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Abstract: In addition to its regulatory function in the formation of red blood cells (erythropoiesis) in
vertebrates, Erythropoietin (Epo) contributes to beneficial functions in a variety of non-hematopoietic
tissues including the nervous system. Epo protects cells from apoptosis, reduces inflammatory
responses and supports re-establishment of compromised functions by stimulating proliferation,
migration and differentiation to compensate for lost or injured cells. Similar neuroprotective and
regenerative functions of Epo have been described in the nervous systems of both vertebrates
and invertebrates, indicating that tissue-protective Epo-like signaling has evolved prior to its
erythropoietic function in the vertebrate lineage. Epo mediates its erythropoietic function through a
homodimeric Epo receptor (EpoR) that is also widely expressed in the nervous system. However,
identification of neuroprotective but non-erythropoietic Epo splice variants and Epo derivatives
indicated the existence of other types of Epo receptors. In this review, we summarize evidence for
potential Epo receptors that might mediate Epo’s tissue-protective function in non-hematopoietic
tissue, with focus on the nervous system. In particular, besides EpoR, we discuss three other
potential neuroprotective Epo receptors: (1) a heteroreceptor consisting of EpoR and common beta
receptor (βcR), (2) the Ephrin (Eph) B4 receptor and (3) the human orphan cytokine receptor-like
factor 3 (CRLF3).

Keywords: erythropoietin; non-hematopoietic functions; neuroprotection; regeneration; alternative
erythropoietin receptors; common β chain receptor; ephrin B4 receptor; cytokine receptor-like factor 3

1. Introduction

The helical cytokine erythropoietin (Epo) is an evolutionary ancient protein that is present in all
major vertebrate lineages and can be synthesized by many cell types [1,2]. The name “erythropoietin”
(first mentioned by Bonsdorff and Jalavisto [3]) arose from its functional implication in the generation
of red blood cells (erythrocytes) to improve tissue oxygen supply, which was first described with
some comprehensiveness by Erslev [4]. Cytokines typically mediate diverse responses in different
tissues that may vary depending on their concentration, duration of exposure, developmental status
and physiological context and may involve different types of receptors [5,6]. Beyond its role in
erythropoiesis, numerous production sites, pleiotropic functions and diverse stimuli that induce Epo
production were identified in mammalian and other vertebrate tissues, providing a basis for the
hypothesis that Epo signaling originally evolved as a general mechanism to maintain or re-establish
cellular functions under challenging physiological conditions, following injury and during pathogen
invasion [7–11].

In addition to fetal liver and adult kidney, which in humans account for most of the circulating
hormone, Epo is locally produced and released by cells of various tissues including heart, spleen,
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lung, testis, ovaries, retina and the nervous system (reviewed by: [12–15]). Within the nervous system,
astrocytes, oligodendrocytes, neurons and endothelial cells may release Epo as a paracrine and/or
autocrine signal (reviewed by [16]). Circulating, hormonal Epo is a four-helix glycoprotein consisting
of 165 amino acids and several chains of carbohydrate residues that make up ~40% of the mass of
approximately 34 kDa. Mammalian brain-derived Epo has a lower content of sialic acid residues
and brain-specific Epo splice variants have been detected in fish [17]. In addition to full length
Epo, splice variants of human and murine Epo have been detected, among them the exon 3 deletion
variant EV-3 present in human serum that lacks erythropoietic activity but protects various types of
neurons from apoptotic cell death [18–20]. Similar to the production of circulating Epo (reviewed
by [21]), hypoxia also increases Epo production and release in the nervous system, but various other
challenges or insults have also been demonstrated to induce Epo in the nervous system, such as
mechanical damage [22,23], infection [24], metabolic stress [25], elevated temperature [26], intense
neural activity [27,28] and enriched environment [29]. Prominent general functions of Epo in the
nervous system and in other non-hematopoietic tissues are protection from apoptosis, reduction of
inflammatory responses and re-establishment of compromised functions by support of proliferation,
migration and differentiation to compensate for lost or injured cells [12]. Concerning the nervous
system more specifically, Epo has been demonstrated to be crucial for normal brain development [30,31],
to act neuroprotectively after hypoxic/ischemic insults and glutamate excitotoxicity [28,32], to suppress
neuroinflammatory processes including activation of microglia [33,34] and to promote regeneration
after axonal damage [35–37]. Moreover, Epo enhanced cognitive performance and memory retrieval
in healthy humans and patients affected by mood disorders or schizophrenia [38–43] paralleling
experimental observations of wild type rodents, rodent models for neuropsychiatric diseases and
diabetic mice [44–47]. Part of these effects on cognitive performance may result from Epo-induced
increase of hippocampal pyramidal neurons and oligodendrocytes, which is only maintained when
respective brain regions are sustainably challenged [48], and from Epo-mediated elevation of general
motivation [49,50].

It is meanwhile widely accepted that Epo mediates various beneficial effects on the development,
maintenance and regeneration of nervous systems and options to use Epo or Epo derivatives for
the treatment of neuropsychiatric and neurodegenerative diseases are being explored. In contrast,
identification of the molecular nature of the involved Epo receptors has not been completed. A great
number of (partially inconsistent) experimental results support the existence of a “tissue-protective”
Epo receptor that differs from the homodimeric EpoR on erythroid progenitor cells. Since this
proposed “tissue-protective” Epo receptor is not universally expressed in all cells that exhibit beneficial
responses to Epo stimulation, other Epo-binding receptors must exist and expression of particular
types of Epo receptors might generally depend on cell type, developmental stage and physiological
context. This review summarizes evidence for the involvement of homodimeric EpoR and alternative
Epo receptors as initiators of protective and regenerative mechanisms in non-hematopoietic tissues,
with focus on the nervous system.

2. Epo Function in Non-Hematopoietic Tissue Other Than the Nervous Tissue

Besides the nervous system, Epo mediates a variety of functions in other non-hematopoietic
tissues (reviewed by [16,51,52]). In the kidney interstitial fibroblasts produce and release hormonal
Epo into the blood stream. However, human and rodent kidney also express EpoR, indicating an
additional paracrine function of Epo [53]. Epo mediates a direct cell protective function following
ischemia-reperfusion injury in rat kidneys [54,55] and improves kidney function in a rat model
for chronic kidney disease [56]. Epo also has a direct proliferative effect on mouse (not rat or
human) myoblasts from skeletal muscle fibers and protects myoblasts against apoptosis in vitro [57].
In vivo studies using rodent models indicate that Epo-EpoR signaling can facilitate skeletal muscle
repair following cardiotoxin-induced and mechanically induced muscle injuries [58,59]. In humans,
improved motor function in Friedreich Ataxia patients following prolonged Epo administration
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has been reported [60]. Similar protective effects of Epo have been shown in animal models
for ischemia-reperfusion injury of the heart [61,62] and for chronic heart failure [63], indicating
a cardioprotective activity of Epo. The cardioprotective effect of Epo is mediated by a direct
anti-apoptotic effect on cardiomyocytes as well as enhanced Epo-induced neovascularization due to
the mobilization of endothelial progenitor cells from the bone marrow [63–66].

The angiogenic potential of Epo is also implied in other physiological processes and
pathophysiological conditions. Epo is produced in cells of the uterus in an estrogen-dependent
manner to promote blood vessel formation [67]. Epo promotes skin wound repair, especially in
diabetic rodents and humans [68,69]. Besides angiogenesis, Epo exerts proliferative effect on numerous
skin cell types, stimulates coagulation, reduces the inflammatory response, facilitates blood vessel
regeneration, and enhances endothelial cell mitosis (reviewed by [70]). The role of Epo in tumor growth
has been discussed as well, since many tumors express EpoR. Epo is widely used to treat anemia in
patients undergoing chemotherapy [71] but its anti-apoptotic, proliferative and angiogenic effect might
have a growth-promoting effect on cancer cells (reviewed by [72]). More recently the role of Epo-EpoR
signaling in the regulation of energy metabolism has been described. Adipose tissue expresses EpoR
and mice with selective EpoR knock out within adipose tissue show reduced total activity and develop
obesity and insulin resistance [2,15,73]. The described functions of Epo in non-hematopoietic tissues
could be mediated by both circulating Epo, predominantly produced by the kidney or other endocrinal
organs, and tissue-derived, locally produced Epo.

3. Homodimeric EpoR

3.1. Presence and Function of EpoR in the Mammalian Hematopoietic System

Epo-EpoR signaling is the key regulator for the formation of mature erythrocytes
(erythropoiesis) [21,74]. The adequate production of erythrocytes is important during all stages of life.
Primitive erythrocytes are formed in yolk sac blood islands and express EpoR, from embryonic day 7.5
in mice and ~16–20 days of gestation in humans [75,76]. Although Epo is not crucial for the progress
of differentiation of primitive erythroblasts, Epo supports their proliferation and survival [75,76].

Later in development erythrocytes are continuously formed from pluripotent stem cells located
in the fetal liver and adult human bone marrow and mice spleen (definitive erythropoiesis; reviewed
by [77]). The maturation and differentiation of erythrocytes involves a stepwise differentiation process
of hematopoietic progenitors that is controlled by the interplay of various cytokines, including Epo
and e.g., stem cell factor (SCF) [78]. EpoR is expressed at low levels on burst-forming unit-erythroids
(BFU-E) and its expression levels increases up to 10× on colony-forming unit-erythroids (CFU-E).
Elevated expression of EpoR is mediated by transcription factors, such as GATA1, SCL/TAL1 and EKLF
and Epo itself [75,79]. Epo and EpoR knock-out mice showed a complete impairment of erythropoiesis
beyond the formation of CFU-E cells, indicating that Epo-EpoR signaling is crucial for cell survival and
differentiation during this stage of erythropoiesis [80]. Later in erythropoiesis EpoR is downregulated
and not required for cell survival.

3.2. Molecular Characterization of EpoR

EpoR expressed on the surface of immature erythroid cells is a member of the type I cytokine
receptor family. In absence of the ligand, two receptor monomers form a disulfide-linked dimer
that is integrated in the cell membrane. EpoR is comprised of an extracellular region, a single
transmembrane domain, and an intracellular domain. The extracellular region consists of two domains
(membrane-distal D1 and membrane-proximal D2) that provide two discrete binding sites for Epo.
Initial binding of Epo to the high affinity site is followed by binding to the lower affinity site
on the second monomer, which results in a conformational change of the dimeric EpoR [81,82].
Binding of Epo to both sites seems to be equally important for signal transduction, since mutation
in one of the sites is sufficient to impair Epo-mediated signaling [82,83]. The first step of signal
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transduction following the conformational change of the receptor involves phosphorylation of several
tyrosine residues within the membrane-distal portion of the intracellular domain. Since the receptor
itself lacks kinase function, phosphorylation is mediated by a protein tyrosinase kinase (Jak2) that
is constitutively associated with the receptor [84,85]. The main signal transducers for EpoR are
signal transducer and activator of transcription factors (STAT) 5A and 5B that are activated within
seconds after Epo binding [86,87]. STAT5A and STAT5B then accumulate in the nucleus and mediate
Epo-responsive transcription of genes that control processes such as proliferation, apoptosis and cell
differentiation. Other signaling pathways initiated by EpoR have also been reported, including the
phosphoinositide-3-kinase (PI3K-AKT) and mitogen-activated protein kinase (Ras/MAPK) [88–92].
Negative feedback modulators from the suppressor of cytokine signaling family (SOCS) limit the
function of EpoR signaling by acting on Jak2 and preventing STAT activation [93,94].

Key aspects of the hematopoietic EpoR structure and Epo-EpoR signaling are well conserved
within vertebrates. The overall comparison of the zebrafish EpoR sequence to other vertebrates
is relatively low (ranges from 44% to 27%), however essential sites that are required for receptor
dimerization, Epo binding, conformational changes and intracellular docking sites for downstream
signaling molecules are conserved [95]. Cytokine-Jak-STAT signaling is an evolutionary ancient
mechanism. The fruit fly Drosophila melanogaster contains a typical cytokine receptor (domeless) as well as
Jak and STAT homologues (hopscotch, stat94/marelle) that share functional similarities to vertebrate type
I cytokine receptor signaling [96,97]. However, orthologs of EpoR have not been identified in Drosophila
or any other invertebrate species and Epo-mediated neuroprotection (which is absent in Drosophila but
present in other insects (see below)) has to rely on other types of Epo-responsive receptors [98–100].

3.3. Presence and Function of EpoR in the Nervous System

Observations of increased apoptosis in non-hematopoietic tissue in Epo or EpoR knock-out
mice prior to the onset of anemia implied a functional role of Epo-EpoR signaling beyond
erythropoiesis [101,102]. EpoR is expressed in a temporal and cell-specific manner in the developing
brain [103,104], heart [105,106], kidney [53,107], skeletal muscle [108] and endothelial cells [109,110].
In the mouse brain, EpoR is expressed in the neural tube (in radial glial cells) as early as E8 at
levels comparable to adult hematopoietic tissue [104,111]. In the developing human embryo EpoR
expression is first detected, as early as 7–8 weeks, in neurons and astrocytes of the spinal cord and
brain [103,112,113]. EpoR knock-out mice show a reduced overall amount of neuronal progenitor
cells and reduced neurogenesis [114] as well as developmental defects of the heart accompanied
with a reduction in the number of cardiac myocytes and endothelial cells [101]. Based on these
results, Epo-EpoR signaling was proposed to play a crucial role for the normal development of
the brain and other organs. Since knock-out of Epo and EpoR genes result in severe anemia
and premature death at E13.5, the role of Epo-EpoR signaling in non-hematopoietic tissue was
difficult to study until Suzuki et al. [115] generated a transgene-rescue EpoR knock-out mouse
that rescued EpoR expression exclusively in the hematopoietic lineage (hematopoietic-rescued
EpoR knock-out). Hematopoietic-rescued EpoR knock-out mice displayed increased apoptosis
but revealed no apparent abnormalities in the gross structure of the brain [102,115]. However,
in a more detailed analysis Chen and colleagues [116] described a 2-fold increased apoptotic rate
in the brains of hematopoietic-rescued adult EpoR knock-out mice and cultured hippocampal
neurons showed poor survival in contrast to comparable cultures from wild type hippocampus.
In addition, induced myocardial ischemia-reperfusion injury in the same transgenic mice resulted in
a significantly larger infarct size and increased apoptosis in cardiomyocytes compared to wild-type
mice [61]. The hypothesized anti-apoptotic function of Epo-EpoR signaling in non-hematopoietic
tissue was supported by various in vitro studies. For example, undifferentiated human neuroblastoma
cells express EpoR and Epo treatment prevents augmented apoptosis following the exposure
to pro-apoptotic stimuli. Upon differentiation into neuron-like cells (induced by treatment of
neuroblastoma cells with all-trans-retinoic acid) EpoR was downregulated and Epo no longer had an
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anti-apoptotic effect [117,118]. Besides the expression of EpoR in neurons, its mRNA is also detected
in cultured oligodendrocytes and astrocytes, and administration of Epo enhances oligodendrocyte
maturation and astrocyte proliferation [119]. Furthermore, direct dose-dependent effects of Epo on
the proliferation and survival of other non-hematopoietic cells, including cultured primary mouse
myoblasts from skeletal muscle [57] and human proximal tubular cells from the kidney [107] has
been reported.

In adults, neurogenesis is limited to regions of the hippocampus and subventricular zone (SVZ).
Impaired Epo-EpoR signaling significantly reduces adult neurogenesis [116] and Epo administration
to normal C57BL/6 mice resulted in an increased number of neurons and oligodendrocytes [48].
Interestingly, newly formed cells resulted from enhanced differentiation of pre-existing precursor cells
rather than from the formation of new cells due to cell proliferation. In addition, overexpression of
constitutively active EpoR in pyramidal neurons of forebrain cortex and hippocampus can increase
synaptic plasticity and enhances cognitive abilities and social memory [120].

EpoR expression in adult nervous systems remains very low under normal/healthy conditions,
but various factors can modulate EpoR levels. For example, in healthy rodents, environmental
enrichment, ambient heat or mild episodes of hypoxia can increase EpoR expression and furthermore
protect neurons towards following injuries including severe ischemia [25,26,29,121]. Similar to the
brain, EpoR expression in adult kidneys and hearts remains low, but increases following ischemic
insult [106,107]. Although hypoxia-inducible factor (HIF) does not directly induce EpoR expression,
factors such as pro-inflammatory cytokines and Epo itself have been identified to modulate EpoR
expression in non-hematopoietic tissues. Induction of EpoR expression in non-hematopoietic tissues
following injury has been correlated with the tissue protective effect of Epo administration in a
variety of disease models, including stroke [122,123], traumatic brain injury [23,124], hypoxic ischemic
encephalopathy (HIE) in neonates [125–127], peripheral nerve injury [128,129], ischemic reperfusion
injury of the heart [106,130] and kidney [54,55] and chronic kidney disease [56]. However, promising
results from animal model studies have only been partially transferred into successful clinical human
trials [131–139]. Severity of the injury, different dosages and time points of Epo administration
might influence the outcomes of the clinical trials. In addition, the protective effect of Epo can only
manifest if there is an appropriate receptor expressed on the cell surface. Though neuroprotective and
neuroregenerative functions have been described to depend on EpoR, most studies did not address
the question whether homodimeric EpoR or a heteromeric receptor complex that includes EpoR as one
component relayed the Epo signal in the responsive cells. Future studies with specific Epo-mimetic
ligands will need to analyze the role of EpoR in Epo-mediated neuroprotection in more detail.

It should be noted that methodical shortcomings in the association of EpoR expression with
beneficial functions in the nervous system have led to partially inconsistent results about the role
of EpoR in nervous tissue. The methods that have been used to detect EpoR in non-hematopoietic
tissue include the use of EpoR antibodies in tissue sections and western blots; whole mount in
situ hybridization and quantitative analysis of EpoR mRNA levels in tissue samples and tissue
specific analysis of EpoR transcripts in transgenic mice that express the human EpoR transcript.
Commercially available EpoR antibodies showed non-specific cross-reactivity and results of studies
solely based on the use of these antibodies were questioned [140–142]. A recent study by Ott et al. [143]
characterized a new, highly specific, EpoR antibody directed against the cytoplasmic tail of human and
murine EpoR. Results of the study show a specific EpoR expression in cultured primary murine brain
cells, frozen brain sections of healthy young mice, and upregulation of EpoR in injured mice brains and
patients suffering from epilepsy. Future studies using more specific antibodies against EpoR will need
to validate EpoR expression within other non-hematopoietic tissues. However, the overall evidence
that EpoR mRNA is expressed by cells other than the hematopoietic system, the protective effect of
Epo following tissue injury and the detection of specific binding sites for Epo in the brain support the
hypothesis that Epo-EpoR signaling is functional in non-hematopoietic tissues.
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3.4. Functions of Alternative Versions of EpoR

EpoR exists in three major isoforms that are generated by alternative splicing: full length protein
as part of the functional receptor; a soluble protein that lacks the transmembrane and intracellular
domains; and a truncated protein that lacks large parts of intracellular domains due to alternative
splicing [144]. Some cells simultaneously express different isoforms of EpoR. The physiological role
of both soluble and truncated EpoR has not been fully understood but both variants seem to be of
functional importance.

Soluble EpoR (multiple variants may exist [8]) has been detected in various tissues including
the brain [145]. Its presence in the blood is elevated by pro-inflammatory molecules [146] while
its expression in the brain is downregulated (in contrast to full length EpoR) upon exposure to
hypoxia [145]. Endothelial cells have been identified as one source of soluble EpoR within the
mammalian brain [147]. Studies on the respiratory control system of mice indicated that the level of
soluble EpoR, which captures Epo and prevents it from activating membrane-bound EpoR, regulates
the sensitivity of Epo/EpoR signaling in the adaptation of ventilatory functions to different levels
of oxygen [145]. Clearing of Epo from the circulation and extracellular space and regulating the
availability of Epo for binding to membrane-bound Epo receptors seem to be the general function of
soluble EpoR.

Truncated variants of EpoR have been identified in early-stage erythroid progenitor cells where
they function as negative regulators of erythropoiesis [148,149]. Evidence for the function of truncated
EpoR in the brain resulted from studies on substantia nigra dopaminergic neurons that co-express both,
a full length EpoR and a truncated isoform that lacks large parts of EpoR’s intracellular domains [150].
While expression of full length EpoR in HEK293T cells enabled Epo-stimulated phosphorylation
of STAT5, expression of the truncated isoform did not confer any Epo-sensitivity, suggesting that
truncated EpoR may not form Epo-responsive receptor molecules. Coexpression of the full length EpoR
and the truncated EpoR isoform prevented Epo-stimulated STAT5 activation, indicating interference
of the truncated receptor with EpoR-initiated transduction [150]. While the factors that regulate the
levels of full length and truncated EpoR expression in dopaminergic neurons remain to be identified,
the level of truncated EpoR expression seems to regulate the sensitivity of these cells to Epo.

4. Alternative Epo-Receptors

While Epo prevents apoptosis of erythroid progenitors by activating homodimeric EpoR,
its protective functions in the nervous system and other non-hematopoietic tissues are also mediated
by alternative receptors. Though Epo has a lower affinity to tissue-protective receptors than to
homodimeric EpoR [7], brief access of the ligand is sufficient to induce neuroprotection [7,28,151]
while stimulation of erythropoiesis via homodimeric EpoR requires prolonged exposure to the
ligand. This difference may result from different mechanisms to inactivate the respective Epo
receptors or components of their downstream transduction pathways (summarized in [152]). A study
with EpoR conditional knock-down mice by Tsai and co-workers reported persisting Epo-mediated
neuroprotection during ischemia [114]. Existence of multiple, sometimes tissue-specific Epo splice
variants suggests different functions that might be mediated by different receptors in different
tissues [19,153]. As one example, the human splice variant EV-3 which lacks the entire third exon
of the full-length Epo transcript does not activate homodimeric EpoR, and hence does not stimulate
erythropoiesis, but mediates neuroprotection of rat hippocampal and insect neurons [19,20]. In addition
to natural splice variants, various Epo-derivatives (e.g., carbamylated Epo, Epobis, helix B surface
peptide) and molecules completely unrelated to the Epo peptide sequence (e.g., STS-E412) have been
identified as non-erythropoietic but neuroprotective specific Epo mimetics [154–158]. Recent studies
identified three candidate receptors that are expressed in the nervous system and mediate cell protective
and regenerative functions upon binding of Epo and/or one of its non-hematopoietic agonists.
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5. Common β Chain Receptor

Several studies (examples see below) indicated that a heteromeric complex consisting of one or
more EpoR together with one or more molecules of the common beta receptor chain (βcR) may serve
as a tissue-protective Epo receptor.

βcR (synonym CD131) is a member of the type I cytokine receptor subfamily, which forms
heteromeric receptors with high-affinity receptor subunits for interleukin-3, interleukin-5 and
granulocyte-macrophage colony-stimulating factor (GM-CSF) involved in particular regulatory
mechanisms of hematopoiesis [151,159,160]. In these receptor complexes that include one “specific”
and two βcR subunits, βcR is essential for receptor signaling, which is initiated by ligand-induced
phosphorylation of its intracellular domains. Similarly (although stoichiometry may be different), βcR
also associates with EpoR to form an Epo-sensitive tissue-protective heteroreceptor [6,7,154,161,162],
which may already assemble in the absence of Epo ligand [163]. Co-expression of EpoR and βcR has
been detected in various cell types of the nervous system, the heart, the kidney and other organs
(summarized in [144,157]) and Epo has been reported to induce tyrosine phosphorylation of βcR [164].
Since both homodimeric EpoR and EpoR/βcR complexes activate Jak, downstream intracellular
signaling pathways of both receptors are typically similar, though differences have been reported in a
study on mouse primary neurons [165]. Like EpoR, large portions of βcR are typically localized in
intracellular compartments and their exposure at the cell surface is stimulated by physiological stressors
such as hypoxia, metabolic deficiencies and inflammation [165,166]. Mechanisms that could regulate a
preferential formation of homodimeric EpoR/EpoR versus formation of EpoR/βcR complexes from
co-expressed subunits have not been characterized.

In the nervous system, cell types that can co-express EpoR and βcR include neurons,
astrocytes, microglia and vascular cells. Epo-mediated neuroprotection through EpoR/βcR has been
demonstrated in various studies [158,162,167,168] including studies with βcR-deficient knock-out mice
that lacked Epo-mediated neuroprotection [162] and relief of neuropathic pain [169]. In addition, Epo
mediates cardio- and reno-protective effects through EpoR/βcR-signaling in vitro and in vivo [162,170].
Selective activation of heteromeric EpoR/βcR but not of homodimeric EpoR has been demonstrated
for CEpo [154], peptides derived from or related to helix-B of Epo [151,171] and several other ligands
including mutant versions of Epo. Cells that co-express EpoR and βcR should contain both heteromeric
EpoR/βcR and homodimeric EpoR receptors. While Epo and other unselective ligands may induce
activation of various transduction pathways starting from both types of receptors, ligands selective for
heteromeric EpoR/βcR complexes may only evoke some portion of the response spectrum induced
by Epo [167]. However, various brain regions and cell types that exhibit Epo-mediated protection
do not co-express EpoR and βcR in detectable amounts [29,172,173] and other neuroprotective but
non-erythropoietic signals (such as the Epo splice variant EV-3) have been demonstrated to bind
neither homodimeric EpoR nor EpoR/βcR receptors [19]. This indicates that heteromeric EpoR/βcR
(in addition to homodimeric EpoR) functions as a protective Epo receptor, at least in some types
of neurons and glia and eventually depending on the type of physiological challenge, but certainly
additional protective receptors exist in the mammalian nervous system.

6. Ephrin B4 Receptor

Ephrin receptors (Eph) represent the largest subfamily of receptor tyrosine kinases that typically
mediate contact dependent cell-to-cell communication through interactions with membrane-bound
ephrin ligands (reviewed by: [174,175]). Like Epo/EpoR signaling, ephrin/Eph signaling is involved in
hematopoiesis, vascularization, cancer cell regulation and various functions in developing and mature
nervous systems [176]. In the mammalian nervous system ephrins and Eph are expressed by neurons,
astrocytes and endothelial cells [177–179]. Ephrin/Eph signaling regulates neurogenesis, axon growth,
cell migration, synapse formation, dendritic spine morphology and synaptic plasticity underlying
long-term changes of synaptic strength and memory formation [177,180–183]. Mammalian ephrins
and Eph are divided in two classes A (6 A-ephrins and 9 EphA) and B (3 B-ephrins and 5 EphB) and



J. Clin. Med. 2018, 7, 24 8 of 20

within a class Eph typically can bind different ephrins (“promiscuous binding”). The stoichiometry
of ephrin/Eph complexes seems to be variable. Preformed ephrin dimers and Eph dimers initially
form heterotetramers which may associate to multimeric complexes whose particular composition can
initiate specific responses in either one or both interacting cells (reviewed by [184]).

The EphB4 receptor differs from other Eph receptors by containing an isoleucine instead of a
tyrosine at position 48 in the hydrophobic cavity. Since EphB4 has been demonstrated to interact rather
specifically with ephrin-B2 [184] it might appear surprising, that just EphB4 also serves as a functional
receptor for Epo [185]. Studies on ovarian carcinoma cells, that endogenously express both EphB4
and EpoR, demonstrated that both ephrin-B2 and Epo directly activate EphB4, causing increased
proliferation and invasive migration mediated by Scr kinase (a cytosolic non-receptor tyrosine kinase)
and STAT3 [185]. In contrast, EpoR activation in the same ovarian carcinoma cells leads to Jak
activation and elevation of STAT5. Direct activation of EphB4 by Epo was further confirmed in
EphB4-transfected COS-1 cells that did not express EpoR endogenously. Consequently, both ephrin-B2
and Epo independently activate EphB4 and may act synergistically when released onto the same
target cells. Binding studies characterized EphB4 as a low affinity receptor for Epo with a KD of
880 nM compared to a KD of 28 nM for EpoR expressed in the same cells [185]. Effective activation
of EphB4 may therefore critically depend on the relative abundance of EphB4 and EpoR on the cell
surface (which is generally very low for EpoR in non-erythroid cells) and the sufficiency of short
ligand exposure to activate downstream transduction mechanisms. However, data on both the surface
expression of EphB4 and the time course of EphB4-initiated processes are not available. Moreover,
survival of patients with breast and ovarian cancers was reduced with increased expression level
of EphB4 but not of EpoR, and Epo treatment further reduced the survival chances of breast cancer
patients with tumors that express high levels of EphB4 [185]. This indicated that Epo supported tumor
growth particularly by activation of EphB4-initiated mechanisms.

EphB4 is expressed in the mammalian nervous system and ephrin-B2/EphB4 signaling has been
demonstrated to regulate adult neurogenesis and its balance with gliogenesis in the subgranular zone
of the hippocampus [177,186]. EphB4 expressed by neural stem cells is activated by direct contact
with ephrin-B2 expressing astrocytes. This interaction stimulates self-renewal of and proliferation
of neural stem cells and differentiation towards the neuronal lineage [177,186]. Indicating its role in
synaptic function, ephrin-B2 knock-out in mouse hippocampus attenuated long term potentiation of
synaptic transmission (LTP) following high-frequency synaptic activation [187]. Since Epo signaling in
the brain has also been associated with neurogenesis and/or neuronal differentiation [48,116,188] and
increased cognitive performance [42,120,189] it may well be that part of these processes are mediated
via activation of EphB4 receptors. In addition, rat cortex neurons were demonstrated to co-express
EpoR and EphB4 (as in the carcinoma cells described above) which probably enables differential
cellular responses initiated by the two receptors that can both be activated by Epo [185].

7. Cytokine Receptor-Like Factor 3 (CRLF3)

Human CRLF3 (synonyms Crème9 and Cytor4; splice variants with minor differences) is an
orphan cytokine receptor of unknown function that belongs to the subgroup of prototypic type 1
cytokine receptors which also includes EpoR, thrombopoietin receptor, prolactin receptor and growth
hormone receptor [190]. The human CRLF3 gene is located on chromosome 17 and the protein is
expressed in various normal tissues including the nervous system with higher expression levels
in embryonic compared to adult brains. Additionally, some tumor cell lines and freshly isolated
tumor tissues contain elevated levels of CRLF3 [191,192] Human CRLF3 includes 442 amino acids
and contains a number of characteristic predicted domains. These include the conserved cytokine
receptor motiv (WSXWS), a single-pass transmembrane sequence, and a docking site for Jak (NCBI
GenBank NP_057070.3) [100,190] being consistent with reported activation of intracellular transduction
pathways involving STAT3 [192].
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Orthologs of human CRLF3 exist in other mammals, non-mammalian vertebrates (amphibia and
fish), cephalochordates, tunicates and some insects including the beetle Tribolium castaneum, the locust
Locusta migratoria and the cricket Gryllus bimaculatus but not the fruit fly Drosophila melanogaster ([98,101],
unpublished own data). While EpoR orthologs are generally absent in insects and other invertebrates,
the presence of CRLF3 in different insect species coincides with the presence of Epo-mediated
neuroprotection and protective effects are absent in D. melanogaster [10,98,100]. Direct proof that
CRLF3 represents a functional neuroprotective receptor for Epo was achieved by studies with primary
brain cell cultures from T. castaneum [100]. In these neuron cultures, serum deprivation and hypoxia
induce apoptotic cell death that can be completely prevented by both Epo and its non-erythropoietic
splice variant EV-3. Knock-down of CRLF3 expression by double stranded RNA interference abolishes
Epo’s protective effects, indicating that CRLF3 functions as a neuroprotective receptor for Epo-like
ligands in beetles [100]. Since direct binding of Epo and EV-3 to CRLF3 has not yet been confirmed,
neuroprotective effects could also be mediated by a heteromeric receptor that contains CRLF3 as a
crucial component for signal transduction. Epo-mediated neuroprotection of primary brain neurons
from L. migratoria depends on Jak/STAT signal transduction [99], suggesting that insect CRLF3
activates similar intracellular pathways as its mammalian orthologs. Whether CRLF3 functions as
a neuroprotective receptor for Epo and its non-erythropoietic splice variants in mammals including
humans is under current investigation.

8. Conclusions

Endogenous Epo in the nervous system serves to adapt cells and neuronal circuits to physiological
and pathological challenges ranging from normal activity-dependent mild reduction of oxygen
availability and energy metabolites, via excitotoxicity to severe damage resulting from stroke, injury
and inflammation. Numerous studies in humans and animals have documented Epo-mediated
beneficial effects in the nervous system that secure cell survival, maintain functionality and support
regeneration in deleterious physiological conditions. Epo-mediated mechanisms represent promising
targets for pharmacological intervention with consequences of injury, neurodegenerative diseases and
neuropsychiatric conditions. Besides homodimeric EpoR, βcR/EpoR, EphB4 and CRLF3 (evidence
summarized in Table 1), additional Epo-receptors might be expressed by particular cell types in
particular physiological conditions. Hence, Epo and Epo-like ligands may activate different signal
transduction cascades depending on their concentration (while low concentrations of Epo are beneficial,
too high concentrations may be deleterious for the same cells) and on cell type, physiological condition
and type of insult. Identification of Epo receptor molecules expressed by specific cells in particular
situations may allow the development of Epo-mimetics that specifically interfere with one (or at least
few) of the pleiotropic functions of Epo in- and outside the nervous system.

Table 1. Protective functions of classical EpoR and alternative Epo-receptors.

Receptor EpoR/EpoR EpoR/βc-R EphB4 CRLF3
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Table 1. Cont.

Receptor EpoR/EpoR EpoR/βc-R EphB4 CRLF3

Epo-mediated
protection in/on

Erythroid progenitors
Heart

Skeletal muscle
Kidney
Brain

Neuroblastoma cells
various tumors

PC12 cells transfected
HEK cells

Kidney
Heart
Brain

Macrophages
Neuroblastoma cells
transfected HEK cells

Endothelial cells

Various tumors
Carcinoma cell lines Hemocytes (insect) *

Transduction
pathways

Jak, STAT5, PI3K/AKT,
Ras/MAPK, NF-κB

(not in erythroid cells)

Jak, STAT5
PI3K/AKT

MAPK

Scr tyrosine kinase,
STAT3

Jak, STAT3, STAT
(insect)

Alternative ligands:
EV-3 No No [19]

No data available
Yes [100]

carbamylated Epo No Yes [193] No data available
helix b surface peptide No Yes [194] Yes *

Expression in the
nervous system

Neurons [28,116,143],
Astrocytes [32,124,195],
Oligodendrocytes [143],

Microglia [143,195],
Endothelial

cells [32,110,143]

Neurons [158,162,166],
Astrocytes [196],

Endothelial cells [197]

Neural stem cells [177]
Hippocampal
neurons [187]

Endothelial cells [179]

Neurons (insect) *

Epo-mediated effect
within the nervous

system

Neuroprotection of
hippocampal

neurons [172] and
differentiated

neuroblastoma
cells [173]

Neuroprotection of
rodent motor

neurons [193] and
spinal cord

neurons [198];
Reduction of

neuropathic pain in
mice [169]

No data available

Neuroprotection of
insect brain

neurons [100];
Regeneration of insect

auditory receptor
fibers and neurites of

cultured insect
neurons *

Note: * own unpublished results. EpoR monomer of the classical erythropoietin receptor, βcR common beta
chain receptor, EphB4 ephrin B4 receptor, CRLF3 cytokin receptor-like factor 3, Jak janus kinase, STAT signal
transducer and activator of transcription, PI3K phosphoinositide 3-kinase, AKT protein kinase B, ras small GTPase
protein, MAPK mitogen-activated protein kinase, NF-κB nuclear factor kappa B, Scr tyrosine kinase non-receptor
protein kinase.
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