed machine weed video detection and classification
system. Note: Corresponding interactive Matlab .fig file
names, are indicated in brackets. Each video frame incudes
class number of plant species: Plant class numbers: 1-
Malva neglecta, 2-Xanthium strumarium, 3-Secalecereale L, 4-
Chenopodium album L, 5-Solanum tuberosum (Marfona potato
plant) and 6-Portulaca oleracea.
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are wrongly classified. Multiplication sign � color also shows the class
color code where sample is wrongly classified in. For example, first
polygon of Figure 10(a) has two product � signs in orange and red color;
this implies that one sample of Malva neglecta is wrongly classified in
Xanthium strumarium and another one misclassified in Portulaca oleracea
class. The numbers inside each polygon show the level of prototype
classifier error in identifying the samples belonging to each class. For
example, in Figure 10(b) in class 4-Chenopodium album L, the number
52.5% is shown implying that value of misclassification rate in LDA
classifier for this plant species class. As it can be observed again, statis-
tical LDA does not properly discriminate among similar classes, like
Xanthium strumarium and Chenopodium album L. In a similar fashion,
misclassifications are also shown apparent for the SVM and RF classifiers,
in Figure 11(a) and (b), respectively, where performance of the RF
method is quite good as compared to SVM and LDA but still behind that
of ANN-CA. Finally, by observing both Figures 9, 10, and 11 the
15
superiority of hybrid ANN-CA method over others is clear, closely fol-
lowed by RF. In order to understand the efficiency of machine vision
prototype, six sample frames of weed plant identification video pro-
cessing are shown in Figure 12. In this figure, plant class numbers again
correspond to: 1-Malva neglecta, 2-Xanthium strumarium, 3-Secale cereale
L, 4-Chenopodium album L, 5-Marfona potato plant (Solanum tuberosum)
and 6-Portulaca oleracea. As it can be observed, proposed machine vision
weed plant detection and classification prototype in potato field is able to
properly identify the various kinds of plant inside each video frame.

Since the method here proposed is new and applied to an unpublished
video database, there is no possibility for direct comparison with results
previously published. Nevertheless, results presented here were
compared with results of two studies in the literature that used different
methods for identifying weed. Table 10 compares the success rate of here
proposed prototype with two other methods in classifying crop and
weeds. The first method is described in Pantazi et al. (2016) that
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classified 10 types of weeds using hyper-spectral images. They classified
weeds using four classifiers and best results of classification were found
in Gaussian mixture method. As it can be observed from Table 10, 134
samples were wrongly classified among 540 total samples, resulting in a
CCR of 75.19%. Second method to compare with is described in Hlaing
and Khaing (2014). They classified four weed types, Rape plant, Lanchon,
Falcaria vulgaris and Kyautkut, using an area thresholding algorithm. As it
is shown in Table 10, among a total of 35 weed samples, 6 samples were
misclassified resulting in a CCR of 82.86%. As it can be observed, the
suggested method with more number of samples has higher CCR in
identifying weeds than its partners, despite a direct comparison is not
possible for obvious reasons. After analyzing the performance of the
proposed machine video processing prototype, it is shown that is able to
properly identify Marfona potato plant (Solanum tuberosum) among five
weed plants (Malva neglecta, Xanthium strumarium, Secale cereale L, Che-
nopodium album L, and Portulaca oleracea) at a processing speed up to
0.15 m/s with an accuracy of 98%, over the test set.

3.4. Prototype video weed plant detection examples
For illustrative purposes, we include next a total of six segmented and

un-segmented (three un-segmented original recording, three segmented
and classified) mp4 format videos of around one minute time duration
each: three un-segmented videos for reproducible and potential future
comparison experiments (SV4, SV5 and SV6) and three video detection
and classification segmented examples (SV1, SV2 and SV3), where in the
latter case class labels (either numbers or symbols) are apparent, as
output from the proposed automatic video weed detection, segmentation
and classification prototype in the visible range in Marfona potato field,
where one can see how the proposed prototype works under real envi-
ronment conditions in the on-the-fly discrimination between the
following plant species, Marfona potato plant and five weed species:

1. Malva neglecta (mallow)
2. Portulaca oleracea (purslane)
3. Chenopodium album L (lamb's quarters)
4. Secale cereale L (rye)
5. Solanum tuberosum (Marfona potato plant)
6. Xanthium strumarium (cocklebur)

4. Conclusions

The goal was to introduce a visible-range novel, automatic and ac-
curate video processing machine vision system and meta-heuristic clas-
sifier prototype in potato plant identification and classification of five
weed under real environment potato field conditions, comprising 1-
Malva neglecta, 2-Xanthium strumarium, 3-Secale cereale L, 4-Chenopodium
album L, 5- Solanum tuberosum (Marfona potato plant) and 6-Portulaca
oleracea. Results showed that using the proposed prototype, classification
of potato plant andweed with an overall accuracy of 98% over the test set
is possible. Main results shown here are summarized next to conclude:

1. Using meta-heuristic methods showed to be accurate for extracting
effective discriminant features in our problem at hand. Among three
hybrid artificial neural network feature selection methods consid-
ered, ANN-ACO, ANN-SA and ANN-GA, last one selected the most
effective features.

2. Color features had an important role in classification in our problem
at hand. Among six selected features by hybrid ANN-GA, four features
are indeed color features: standard deviation of saturation (S)
component in HSV color space, mean value of hue (H) component in
HSI color space, mean blue-difference chrominance (Cb) component
in YCbCr color space, and standard deviation of in-phase (I) compo-
nent in YIQ color space.

3. LDA statistical methodology has shown weaknesses in proper classi-
fication in our video frame object database and problem at hand. For
comparison purposes, LDA and hybrid ANN-CA correctly classified
16
samples in Chenopodium album L with only a 47.5% and 95.83% CCR,
respectively, over the test set. RF has also shown very nice classifi-
cation performance in a consistent fashion among the various weed
plants.

To conclude, it is known that a proper time gap in order to recognize
and identify all five type weeds considered here, would be about five
weeks after planting of potato plants took place, since studied weeds
grow within this time frame gap approximately. As further work, it re-
mains open to evaluate and analyze the quality and speed of potato plant
growth after site-specific spraying in comparison with the non-spraying
counterpart, in order to measure plant growth optimization and in-
crease in Marfona potato plant yield.
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