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ABSTRACT: There has been increasing interest in pyroptosis as a novel form of pro-inflammatory programmed 

cell death. The mechanism of pyroptosis is significantly different from other forms of cell death in its 

morphological and biochemical features. Pyroptosis is characterized by the activation of two different types of 

caspase enzymes—caspase-1 and caspase-4/5/11, and by the occurrence of a proinflammatory cytokine cascade 

and an immune response. Pyroptosis participates in the immune defense mechanisms against intracellular 

bacterial infections. On the other hand, excessive inflammasome activation can induce sterile inflammation and 

eventually cause some diseases, such as acute or chronic hepatitis and liver fibrosis. The mechanism and biological 

significance of this novel form of cell death in different liver diseases will be evaluated in this review. Specifically, 

we will focus on the role of pyroptosis in alcoholic and non-alcoholic fatty liver disease, as well as in liver failure. 

Finally, the therapeutic implications of pyroptosis in liver diseases will be discussed.  
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Programmed cell death (PCD) contributes to the 

development of liver disease [1, 2]. Recently, pyroptosis, 

a novel kind of PCD, was proven to play an important role 

in liver diseases. Pyroptosis was first described and named 

in 1992 by Zychlinsky[3], and was characterized by 

caspase-dependent (caspase-1/4/5/11) pore formation in 

the cell membrane and subsequent release of pro-

inflammatory mediators(interleukin-18/1β, IL-18/1β). 

Cell swelling, hyperpermeabilization of the plasma 

membrane, rapid cell lysis and release of cytoplasmic 

content and pro-inflammatory mediators are 

distinguishing features of pyroptosis [4].  

Pyroptosis is an innate immune defense against 

intracellular bacteria[5]. However, increasing evidence 

indicates that it also participates in sterile inflammation, 

such as in acute or chronic liver diseases. Research on the 

molecular mechanism of pyroptosis will contribute to a 

better understanding and management of liver diseases. In 

this review, we will first describe the mechanism and 

biological significance of pyroptosis, including the 

initiating events, receptors, signaling pathways, biological 

cellular outcomes and the downstream effects of 

pyroptosis. Then, we will summarize the evidence from 

the latest basic and clinical research regarding pyroptosis 

in the field of hepatology. The therapeutic implications of 

pyroptosis in liver diseases will be discussed at the end. 
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1. Differences between pyroptosis, necrosis and 

apoptosis 

 

Apoptosis and necrosis are common types of PCD found 

in the liver[6]. Morphologically similar to necrosis, 

pyroptosis can lead to membrane rupture and pore 

formation[7]. In contrast to pyroptosis, necrosis is 

characterized by mitochondrial impairment, depletion of 

adenosine triphosphate (ATP), and failure of ATP-

dependent ion pumps. Necrosis is mainly caused by 

physical and chemical stimulation and leads to cell 

membrane rupture and release of cytoplasmic contents 

that eventually results in inflammation[8].  

Apoptosis is mechanically similar to pyroptosis as 

they are both triggered by caspases. The caspases in 

apoptosis can be stratified into initiator caspases (caspase-

2/8/9/10) and effector caspases (caspase-3/6/7)[9]; in 

pyroptosis, the caspases are caspase-1/4/5/11[4, 10, 11]. 

Apoptosis can be initiated by death signals through the 

intrinsic pathway(cellular stresses) or extrinsic 

pathway[12]. The B-cell lymphoma 2 (Bcl-2) family 

members and the tumor necrosis factor (TNF) family 

members are prominent regulators of apoptosis[13, 14]. 

In pyroptosis, the inflammasome and some danger signals 

are activators of caspases. Morphologically distinct from 

pyroptosis, apoptosis is characterized by cellular 

shrinkage, nuclear condensation, and fragmentation. 

Cellular material is not released from the cell and 

inflammatory cytokines are not produced during this 

process[9, 12].  

The differences in the morphological and molecular 

pathways between the different forms of cell death are 

listed in Table 1 

 
Table 1. Comparison of different forms of cell death 

 
Cell death  Activated by Effector Morphology Result cell corpse inflammation refs 

Pyroptosis  PAMPs and DAMPs caspase-1 or 

caspase-4/5/11 

lytic pore-induced 

intracellular trap  

yes [4] 

[10][11] 

necrosis physical and 

chemical stimulation 

- lytic pore-induced 

intracellular trap 

yes [8] 

apoptosis intrinsic or  

extrinsic pathways 

caspase-3/6/7 non-lytic apoptotic body  no [9] 

[12] 
 

PAMPs: pathogen-associated molecular patterns; DAMPs: Damage-associated molecular pattern molecules 

 

2. Biological significance of pyroptosis  

 

Pyroptosis is an effective immune defense against 

intracellular bacterial infection [15-19]. Pyroptosis begins 

with recognition of pathogen proteins, continues with 

cleavage of the pyroptotic substrate gasdermin D 

(GSDMD) and finally ends with formation of pore-

induced intracellular traps on the host cell membrane [20]. 

Through this mechanism, pyroptosis helps to capture and 

clear pathogens by recruiting neutrophils to the infection 

site. Additionally, pathogens can also be eliminated by 

secondary insults, for instance, hydrogen peroxide[5, 21]. 

Inflammatory cytokines and cellular contents flow out of 

the cell after pore formation and cell lysis, resulting in the 

pro-inflammatory cascade. This immune response against 

pathogens can be beneficial in the clearance of infectious 

organisms. However, excessive host cell pyroptosis is 

harmful to healthy tissue if not well regulated. A well-

known example of uncontrolled immune response to 

pathogens is sepsis [22]. In this way, pyroptosis is a 

double-edged sword. 

In general, the balance between chronic inflammatory 
injury and the healthy immune response of pyroptosis is 

precisely regulated. When the balance is disrupted, 

excessive host immune response and massive cell death 

during pyroptosis can lead to serious disease. 

Inflammasome activation, which occurs at the onset of 

pyroptosis, is mechanically believed to be involved in the 

development and progression of the following diseases: 

Alzheimer's disease [23], systemic lupus erythematosus 

[24], cataracts [25], liver diseases [26-28], renal ischemia 

reperfusion injury [29] and diabetes [30]. Additionally, 

cancer development is associated with pyroptosis [31]. As 

a result of pyroptosis, the release of IL-18/IL-1β and 

change in innate immunity provide the pro-inflammatory 

microenvironment necessary for tumor development [32]. 

 

3. Molecular mechanism of pyroptosis 

 

3.1 Initiating of the pyroptosis  

 

There are two different pyroptosis pathways (Fig. 1): 

canonical pyroptosis, which is dependent on caspase-1 

activation [10], and noncanonical pyroptosis, which is 

dependent on caspase-4/5/11 activation[11]. Canonical 

pyroptosis starts with inflammasomes recognizing 

various exogenous and endogenous danger signals, 
including pathogen-associated molecular patterns 

(PAMPs) and damage-associated molecular pattern 

molecules (DAMPs), and caspase-1 is subsequently 
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activated[10]; noncanonical pyroptosis is dependent on 

caspase-4/5 (the caspase-11 in mice), which can be 

directly activated by lipopolysaccharide (LPS) 

independent of Toll-like receptor 4 (TLR4)[33].  

 

3.2 Receptors of pyroptosis  

 

Stimulatory signals are received by inflammasomes in 

canonical pyroptosis. Inflammasomes are intracellular, 

multiprotein complexes that usually consist of three parts: 

a cytosolic sensor, a bridging adaptor and an effector. The 

role of inflammasome activation in liver diseases has been 

extensively reviewed by Szabo and Petrasek [27]. 

The sensor component of the inflammasome system 

is formed by nucleotide-binding oligomerization domain 

(NOD)-like receptors (NLRs). According to different 

cytosolic pattern recognition receptor (PRR) proteins, 

NLRs can be categorized as NLRP1, NLRP3, NAIPs 

(NLR family apoptosis inhibitory proteins), NLRC4, or 

AIM2 (absent in melanoma-2)[34-36].  

 

 

 
Figure 1. Pathways of pyroptosis. There are two different pyroptotic pathways. The canonical pyroptosis is dependent on the 

activation of caspase-1 by inflammasomes, which can recognize PAMPs and DAMPs. Compared to canonical pyroptosis, 

noncanonical pyroptosis is mediated by the activation of caspase-1 and caspase-4/5 (caspase-11 in mice), which can be directly 

activated by LPS independent of TLR4. Upon activation, these caspases cleave gasdermin D then bind to lipids in the plasma 

membrane and form oligomeric pores leading to the release of cellular contents and cell death. Caspase-4/5/11 activates the Pannexin-

1 channel and then opens the P2X7 pore to mediate pyroptosis. Meanwhile, activation of caspase-1 results in the cleavage of pro-IL-

1β and pro-IL-18 and the production of mature cytokines. PAMPS, pathogen-associated molecular patterns; DAMPS, damage-

associated molecular patterns; IL-1β, Interleukin-1β; IL-18, Interleukin-18. 
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Apoptosis-associated speck-like protein containing 

caspase recruitment domains (ASCs) are the bridge 

adaptor of the inflammatory complexes. It contains two 

domains: one is the pyrin domain (PYD) which interacts 

with the PRR of the sensor, and the other is the caspase-

recruitment domain (CARD) which interacts with pro-

caspase-1 effector. Through these two domains (pyrin and 

CARD), ASC can interact with the cell death executioner 

and act as an essential adapter for inflammasome integrity 

[37, 38].  

The effector in canonical pyroptosis is pro-caspase-

1[10]. Although caspase-1 is commonly activated by the 

canonical mechanism, there are two noteworthy 

exceptions. The first involves the NAIP-NLRC4 and 

NLRP1b molecules. These two molecules lack a PYD 

domain and can directly recruit a bridging ASC to activate 

pro-caspase-1 without inflammasome complex formation 

or autoproteolysis [39, 40].  

In noncanonical pyroptosis, pro-caspase-4/5 

(caspase-11 in mice) is the sensor and can be directly 

activated by LPS independent of TLR4[11, 41]. The lipid-

A portion of LPS binds to the CARD domains of these 

inflammatory caspases (4/5/11) and then promotes their 

oligomerization and activation, which eventually leads to 

the cleavage of GSDMD and pyroptosis[42].  

3.3 Signaling pathways 

The initiation of pyroptosis begins with the 

aforementioned recognition of PAMPs and DAMPs. The 

receptors help to translate extracellular signals into cells. 

The subsequent activation of caspases is the key step in 

pyroptosis signaling pathways. 

Caspase-1 is the only reported caspase involved in 

canonical pyroptosis. The activation of caspase-1 by the 

NLRP3 inflammasome leads to cleavage of pro-IL-1β and 

pro-IL-18 and the production of mature, biologically 

active cytokines [10, 35]. Additionally, activated caspase-

1 also cleaves the pyroptotic substrate GSDMD into a N-

terminal fragment and a C-terminal fragment. The 

oligomerized gasdermin-N forms the membrane pores 

and induces pyroptosis [43-45]. The GSDMD pores in the 

membrane also allow the release of IL-1β and IL-18 and 

disperse soluble cytosolic contents including the 

intracellular enzyme lactate dehydrogenase (LDH) [44, 

46, 47]. 

In noncanonical pyroptosis, caspase-4/5/11 cleaves 

and activates GSDMD. This process is similar to 

canonical pyroptosis. In addition, caspase-1 is activated 

by cleaved GSDMD through the combination of NLRP3 
and ASC[48]. Caspase-4/5/11 can also activate pannexin-

1, subsequently open the membrane channel P2X7, and 

eventually cause formation of small pores in the cell 

membrane[49]. On the other hand, activated pannexin-1 

can trigger the NLRP3 inflammasome through K+ efflux 

and ultimately leads to IL-1β production and release [49]. 

Through the GSDMD and pannexin-1, noncanonical and 

canonical pyroptosis are linked together.  

In addition to GSDMD, other members of the 

gasdermin family also participate in pyroptosis. A recent 

study showed that gasdermin B (GSDMB) promotes 

pyroptosis[50]. Unlike GSDMD, the N-terminus of 

GSDMB does not directly induce cell death. It binds to 

the CARD domain of caspase-4, which is required for the 

cleavage of GSDMD in noncanonical pyroptosis, and 

activates it [50]. Genome-wide association studies 

revealed a correlation between GSDMB gene 

polymorphisms and increased susceptibility to Crohn’s 

disease [51] and asthma [52]. Another gasdermin protein, 

gasdermin E (GSDME), has been demonstrated to be 

associated with pyroptosis as well [53, 54]. Interestingly, 

Wang and colleagues [53] found that GSDME could 

switch caspase-3-mediated apoptosis to pyroptosis. 

However, the roles of GSDMB and GSDME in pyroptosis 

have not been thoroughly investigated and need further 

exploration. 

3.4 Biological outcome to the cell 

 

GSDMD pores in the cell membrane are detrimental to the 

cell. If the number of pores in the plasma membrane is 

small, a normal cellular emergency response can patch up 

the porous membrane [55]. However, if the number of 

GSDMD pores exceeds the cell’s self-repairing ability, 

sodium and water will enter the cell, and the cellular 

volume will increase beyond membrane capacity and 

eventually cause cell swelling and rupture.  

On the other hand, the IL-1 family cytokines (IL-1β/IL-

18) that are released through the GSDMD pore during 

pyroptosis will recruit immune cells to the site of 

inflammation, stimulate secondary cytokine production 

and trigger acute-phase signaling responses [56]. Beside 

the general effects of those cytokines on cells, IL-1β in the 

liver can promote proliferation and trans-differentiation of 

hepatic stellate cells (HSCs), the main profibrogenic cell 

in the liver, and cause accumulation of fibrotic tissue [57, 

58].  

 

4. Pyroptosis in liver diseases 

 

4.1 The stimuli of pyroptosis in liver diseases 

 

Inflammasomes can be stimulated by different kinds of 

substances, from PAMPs released by pathogens (bacteria, 
fungi and viruses) to DAMPs released by dying cells[59]. 

Interestingly, DAMPs from the kidney, a remote organ, 

also initiate pyroptosis in the liver. A recent study 
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demonstrated that the release of extracellular histone 

following renal graft ischemia-reperfusion injury could 

mediate remote hepatic damage in rats[60]. In addition to 

those proteins, some chemical substances, such as 

mesoporous silica nanoparticles[61], benzo[a]pyrene[62] 

or rare-earth oxide nanoparticle  (e.g., Gd2O3)[63], can 

activate inflammasomes in hepatic L02 cells, HL-7702 

cells, and Kupffer cell(KC)/macrophages, respectively. 

 

4.2 Liver cells participating in pyroptosis 

 

The liver is the first line of defense against diverse 

microbial particles from circulating blood. 

Inflammasomes, as the receptor of pyroptosis, are highly 

expressed in macrophages[64], stellate cells[65], and 

hepatocytes[66]. Various cells in the liver participate in 

pyroptosis. PAMPs and DAMPs can directly induce 

pyroptotic death in hepatocytes or indirectly cause liver 

cell injury by crosstalk between cells. 

 

Macrophages  

 

There are two phenotypes of macrophages in the liver: 

infiltrating macrophages and resident macrophages 

(KCs). Both types are the first cells to detect the presence 

of danger signals in the liver. Pyroptosis in macrophages 

is responsible for the development of liver diseases. For 

instance, rare-earth oxide can initiate NLRP3 

inflammasome and caspase-1 activation and eventually 

lead to pyroptosis in KCs, bone marrow-derived 

macrophages, and other macrophage cell lines such as 

J774A.1 and RAW 264.7 cells [63]. However, this 

phenomenon is not observed in hepatocytes [63]. In a fatty 

liver animal model established by a methionine choline-

deficient (MCD) diet, the mtDNA released from 

mitochondria can activate NLRP3 inflammasomes in KC 

and induce IL-1β secretion[67]. Noncanonical pyroptosis 

in Kupffer cells can also lead to liver injury. Chen et al 

[68] recently demonstrated that LPS could cause release 

of cathepsin B and subsequently activate caspase-11 in 

KCs.  

 

HSCs 

 

The activation of inflammasomes in HSCs plays vital 

roles in the development of fibrosis[69]. Liver fibrosis is 

characterized by deposition of extracellular matrix, and 

HSCs are the primary cells responsible for extracellular 

matrix storage. Multiple functional changes of HSCs can 

be induced by the NLRP3 inflammasome, which is 

moderately expressed in HSCs [65, 70]. Pro-

inflammatory cytokines (IL-1β and IL-18) released after 

NLRP3 inflammasome activation have been 

demonstrated to activate HSCs and tissue fibroblasts in 

vitro and in vivo[71, 72]. The crosstalk between cells is 

also involved in the activation of HSCs[70]. The 

cytokines and DAMPs released from injured hepatocytes 

and macrophages will activate HSCs and induce to liver 

fibrosis[65]. 

 

Eosinophils 

 

Infiltration of eosinophilic leucocytes has been found in 

many liver diseases, including hepatic allograft 

rejection[73], drug-induced liver injury[74] and chronic 

hepatitis C[75]. A recent study showed that eosinophils 

also play a role in pyroptotic hepatocyte death. In 

Schistosoma mansoni-infected mice, S. mansoni eggs in 

the hepatic sinusoids can lead to liver cell death. Isolated 

eosinophils from the livers of infected mice display 

caspase-1-mediated pyroptosis[76]. 

 

Hepatocytes 

 

Inflammasomes are detectable in hepatocytes. Many 

recent studies have uncovered the direct role of 

inflammasome activation in hepatocyte injury[28, 77]. In 

obese mice established by the MCD diet, endoplasmic 

reticulum (ER) stress induced by LPS challenge led to 

NLRP3 inflammasome assembly and subsequent 

hepatocyte pyroptotic death [77].  

A recent study even suggested that activation of the 

hepatocyte-specific NLRP3 inflammasome and 

subsequent pyroptosis might be a more important 

contributor to liver injury and fibrosis than previously 

thought. This indirect evidence comes from Wree et 

al.[78], who developed the global and myeloid cell-

specific Nlrp3 knock-in mice that constitutively express 

activated NLRP3 to elucidate differences in liver 

pathology when NLRP3 inflammasomes are activated 

in different cells. Interestingly, compared to global 

Nlrp3 knock-in mice, those with myeloid-specific Nlrp3 

mutations lack detectable pyroptotic hepatocyte cell death 

and have less severe liver inflammation, HSC activation, 

and fibrosis. This result highlights the importance of 

pyroptosis in hepatocytes. In addition to immune cells, 

hepatocyte pyroptosis resulting from intrinsic 

inflammasome activation exacerbates inflammation and 

fibrosis in the liver, indicating that both immune cell- and 

liver-specific NLRP3 inflammasome activation are 

essential for liver injury. However, those studies did not 

use the hepatocytic-specific NLRP3 mutant animal, 

therefore more studies are needed for direct evidence of 

the crosstalk between hepatocyte and the other types of 

cells in the onset and progression of liver injuries. 

 

5. Pyroptosis associated-liver diseases 
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5. 1 Nonalcoholic fatty liver disease (NAFLD)  

 

NAFLD is characterized by lipid accumulation in the liver 

in the absence of significant alcohol intake, medication 

use or other medical conditions that cause hepatic 

steatosis. It can be pathologically classified into different 

degrees of severity, from simple steatosis to 

steatohepatitis (NASH) and fibrosis[79, 80]. Low-grade 

chronic inflammation in the liver is a generally accepted 

hypothesis for the underlying pathophysiology of 

NAFLD[81, 82]; thus, pyroptosis is considered to have an 

important role in the development and progression of this 

inflammatory disease.  

Inflammasome activation in both bone marrow-

derived cells and liver parenchymal cells activates 

caspases and promotes inflammation and fibrosis in MCD 

diet-induced NAFLD in mice[64]. Typical activators of 

inflammasomes—such as fatty acids[83], DAMPs 

released by dying hepatocytes and immune cells [59, 84, 

85], and uric acid [86]—upregulate NLRP3 

inflammasome components as described above. 

Moreover, pyroptosis mediated by mitochondrial 

dysfunction and subsequent production of reactive 

oxygen species (ROS) in NAFLD have drawn much 

attention recently[87-90]. ROS have long been considered 

to induce lethal hepatocyte injury in steatosis[91-93]. 

Injured mitochondrial-released DAMPs, including 

mitochondrial DNA, mitochondrial ROS and ATP[94], 

can promote NLRP3 inflammasome activation directly or 

indirectly via thioredoxin-interacting protein 

(TXNIP)[95] and P2X purinoceptor 7 (P2RX7)[96]. 

Growing evidence shows that pyroptosis is an 

inflammatory link between simple steatosis and NASH, 

as NLRP3 activation is seldom observed in an animal 

model of simple steatosis without inflammation[97-99]. 

NLRP3 activation in NASH has been shown in both 

human and animal models[100-102]. The pro-

inflammatory cytokines released during pyroptosis are 

key molecules for NAFLD development. IL-1β is 

believed to drive the pathogenesis of liver inflammation, 

steatosis and fibrosis. It also has the additional effect of 

amplifying the response of other cytokines[103-105]. The 

activation of IL-1 signaling, which is downstream of 

inflammasomes, has been implicated in NAFLD 

pathogenesis[106, 107]. 

Pyroptosis in hepatocytes and macrophages is also 

involved in the development of liver fibrosis in NAFLD. 

After injury, these cells release DAMPs and danger 

signals such as IL-1β/IL-18 and inflammasome 

particles[108]. Those DAMPs and cytokines bind to 

receptors located on HSCs and induce upregulation of 

fibrotic markers, thus leading to liver fibrosis[65].  

Interestingly, another cytokine cleaved by caspases 

during pyroptosis—mature IL-18—seems to be play a 

different role in NAFLD/NASH progression. In the IL-18 

knock-out mouse model, the expression of 

gluconeogenesis genes in the liver is substantially higher. 

Those mice are prone to develop obesity, hyperphagia and 

insulin resistance[109]. It seems the pyroptosis is a coin 

with two sides engendering two products, one of which 

(IL-18) is beneficial, while the other (IL-1β) is 

detrimental for NAFLD. However, the role of IL-18 has 

not been clearly elucidated.  

Although there have been many studies on pyroptosis 

in NAFLD, many questions remain unanswered. For 

example, as steatohepatitis and fibrosis only account for a 

small proportion of the NAFLD population[110, 111], 

when and why pyroptosis is initiated requires extensive 

investigation. 

 

5.2 Alcoholic liver disease  

 

ALD is a general term used to refer to alcohol-

related liver injuries. The clinical spectrum includes 

steatosis, fibrosis, alcoholic hepatitis (AH), cirrhosis, and 

hepatocellular carcinoma (HCC)[112]. Activation of 

innate immunity, hepatic and systemic inflammation and 

macrophages is a major contributor to ALD 

progression[113, 114]. There is an increasing body of 

evidence suggesting that pyroptosis is a key driver of 

ALD in patients and animal models. NLRP3 deficiency 

prevents the development of alcohol-induced liver 

inflammation and has a beneficial effect on liver damage 

and steatosis[115]. Recently, Khanova et al.[116] 

uncovered upregulation of the Casp4/11 gene in liver 

tissue of histological-verified AH patients and mice using 

unbiased ribonucleic acid (RNA) sequencing analyses.  

Ethanol can induce pyroptosis through different 

ways. One effect of ethanol on pyroptosis is via the 

microRNA-148a pathway. Alcohol can decrease 

microRNA -148a expression in hepatocytes through 

FoxO1 and induce the overexpression of TXNIP, a 

member of the α-arrestin family[117]. TXNIP then binds 

to NLRP3 inflammasomes and facilitates NLRP3 

activation, thus leading to caspase-1-mediated 

pyroptosis[117, 118].  

Another impact of alcohol on pyroptosis is triggered 

by PAMPs (derived from the gut) and DAMPs (derived 

from hepatocytes in liver inflammation due to alcohol 

exposure)[119]. The DAMPs, such as ATP and soluble 

uric acid, are released from damaged primary hepatocytes 

induced by ethanol and trigger the release of 

inflammasome-dependent cytokines from immune 

cells[115, 120]. Pyroptosis mediated by intracellular 

contents can stimulate and sustain the inflammatory cycle 

in ALD. Alcohol metabolism in hepatocytes also 

increases the production of ROS and leads to 

mitochondrial dysfunction, thus increasing the 
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susceptibility of hepatocytes to inflammatory cytokines 

[121, 122].  

 

5.3 Liver failure  

 

Acute liver failure (ALF) is characterized by an abrupt 

onset of severe liver injury with gross hepatocyte 

dysfunction[123]. Acetaminophen (APAP) overdose is 

the most common cause of ALF. N-acetyl-p-

benzoquinone imine, a reactive metabolite of APAP, is 

thought to directly damage hepatocytes through 

mitochondrial oxidative stress, c-Jun amino-terminal 

kinase activation, nuclear DNA fragmentation and 

transitions in mitochondrial permeability[124]. 

Additionally, inflammation derived from DAMP-

mediated innate immune signaling also promotes liver 

injury in APAP hepatotoxicity[125]. The ATP and NAD 

released after death cell activates P2X7, subsequently 

triggers NLRP3 inflammasomes, and eventually 

propagates APAP-induced hepatic injury[126, 127]. 

Most studies of pyroptosis in liver failure are 

conducted in animal models. Significantly elevated levels 

of NLRP3, cleaved caspase-1 and IL-1β and predominant 

pyroptotic cell death have been observed in the livers of 

concanavalin (ConA)[128] and D-galactosamine (D-

Gal)[129] induced liver failure models. Exposure to the 

NLRP3 inhibitor (MCC950) before D-Gal challenge 

attenuate pyroptosis injury[129]. TNF receptor superfamily 

member 4(OX40), which is expressed in liver invariant 

natural killer T (iNKT) cells, is also involved in the 

development of liver failure.OX40 activates caspase-1 

via TNF receptor-associated factor 6-mediated 

recruitment of the paracaspase MALT1, which 

consequently leads to massive pyroptotic death of iNKT 

cells and liver injury[130]. IL-1 receptor type 1 (IL-1R1) 

can amplify cell death and inflammation in hepatocytes 

during pyroptosis in liver failure. ALF induced by D-Gal 

and LPS is significantly attenuated in the liver-specific 

IL-1R1 knock-out mice[131]. Pretreatment with the IL-1 

receptor antagonist (rhIL-1Ra) strongly suppresses 

ConA-induced hepatitis by decreasing both TNF-α and 

IL-17 secretion and inflammatory cell infiltration into 

livers[128].  

Although massive cell death and inflammation are 

important in the development of liver failure, the 

correlation between pyroptosis and liver failure has only 

been investigated in animal models but rarely been 

investigated in patients. Moreover, the role of pyroptosis 

has never been studied in another fatal subtype of liver 

failure, acute chronic liver failure (ACLF) in which 

systemic inflammation is believed to be a major 

pathogenic mechanism[132, 133]. ACLF patients have 

two distinguishing characteristics, chronic liver injury and 

acute deterioration of liver function, which complicate the 

elucidation of underlying mechanisms if pyroptosis is 

involved. 

 

5.4 Viral hepatitis and pyroptosis 

 

NLRP3 expression is upregulated in hepatocytes and 

macrophages with HCV[134, 135]. Previous studies 

showed that NLRP3 inflammasomes participated in 

hepatitis C[136, 137]. HCV RNA can directly induce the 

assembly and activation of NLRP3 inflammasomes in 

infected hepatocytes[137]. The secretion of IL-18 after 

NLRP3 activation stimulates NK cell-derived interferon-

γ and thereby helps to suppress HCV[138]. The release of 

DAMPs from lysed pyroptotic cells can recruit immune 

cells and further promote secondary inflammation[137, 

139, 140]. IL-1β production through the NLRP3 

inflammasome in KC has been identified as the source of 

amplified inflammatory responses in patients with HCV 

infection[139].  

Hepatitis B virus (HBV) is a global health problem 

and more than 350 million people are chronically infected. 

Chronic HBV infection leads to liver fibrosis, cirrhosis, 

liver failure and hepatocellular carcinoma; however, no 

cure for chronic HBV has been found to date[141]. 

Hepatitis B core antigen (HBcAg) is thought to be 

associated with pyroptosis. In 2003, Manigold et al.[142] 

showed HBcAg treatment increased the secretion of IL-

18 in peripheral blood mononuclear cells (PBMCs) from 

patients with chronic hepatitis B; this effect was 

completely blocked by a caspase-1 inhibitor. Another 

interesting finding from this study was that HBcAg-

induced IL-18 secretion was significantly lower in 

PBMCs of hepatitis B envelope antigen (HBeAg)-positive 

patients[142]. In 2017, Yu et al.[143] elucidated that 

HBeAg inhibited LPS-induced NLRP3 inflammasome 

activation in liver tissue of HBV-carrier mice. Using the 

HBV-persistent mouse model induced by hydrodynamic 

injection of pAAV/HBV1.2 plasmid, the researchers 

found that HBeAg, but not HBsAg, inhibited LPS-

induced NLRP3 inflammasome activation via repression 

of the nuclear factor-kappa B(NF-κB) pathway and ROS 

production in KCs. As inflammasome activation is a 

pivotal immune response to pathogens, the suppression of 

inflammasomes by HBeAg might explain the mechanism 

of HBV persistence and immune tolerance. These two 

studies establish the possible link between pyroptosis and 

HBV infection; however, the role of pyroptosis in HBV 

infection progression is largely unknown. More studies on 

pyroptosis are urgently required in HBV related-diseases 

as they are epidemic and greatly needs a cure. 
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Table 2. Potential anti-pyroptotic targets in liver disease.  

 
 

Therapeutic targets Molecules Diseases Subjects References 

NLPR3 

 

Glyburide Acute liver injury 

(CLP model) 

male C57BL/6 

mice 

[26] 

 MCC950 

(NLRP3 inhibitor) 

ALF 

(D-Gal challenge) 

male C57BL/6 

mice 

[129] 

 EPO Sepsis related liver injury 

(LPS challenge) 

mice [155] 

 TUDCA  

 

NASH obese mice [77] 

 Taurine 

 

NAFLD 

NASH 

Male C57BL/6 

mice 

[156] 

 Silybin NAFLD Male C57BL/6 

mice 

[153] 

 Dihydroquercetin ALD Male C57BL/6 

mice 

[146] 

 Chlorogenic acid  

 

Acute liver injury 

(CCl4-induced) 

male Sprague-

Dawley rats 

[154] 

 Scutellarin 

 

Sepsis related liver injury 

(intraperitoneally injection of 

Escherichia coli) 

Female C57BL/6 

mice  

[144] 

Caspases AC-YVAD-CMK 

(caspase-1 inhibitor) 

Acute liver injury 

(MSN administration) 

male C57BL/6 

mice 

[61] 

 IDN 6556 

(pan-caspase inhibitor) 

NASH mice  [157] 

 IDN 6556 

(pan-caspase inhibitor) 

HCV HCV patients [158] 

 PF-03491390 

(pan-caspase inhibitor) 

HCV HCV patients [159] 

 Cathepsin B inhibitor  SIRS /sepsis 

(LPS challenge) 

Human KCs [68] 

IL-1 Anakinra 

(IL-1 inhibitor) 

ALF 

(D-GalN/LPS administration) 

mice [131] 

NLPR3: NOD-like Receptor Protein 3; CLP: Cecal Ligation and Puncture; ALF: Acute Liver Failure; D-GalN: D-galactosamine; EPO: 

erythropoietin; LPS: lipopolysaccharide; TUDCA: Tauroursodeoxycholic acid; NASH: non-alcoholic steatohepatitis; CTSB: cathepsin B; 

NAFLD: Nonalcoholic fatty liver disease; ALD: Alcoholic liver disease; CCl4: carbon tetrachloride; MSN: mesoporous silica nanoparticles 
;HCV: Hepatitis C virus; SIRS: systemic inflammatory response syndrome; IL-1: Interleukin-1 

 

5.5 Sepsis related liver injury 

 

Pyroptosis has been shown to play a vital role in immune 

cell activation and amplification of liver inflammation in 

sepsis-related liver injury[26]. Sepsis is characterized by 

the release of several pro-inflammatory cytokines in an 

event commonly known as “the cytokine storm”. These 

cytokines, via the pyroptosis pathway, can aggravate 

hepatic cell death and result in liver dysfunction with a 

very high mortality rate. In the septic mouse model 

established by cecal ligation and puncture (CLP) surgery, 

which is a standard model for polymicrobial sepsis, 

hepatocyte pyroptosis increases in a time-dependent 

manner; this result demonstrated that the severity of liver 

pyroptosis is correlated with liver damage[26]. The 

highest hepatic cell pyroptosis rate was observed at 24 h 

post-operation in CLP mice. Treatment with NLRP3 

and/or caspase-1 inhibitor significantly improved the 

survival rate and alleviated liver damage in CLP mice[26]. 

Inhibiting NLRP3 inflammasome activation in 

macrophages helps to protect mice against bacterial 

sepsis[144]. 

 

6. Therapeutic Implications 

 

Given the growing evidence for the role of pyroptosis in 

liver injury and fibrosis, targeting liver pyroptosis 

represents a promising therapeutic option for the 

treatment of liver disease.  

There are currently two major strategies for 

pharmacological inhibition of pyroptosis. One is to inhibit 

NLRP3 through regulatory pathways; for example, the 

NLRP3 inhibitor MCC950 effectively reduces liver injury 

and inflammation[129], type 1 interferon inhibits NLRP3 

activation through the generation of nitric oxide or 

transcription of IL-10[145], and P2X7 inhibitors prevent 

ATP-mediated activation of NLRP3[146]. The other 

strategy is to inhibit downstream signaling pathways 
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following NLRP3 activation; for instance, the effects of 

caspase-1 inhibitors[147], IL-1β inhibitor[148-150] and 

anti-IL-18[151] are being evaluated in clinical trials for 

some diseases.  

GSDMD is the executive molecule in pyroptosis, but 

molecule targeting of GSDMD is rarely studied. There is 

only one study suggesting that necrosulfonamide, a 

known anti-necroptosis molecule, attenuates pyroptosis 

by directly binding gasdermin D and preventing pore 

formation in the membrane of septic mice[152]. The 

therapeutic value of this GSDMD inhibitor should be 

evaluated in liver diseases in the future.  

Some herbal extracts and dietary components that 

have protective effects on the liver also inhibit pyroptosis. 

Silybin has long been known to inhibit NLRP3 

inflammasome assembly through the nicotinamide 

adenine dinucleotide+/sirtuin 2(NAD+/SIRT2) pathway 

in mice with NAFLD[153]. Scutellarin is a natural 

flavonoid; it has been reported to inhibit NLRP3 

inflammasome activation in macrophages and protect 

mice against bacterial sepsis by augmenting protein 

kinase A signaling[144]. Dihydroquercetin is the most 

abundant dihydroflavone found in onions. It ameliorates 

alcoholic liver steatosis by decreasing expression of 

NLRP3 and inhibiting IL-1β production and release[146]. 

Chlorogenic acid, a polyphenol found in coffee, fruits and 

vegetables, protects against carbon tetrachloride (CCl4)-

induced acute liver injury probably through enhancing the 

anti-oxidant pathway and inhibiting NLRP3 

inflammasome activation[154].  

The details of current research regarding anti-

pyroptosis in liver disease are listed in Table 2.  

 

Conclusion 

 

In summary, pyroptosis is essential for the liver defense 

against pathogens and danger signals, but excessive 

pyroptosis promotes pathogenesis of various liver 

diseases. The pyroptotic process is complex, and its 

detailed molecular mechanism in liver disease requires 

further studies. For example, the role of pyroptosis has not 

been extensively studied in HBV- related diseases and in 

ACLF. A single study reveals the impact of renal DAMPs 

on the liver, yet the effects of liver DAMPs on the kidney 

remain unknown. The role of pyroptosis in the crosstalk 

between liver and the other organs requires further 

investigation. 

There is no doubt that pyroptosis is a promising 

therapeutic target for inflammatory diseases. Inhibition of 

pyroptosis by blocking related molecules (e.g., NLPR3, 

caspases and IL‐1) influences the progression of liver 

disease and provides a potential treatment approach for 

liver disease. However, as pyroptosis is an essential 

defensive line against pathogens, inhibition of pyroptosis 

may have a potential downside; for example, it may 

increase the risk of opportunistic infection. Therefore, 

safety is always an unavoidable concern. Much research 

is still required before the translation to clinical 

treatments. Further study of pyroptosis will contribute to 

the understanding of the mechanisms of hepatocellular 

injury and to the development of pharmaceutical 

inhibitors of pyroptosis.  
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