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Abstract

Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of
molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties
and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses
of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as
motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which
variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of
parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act
synergistically (or antagonistically) to alter the responses of the motifs to stimuli. Synergism (or antagonism) was quantified
using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized
synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a
subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a
model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The
effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of
single motifs. These results have implications for the rational design of combination drug therapies with the potential for
synergistic interactions.

Citation: Zhang Y, Smolen P, Baxter DA, Byrne JH (2014) Computational Analyses of Synergism in Small Molecular Network Motifs. PLoS Comput Biol 10(3):
e1003524. doi:10.1371/journal.pcbi.1003524

Editor: Lilia M. Iakoucheva, University of California San Diego, United States of America

Received October 18, 2013; Accepted February 6, 2014; Published March 20, 2014

Copyright: � 2014 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the National Institute of Health grant number NS073974 (www.nih.gov). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: John.H.Byrne@uth.tmc.edu

Introduction

Cellular functions are regulated by complex biochemical

networks that incorporate large numbers of diverse molecular

components and their interactions. The large scale and complexity

of these regulatory networks impedes achieving an intuitive

understanding of their overall function and responses to stimuli

and/or drugs. Consequently, when analyzing a complex system, it

is often useful to develop and analyze reduced models that capture

the key dynamical properties of the system. In analyses of

biochemical networks, these reduced models are referred to as

motifs [1]. Motifs depict distinct connectivity patterns that occur

more frequently in a given network than in random networks of

the same size. Motifs can be comprised of as few as three

molecules (referred to as nodes or vertices) and their interactions

(referred to as edges). Motifs are present in gene regulatory

networks, protein-protein interactions, and metabolic networks of

species as diverse as bacteria [1–2], yeast [2–3], and humans [2,4–

12]. Structurally distinct motifs appear to manifest specific

dynamical features [10,13–17] and modeling studies describe

how the responses of distinct motifs and the robustness of these

responses vary with parameters [18–20]. These studies are

beginning to elucidate ways in which motif dynamics contribute

to the functions and response properties of larger, more complex

regulatory networks. Moreover, as is investigated here, small

network motifs can be used to examine the ways in which

combinations of parameter changes act synergistically (or antag-

onistically) to alter the response to stimuli. This later strategy may

ultimately help guide the development of drug combination

therapies that target disease-related dysfunction of a network

motif.

Here, models of ten three-node motifs (Fig. 1) were developed

and synergistic interactions within these motifs were investigated.

These motifs are ubiquitous and are included within gene and

protein networks that are associated with specific diseases [1–2,4–

6,9,11,13,15,21–24]. The mechanisms of disease are usually

associated with large networks of molecular pathways. However,

in many clinical studies in which combination drug therapy is used

for treatment of diseases, two-drug combinations are considered

[25]. Therefore, for models of simple motifs or of complex

pathways, simulation of concurrent paired parameter changes is of

value for understanding the synergistic or antagonistic properties

of many current or possible combination therapies. In the simu-

lations, pairs of parameters were simultaneously varied, and the

extent to which these ten motifs manifest synergism (or antago-

nism) was examined. First, a canonical model was developed. This

motif constitutes a minimal representation of two convergent

pathways. Element A and element B both respond to a common

stimulus (S), and converge to activate a common target (T)

(Fig. 1A1). Activation (e.g., increased phosphorylation, or

enhanced synthesis) of T was assumed to be the output of the
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motif, and the target for examining the effects of combinations of

parameter variations. Variations of parameter pairs in elements

A and B represent combination therapies in which two drugs

target two different sites of the same pathway or two pathways

converging at a downstream process. Such convergence is

commonly used in designing therapies. For example, Paclitaxel

synergizes with Tubacin in enhancing tubulin acetylation, with

the former directly increasing acetylation and the later

decreasing the deacetylation of a-tubulin [25]. Aplidin and

Cytarabine are synergistic in killing cancer cells because they

induce apoptosis via two convergent signaling cascades [25]. In

this study, synergism (or antagonism) was quantified using

degrees of nonlinear blending and additive synergism (see

Model Development). Then the canonical motif was modified to

generate a set of similar three-node motifs that incorporated

different patterns of interaction among the nodes. These

interactions included a variety of positive and negative feedback

loops, and autoregulatory loops. These motifs were found to

greatly modify the existence and amount of synergism. For

specific parameter pairs, only a subset of motif architectures

exhibited synergism.

To substantiate these conclusions, the approach was applied to

a model representing interlocked feedback loops that govern the

synthesis of two transcription factors, cAMP-response element

binding proteins (CREBs), specifically CREB1 and CREB2 [26].

CREB1 is a transcription activator and CREB2 is a transcription

repressor. CREB1 and CREB2 regulate their own expression, via
binding to the CRE elements in or near their genes. The

feedback loops involving CREB1 and CREB2 modulate long-

term memory [27]. Three of the network motifs that were

simulated are included in this model: a positive auto-regulatory

loop governing CREB1 synthesis; a negative auto-regulatory loop

governing CREB2 synthesis; and negative feedback in which

CREB2 inhibits the synthesis of CREB1. The effects of these

motifs on synergism in this more biologically realistic model were

consistent with the results from the more abstract three-node

models.

Methods

A canonical model of converging pathways that regulate
a downstream target

Elements A and B converge onto a target (T) (Fig. 1A1). Both A

and B are activated by stimulus S. The activities of A and B are

dynamic variables that follow first-order ordinary differential

equations (ODEs). kbasal_A and kbasal_B are basal activation rates

of A and B. The deactivation of A and B follows Michaelis–

Menten kinetics. These assumptions yield the following ODEs:

dA

dt
~ksASzkbasal A{kdA

A

AzKA

ð1Þ

dB

dt
~ksBSzkbasal B{kdB

B

BzKB

ð2Þ

Two variants of this simple converging model were analyzed. In

Variant M, the activation rate of T is proportional to the product

of the effects of A and B. Deactivation of T follows Michaelis-

Menten kinetics. The following ODE for T results:

dT

dt
~kST (

A

AzKTA

)(
B

BzKTB

)zkbasal T{kdT
T

TzKT

ð3Þ

In Variant A, the activation rate of T is proportional to the sum

of the effects of A and B, yielding the following ODE:

dT

dt
~kST ½(

A

AzKTA

)z(
B

BzKTB

)�zkbasal T{kdT
T

TzKT

ð4Þ

Concentrations are non-dimensional. Standard parameter

values are used in all simulations unless noted. These values are:

KsA = 0.1, kbasal_A = 0.1, kdA = 0.2, KA = 1, KsB = 0.1, kba-

sal_B = 0.1, kdB = 0.2, KB = 1, kbasal_T = 0.0001, kST = 0.01,

KTA = 2.5, KTB = 2.5, kdT = 0.01, KT = 0.5.

The parameters were adjusted by trial and error so that the

dynamics of A, B and T display properties of common

biochemical responses; e.g., 1) the activation of A and B was

rapid, whereas their deactivation was relatively slow; 2) the peak

level of T was well below saturation when stimuli were weak; and

3) the basal activation rate of T, kbasal_T, was much smaller than

the activation rate induced by A and B, kST. For simplicity, the

strengths of both pathways were initially balanced. Therefore, the

parameters of dynamics of A and B shared the same values. The

extent to which the synergism is dependent on these values is

discussed in the Results.

Expanding the canonical model to represent additional
three-node motifs

In the three-node model, it was assumed that 1) both A and B

have excitatory effects on T; and 2) the standard parameter values

governing A and B dynamics are identical. There are then nine

biochemical variations of the canonical motif that involve adding a

single feedback or feedforward interaction, or autoregulation,

involving A or B. These nine motifs were represented by

extensions of the canonical model. For simplicity and consistency,

these extensions were all constructed by adding regulation, within

the motif, of a given pair of parameters, kdA and kdB. After

Author Summary

Cellular responses to stimuli are controlled by complex
regulatory networks that comprise many molecular com-
ponents. Understanding such networks is critical for
understanding normal cellular functions and pathological
conditions. Because the complexity of these networks
often precludes intuitive insights, a useful approach is to
study mathematical models of small network motifs
having reduced complexity yet consisting of key regula-
tory components of the more complex networks. Compu-
tational studies have analyzed the behavior of small motifs,
and have begun to describe the ways in which variations
in parameters affect their functional properties. Here, we
investigated how variations in pairs of parameters act
synergistically (or antagonistically) to alter responses of ten
common network motifs. Simulations identified parameter
variations that maximized synergism, and examined the
ways in which synergism was affected by stimulus
protocols and motif architecture. The results have impli-
cations for the rational design of combination drug
therapies where a goal is to identify drugs that when
administered together have a greater effect than would be
predicted by simple addition of single-drug effects (i.e.,
super-additive effects), thereby allowing for lower drug
doses, minimizing undesirable effects.

Simulating Synergism in Network Motifs
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construction, synergism was examined with paired parameter

variations for each of these motifs.

Coherent, positive feed-forward loop (FFL) (Fig. 1B1). In

FFLs, A regulates B, and both regulate the target [28]. The

FFL has three interactions (A to B, A to T, and B to T). Each of

these interactions can be either positive (activation) or negative

(repression). Thus, eight variants are possible for the FFL. Four

of these variants are referred to as coherent because the sign of

direct regulation from A to T is the same as the overall sign of

the indirect regulatory pathway (A to B to T). Four other

variants are referred to as incoherent because the signs of the

direct and indirect pathways are opposite. The present study

focused on one coherent FFL variant (P-FFL), which is

frequently observed in signaling pathways [29] (Fig. 1B1A),

and one incoherent FFL variant (N-FFL) (Fig. 1B1B). To

generate the P-FFL, kdB was assumed to decrease with

increasing A.

kdB~kdB pfw
KB A

2

A2zKB A
2

ð5Þ

where kdB_pfw = 0.22, KB_A = 3.

To generate the N-FFL, kdB was assumed to increases with

increasing A.

kdB~kdB nfw
A2

A2zKB A
2

ð6Þ

where kdB_nfw = 0.4, KB_A = 1.

Crosstalk (either a positive-feedback, mutual excitation

loop, Fig. 1B2, or a mutual inhibition loop, Fig. 1B3)

between the two pathways. Two types of crosstalk between

elements A and B were examined. To add mutual excitation,

the deactivation rates of both elements, kdA and kdB, were

assumed to depend on the levels of B and A respectively. kdA

decreases with increasing B, whereas kdB decreases with

increasing A. Strong positive feedback might induce a bistable

switch [17], which would, due to saturation, tend to prevent

any synergistic effect of simulated parameter variations.

Hence a relatively weak mutual excitation loop was

implemented.

Figure 1. Canonical model and variations. (A1) The canonical model describes the convergence of two signaling pathways (elements A and B)
onto target (T). A single stimulus (S) activates both A and B. Then, A and B positively regulate the activation of T. (A2) For the canonical model, the
stimulus-response curves are transient in both model variants M and A (S = 1). (B–E) Various network motifs derived from the canonical model. (B1)
Two types of coherent feed-forward loop (FFL). (B2) Positive feed-back loop between A and B (i.e., mutual excitation, ME). (B3) Negative feed-back
loop between A and B (i.e., mutual inhibition, MI). (C1) Positive auto-regulation loop of A (i.e., auto-excitation, AE). (C2) Negative auto-regulation loop
of A (i.e., auto-inhibition, AI). (D1) Negative feedback between A and B (NF (B-A)). (D2) Negative feedback from T to A and B (NF (T-A/B)). (E) Positive
feedback from T to A and B (PF (T-A/B)).
doi:10.1371/journal.pcbi.1003524.g001

Simulating Synergism in Network Motifs
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kdA~kdA pf
KB A

2

B2zKB A
2

kdB~kdB pf
KB A

2

A2zKB A
2

ð7Þ

where kdA_pf = 0.22, kdB_pf = 0.22, KB_A = 3.

To add mutual inhibition to the canonical model, kdA and kdB

were assumed to increase with increasing B and A, respectively.

Mutual inhibition constitutes a form of positive feedback, and

strong feedback could induce bistability. Hence a relatively weak

mutual inhibition loop was implemented.

kdA~kdA nf
B2

B2zKB A
2

kdB~kdB nf
A2

A2zKB A
2

ð8Þ

where kdA_nf = 0.4, kdB_nf = 0.4, KB_A = 1.

Auto-regulatory loop(s) (Figs. 1C1 and 1C2). In an auto-

regulatory loop, a node directly influences its own function.

Common examples of auto-regulation include autophosphory-

lation of kinases and transcriptional regulation [27,30–31]. To add

positive auto-regulation, kdA was assumed to decrease with

increasing A.

kdA~kdA pa
KA A

2

A2zKA A
2

ð9Þ

where kdA_pa = 0.22, KA_A = 3

To add negative auto-regulation, kdA was assumed to increase

with increasing A.

kdA~kdA na
A2

A2zKA A
2

ð10Þ

where kdA_na = 0.4, KA_A = 1.

Negative feedback between A and B (Fig. 1D1) or from T

to A and B (Fig. 1D2). We considered a negative feedback loop

in which activation of A inhibits de-activation of B, with activation

of B then accelerating de-activation of A. kdA was assumed to

increase with increasing B and kdB was assumed to decrease with

increasing A.

kdA~kdA nf
B2

B2zKB A
2

kdB~kdB nf
KA B

2

A2zKA B
2

ð11Þ

where kdA_nf = 0.4, kdB_nf = 0.22, KB_A = 1, KA_B = 3.

A negative feedback loop was also implemented in which

activation of the target accelerates de-activation of the upstream

elements A and B. kdA and kdB were assumed to increase with

increasing T.

kdA~kdA TA

T2

T2zKT A
2

kdB~kdB TB
T2

T2zKT B
2

ð12Þ

where kdA_TA = 0.4, kdB_TB = 0.4, KT_A = 0.05, KT_B = 0.05.

Positive feedback from T to A and B (Fig. 1E). Here kdA

and kdB were assumed to decrease with increasing T, inhibiting

de-activation of the upstream elements A and B.

kdA~kdA TA
KT A

2

T2zKT A
2

kdB~kdB TB
KT B

2

T2zKT B
2

ð13Þ

where kdA_TA = 0.22, kdB_TB = 0.22, KT_A = 0.15, KT_B = 0.15.

The model of Song et al. [26]
CREB1 is assumed to bind to cAMP response elements (CREs)

near the promoters of both the creb1 and creb2 genes, activating

expression of both genes. CREB2 is assumed to bind competitively

to the same CREs and to repress transcription of both genes. In

this minimal model, differential equations for mRNAs are not

included. Thus the model consists of two ODEs, for the levels of

CREB1 and CREB2, with gene regulation represented by

activation and repression of CREB1 and CREB2 formation.

d½CREB1�
dt

~VX
½CREB1�2=KX

1z½CREB1�2=KX z½CREB2�2=KY

" #

{kdX ½CREB1�zrbas,X

ð14Þ

d½CREB2�
dt

~VY
½CREB1�2=KX

1z½CREB1�2=KX z½CREB2�2=KY

" #

{kdY ½CREB2�zrbas,Y

ð15Þ

Concentrations are non-dimensional. Standard parameter values

from Song et al. [26] are used. These values are:

Vx = 0.4 min21, Vy = 0.01 min21, Kx = 5, Ky = 10,

kdx = 0.04 min21, kdy = 0.01 min21, rbas,x = 0.003 min21, and

rbas,y = 0.002 min21

The parameters involved in the positive auto-regulatory loop in

which CREB1 enhances its own synthesis are Vx (the maximum

induced synthesis rate of CREB1) and Kx (the dissociation

constant of CREB1 from a CRE). The parameters involved in

the negative auto-regulatory loop in which CREB2 represses its

own synthesis are Vy (the maximum induced synthesis rate of

CREB2) and Ky (the dissociation constant of CREB2 from a

CRE). All four parameters are involved in the negative feedback

loop in which CREB2 represses the synthesis of CREB1, because

in this loop, CREB1 first activates CREB2 synthesis (parameters

Vy, Kx) and CREB2 then represses CREB1 synthesis (parameters

Vx, Ky).

Quantification of nonlinear blending synergism and
additive synergism

Measures to assess synergistic drug actions are diverse and

include additive synergism [32–34], Bliss independence [32,35–

37], the Chou-Talalay Combination Index [37], the isobolo-

graphic approach [32], Loewe additivity [33–35], and nonlinear

blending [38], but there is no agreement on which is preferable.

Given the diversity of methods for measuring synergism, it is useful

to adopt more than one method in studies of combination drug

treatments. In the present study nonlinear blending synergism

and additive synergism were selected to assess the effects of

Simulating Synergism in Network Motifs
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combinations of parameter variations on the output of the motifs.

These methods were chosen because: 1) Additive synergism is a

straightforward way to calculate synergism and can be easily

conceptualized, and 2) Nonlinear blending allows for synergism to

be assessed by considering the shape of a curve constructed over a

range of concurrent drug dosages, as opposed to assessing at a

single dose. In this way, nonlinear blending is closely related to

several of the more complex methods for calculating synergism,

such as isobolograms.

In nonlinear blending [38], a fixed total amount of drug 1 is

selected, which gives a substantial, but not saturated, response.

Then the response is quantified for mixtures of drugs 1 and 2,

holding the total drug amount the same as with drug 1 alone, but

varying the percentage of drug 1 in the mixture from 0 to 100%.

The resulting dose-effect curve, with percentage of drug 1 on the x
axis, will be concave up if antagonism is present between the

drugs and concave down if synergism is present. Weak nonlinear

blending synergism is present if the curve is concave down, but still

has its maximum at an end point [38]. Weak nonlinear blending

may not be useful, however, because the maximal response is still

obtained at one endpoint, using only one parameter change.

However a stronger, more useful form of synergism may be seen,

termed strong nonlinear blending synergism [38]. In this case, the

curve is concave down with the maximum response at a point

removed from either end point (Fig. 2A). Thus, for a given total

drug amount, the best response is obtained for a mixture of drugs

1 and 2.

For each nonlinear blending (NB) curve, a corresponding

additive effect (AE) curve can be constructed. The same

combination of drugs is used as for the NB curve. However, the

additive effect is simply calculated as the sum of the response from

with the altered value of drug 1 alone and the response with drug 2

alone (Fig. 2B). Additive synergism is then present if the response

to the combination of drugs 1 and 2, shown by the NB curve, is

greater than the sum of the responses to the individual drugs,

shown by the AE curve.

In the simulations, the effects of pairs of drugs were mimicked

by varying pairs of parameters. In the canonical model, 14

parameters in Eq. 1–4 determine the dynamics of A, B and T. The

peak level of T was considered to represent the response to the

stimulus S (Fig. 1A2). The peak level of T in the absence of

parameter changes was regarded as the control peak level. The

percentage increase of the peak level with parameter changes over

the control peak level was taken as the simulated response to the

parameter changes. Individual parameters were varied in the

direction that increased the peak level of T. For 14 parameters, 91

distinct combinations of two parameters are possible. To simulate

a reasonable range of drug effect strengths, each individual

parameter was varied within the range bounded by 90% changes

of its standard value, either increased (0%–+90%) or decreased

(0%–290%), according to which direction increased the peak level

of T. When two parameters were modified simultaneously, the

sum of absolute values of individual parameter percent changes

was maintained at 90%. The value of 90% was chosen so that the

maximal degree of reduction, or inhibition, of biochemical

processes governed by these parameters – synthesis, degradation,

or activation/deactivation of A, B, or T – was 90%. For example,

kdA/kST is one pair that was selected. For simulations with this

pair, kdA was decreased, because a decrease in the degradation

rate of A tends to increase the peak level of the target T, and kST

was increased, because an increase in the maximum induced

synthesis rate of T also increases the peak level of T. In a series of

Figure 2. A schematic of NB synergism (A) and additive synergism (B). Response for AE curve = effect of drug 1 alone+effect of drug 2 alone.
The maximal difference between peak value and endpoints of NB curves determines the maximum NB synergism. The maximal difference between
NB and AE curves determines maximum additive synergism.
doi:10.1371/journal.pcbi.1003524.g002
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combined parameter changes, the decrease in kdA varied from 0%

to 90% of its standard value, and the increase in kST concurrently

varied from 90% to 0% of its standard value, such that |%

decrease in kdA|+|% increase in kST| = 90%. To simulate dose-

effect curves for individual parameters, as well as to construct NB

curves, 30 points were used, evenly spaced between 0 and 90%

parameter variations from standard values, evenly spaced between

0 and 90% parameter variations from standard values.

Synergism was quantified by defining the degrees of NB and

additive synergism. The left end point of an NB curve corresponds

to a 90% change in parameter 2 (i.e., 0% change in parameter 1).

The right end point corresponds to a 90% change of parameter 1.

The greater value of these two endpoints was considered as the

maximal single-parameter effect (Fig. 2A). Then:

Degree of NB synergism~

(
peakvalue of NB curve - maximal single parameter effect

maximal single parameter effect
)

|100%

ð16Þ

Based on Eq. 16, the degree of weak NB synergism (i.e., NB

curve is concave down and the peak response is obtained from

either end point of NB curve) is always zero. Therefore, this degree

was only calculated for parameter pairs that exhibit strong NB

synergism, with degree .0. All other pairs that exhibit weak NB

synergism were assigned a degree of 0. A negative degree

corresponds to antagonism (i.e., NB curve is concave up).

The degree of additive synergism was calculated using the

maximal difference between the NB curve and AE curve, as

follows (see also Fig. 2B).

Degree of AE synergism~

max value of (NB curve - AE curve)

maximal single parameter effect
|100%

ð17Þ

A positive degree .1 corresponds to additive synergism, whereas a

negative degree corresponds to antagonism.

Fourth-order Runge-Kutta integration was used for integration

of ODEs, with a time step of 3 s. The model was programmed in

XPP-Aut version 6.1 (http://www.math.pitt.edu/,bard/xpp/xpp.

html). The XPP-Aut code is provided as Supplemental Material.

Results

Perhaps the simplest model for studying synergism is a three-

node model of two pathways that converge onto a single target.

Here, each pathway represents stimulus-induced activation of an

enzyme, which in turn modifies the activity or level of a target

effector molecule. For generality, the activity of each pathway is

simply represented as the level of an element (A or B). A and B

converge to induce activation of the target, T (Fig. 1A1). To

characterize the responses of this motif (and the additional motifs

described below), a stimulus (S) is modeled as a brief (10 min)

square-wave pulse, rising from a basal value of zero to an elevated

value. To examine whether the strength of S affects synergism, the

latter value is varied from weak (1) to strong (40) (non-dimensional

units). After the pulse, S returns to zero. S concurrently activates A

and B. The activities of A and B are dynamic variables A and B
that follow first-order ODEs (see Model Development). Two

variants of this model were analyzed. In Variant M, the effect of

the two pathways on the expression of T is multiplicative. The

activation rate of T is proportional to the product of the effects of

A and B. Thus, Variant M is equivalent to a logical AND gate. In

Variant A, the activation rate of T is proportional to the sum of the

effects of A and B. Each element is thus able to separately activate

T. Thus, Variant A is similar to a logical OR gate.

Comparison of synergism in the multiplicative and
additive model variants

For Variants M and A, after systematic simulation of the effects

of modifying 91 pairs of parameters, the degrees of NB and

additive synergism for each parameter pair were evaluated (Fig. 3).

Strong stimuli might induce a ceiling effect, which could preclude

the synergistic effect of combined parameter changes. Therefore,

in these simulations S = 1. In Variant M, 21 parameter pairs had a

degree of NB synergism .0, and 74 pairs had a degree of additive

synergism .1. In Variant A, only 7 parameter pairs had a degree

of NB synergism .0, and 34 pairs had a degree of additive

synergism .1. The histograms of the degrees of NB synergism and

additive synergism for the 91 parameter pairs show that: 1) None

of the parameter pairs in Variant A had a degree of NB synergism

.20, whereas 7 parameter pairs in Variant M had a degree of NB

synergism .20 (Fig. 3A), and 2) No parameter pairs in Variant A

had a degree of additive synergism .20, whereas 19 parameter

pairs in Variant M had a degree of additive synergism .20

(Fig. 3B). Thus the multiplicative effects of A and B on T in

Variant M produced stronger NB and additive synergism than did

the additive effects of A and B on T in Variant A.

In Variant M, all parameter pairs displaying NB synergism also

produced additive synergism, whereas parameter pairs displaying

additive synergism did not necessarily produce NB synergism. For

example, with Variant M, the kbasal_A/KTA pair produced

antagonism in the NB curve (i.e., the NB curve is concave up).

However, this pair still produced additive synergism (Fig. 3C). In

contrast, with Variant A, the KB/KT pair produced an AE curve

that, in some portions, was above the NB curve, even though NB

synergism was present (red box in Fig. 3D). Therefore, additive

synergism may be observed in the absence of NB synergism, and

NB synergism may be observed in the absence of additive

synergism. When the AE curve is above the NB curve, the effect of

the combined parameter variations (the NB curve) is less than the

sum of the effects of the individual parameter variations (the AE

curve). This corresponds to additive antagonism, and yields a

negative degree (Eq. 17).

Because Variant M produced, on average, stronger NB and

additive synergism than did Variant A, subsequent simulations

were performed with Variant M.

Parameter sensitivity analysis
In Variant M, for simplicity, the standard parameter values of

elements A and B were identical, thus the time courses of A and B
following a stimulus S were identical (Fig. 4A1). To test whether a

difference in the dynamics of these two elements would affect

synergism, parameters for element B (ksB, kbasal_B, and kdB) were

all reduced by 50%. This modification made the activation and

deactivation of B somewhat slower than that of A. Because of the

relatively slower kinetics, the peak amplitude of B was reduced by

,50% (Fig. 4A2), and the subsequent decay of B was slowed. NB

and additive synergism were simulated after parameter modifica-

tion. The histograms of NB and additive synergism degrees were

compared between the models with fast B dynamics (original

Variant M) and with slower B dynamics (Fig. 4B). Only slight shifts

were observed in the distribution of NB and additive synergism

degrees with slower B dynamics (Fig. 4B). In this case, similar to

the original model Variant M, 9 parameter pairs had a degree of
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NB synergism .10, and 36 pairs had a degree of additive

synergism .10 (Fig. 4B). In another test, the activation of B by S

was delayed by 60 min compared to activation of A (Fig. 4A2),

and the effect on synergism was assessed. With delayed B

activation, 7 parameter pairs still had a degree of NB synergism

.10, and 29 pairs had a degree of additive synergism .10

(Fig. 4B). Therefore, NB and additive synergism in Variant M

were robust to moderate variations in dynamics.

In further simulations, the percent reduction of ksB, kbasal_B,

and kdB was increased to 70% and then to 90%, which made the

activation and deactivation of B much slower than A. These

changes led to a decrease in the number of parameter pairs

showing synergism. When parameters for B were reduced by 70%,

7 parameter pairs had a degree of NB synergism .10 and none

had a degree .40. 33 pairs had a degree of additive synergism .

10 but none had a degree .40. When parameters for B were

reduced by 90%, only 3 parameter pairs had a degree of NB

synergism .10 and none had a degree .20. 28 pairs had a degree

of additive synergism .10 but none had a degree .40. Although

50%, 70% and 90% were arbitrarily selected, they effectively

represent the range of substantial variation of kinetics of B. These

results suggest that the use of combined parameter changes might

be less effective in inducing synergy if two converging pathways

have very different dynamics. In the simulations, the highest

degrees of synergism were produced when the basal parameter

values governing the dynamics of both pathways were identical.

Therefore, further analyses of effects of stimulus strength and

network motifs on synergism were performed for the optimal

initial condition (identical basal dynamics of elements A and B).

To further test the robustness of Variant M, parameter

sensitivity analysis was performed for the dynamics of T. Six

parameters that affect the dynamics of T (Eq. 3) were altered by

either 225% or +25% from their standard values. NB and

additive synergism for the 91 parameter pairs were simulated after

each of these 12 parameter modifications. The histograms of NB

and additive synergism degrees were compared for the cases of

standard and varied parameters. Both NB and additive synergism

were robust to these moderate variations in T dynamics. For

example, after reducing or increasing kST by 25% or reducing KT

by 25%, 9 parameter pairs exhibited a degree of NB synergism .

10, and 36 parameter pairs had a degree of additive synergism .

10 (Figs. 4C–D). These pair numbers were the same as with

standard parameter values. After increasing KT by 25%, 7

parameter pairs exhibited a degree of NB synergism .10, and

38 parameter pairs had a degree of additive synergism .10

(Fig. 4D).

Initially, the effects of stimulus strength and network motifs on

synergism for all 91 parameter pairs were examined. However, the

most dramatic changes in the dynamics of the motifs were related

to alterations in the deactivation rate constants of elements A and

B, kdA and kdB. Therefore, the detailed analyses of effects of

stimulus strength and network motifs on synergism concentrated

on variations to the three parameter pairs (kdA, kdB), (kdA, kST),

and (kdA, KT), each of which includes at least one of these

Figure 3. Histograms of NB synergism (A) and additive synergism (B) degrees from 91 parameter pairs for Variant M (grey bars) and
Variant A (green bars) (S = 1). (C) Variation of the parameter pair KTA/kbasal_A in Variant M shows that additive synergism can exist in the absence of
NB synergism. kbasal_A increases from 0 to 90% as KTA concurrently decreases from 90 to 0%. (D) Variation of KB/KT in Variant A shows that NB
synergism can exist in the absence of additive synergism (red box, concave-down NB curve is below AE curve).
doi:10.1371/journal.pcbi.1003524.g003
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deactivation rate constants. Each of these pairs consistently

displayed substantially different degrees of synergism. For exam-

ple, with S = 1, throughout almost all parameter variations, kdA

and kdB maintained degrees of both NB and additive synergism .

40, kdA and kST maintained degrees of NB synergism .5 and

additive synergism .20, and kdA and KT maintained a degree of

Figure 4. For Variant M (S = 1), the histograms of synergism degrees from 91 parameter pairs were compared between standard
parameter values and varied parameter values. (A) The stimulus and response curves of A (see Eq. 1) and B (see Eq. 2) with standard parameter
values (A1) and with parameters altered to give slower B dynamics (orange trace), or delayed B dynamics (green trace), with dynamics of A
unchanged (black trace) (A2). (B) The histograms of NB synergism (B1) and additive synergism (B2) degrees with standard parameter values (grey
bars) and with parameters altered to give slower B dynamics (orange bars) or delayed B dynamics (green bars). (C) The histograms of NB synergism
(C1) and additive synergism (C2) degrees with standard parameter values (grey bars), with kST increased by 25% (red bars), and with kST reduced by
25% (pink bars). (D) The histograms of NB synergism (D1) and additive synergism (D2) degrees with standard values (grey bars), KT increased by 25%
(dark brown bars), and KT reduced by 25% (light brown bars).
doi:10.1371/journal.pcbi.1003524.g004
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additive synergism .10 and a degree of NB synergism = 0. For the

kdA/KT pair the NB curve remained concave down with a

maximal at an endpoint (weak nonlinear blending).

The effects of stimulus strength on NB synergism and
additive synergism

Decreasing kdA or kdB prolongs activities of A or B. When a

decrease in kdA was paired with a decrease in kdB, strong NB

synergism resulted for S = 1 (Fig. 5A1). kST is the activation rate of

T induced by A and B. When a decrease in kdA was paired with an

increase in kST, moderate NB synergism resulted for S = 1

(Fig. 5B1). KT is the dissociation constant for deactivation of T.

A decrease in kdA was paired with an increase in KT, which

directly elevated the peak level of T. This pair of parameter

changes produced no strong NB synergism (degree of 0), and

yielded only weak additive synergism, when S = 1 (Fig. 5C1).

The AE curves of these pairs under different strengths of

stimulus were simulated: S = 1 (Figs. 5A1, B1, C1) and S = 10

(Figs. 5A2, B2, C2). For S = 1, additive synergism is also evident

for the kdA/kdB pair. The NB curve was well above the AE curve

(Fig. 5A1). For the kdA/kST pair, additive synergism was strong,

with the NB curve lying significantly above the AE curve (Fig. 5B1).

For kdA/KT, only slight additive synergism remained (Fig. 5C1).

Interestingly kdA/kdB, which produced the strongest NB syner-

gism, also produced the greatest increase of T (Figs. 5A1, B1, C1).

This result indicates that the lack of strong NB synergism with the

other two pairs is not due to saturation of the peak level of T.

When S = 10, for kdA/kdB, both NB synergism and additive

synergism were still evident (Fig. 5A2). For kdA/kST, the NB curve

was only slightly above the AE curve, and NB synergism was

almost absent (Fig. 5B2). For kdA/KT, additive synergism was

reversed, because the AE curve was slightly above the NB curve

(antagonism) (Fig. 5C2). Because S = 10 induced a higher control

peak level of T than S = 1 in the absence of any parameter

changes, the additional percentage increases of the T peak due to

parameter variations were smaller when S = 10 (Figs. 5A2, B2, C2)

Figure 5. Simulations with Variant M generated NB curves and AE curves for three pairs of parameters, which show strong NB
synergism (kdA/kdB) (A), moderate NB synergism (kdA/kST) (B), and weak NB (kdA/KT) (C). S = 1 in the left column, and S = 10 in the right column.
doi:10.1371/journal.pcbi.1003524.g005
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than when S = 1 (Figs. 5A1, B1, C1), which indicated some

saturation of the peak level of T for the higher stimulus, S = 10.

However the kdA/kdB pair, which produced the strongest NB

synergism, yielded a greater increase of T than did kdA/KT

(Figs. 5A2, C2). This result indicates that the saturation of peak T

is not the only reason for reduction of synergism.

The results of Fig. 5 indicate that increasing the strength of the

stimulus tends to reduce NB synergism and additive synergism. To

further test this hypothesis, the degrees of NB synergism and

additive synergism were measured under a series of stimuli ranging

from S = 1 to S = 40. Fig. 6 illustrates dose-effect curves of

synergism vs. stimulus strength. Although, for all three pairs of

parameters, NB synergism and additive synergism gradually

decreased with increasing S when S.10, the dose-effect curves

were not monotonic, displaying a type of inverted U-shaped curve.

Each pair required a different stimulus strength to maximize each

type of synergism. For each pair, maximal NB synergism and

additive synergism could occur at distinct stimulus strengths.

The effects of network motifs on NB synergism and
additive synergism

Mutual excitation loop between A and B. The effects of

mutual excitation on NB synergism and additive synergism

(Fig. 1B2) were simulated with the same three parameter pairs

as above in the presence of positive feedback, when S = 1 (Fig. S1,

panels A1, B1, C1) or S = 10 (Fig. S1, panels A2, B2, C2). No

strong NB synergism, or strong additive synergism, was exhibited

for any of the pairs. For kdA/kdB, the AE curve was well above the

NB curve, and the NB curve was concave up, illustrating

antagonism (Fig. S1A1). For kdA/kST (Fig. S1B1), and kdA/KT

(Fig. S1C1), the NB and AE curves were close or intertwined.

Compared to the corresponding AE and NB curves in the original

Variant M (Fig. 5), it appears that NB synergism and additive

synergism are both greatly reduced, for all three pairs, by the

presence of this form of positive feedback. Indeed, the degrees of

NB and additive synergism were ,5 for all three pairs, whereas

without excitation the degrees of NB synergism and additive

synergism for kdA/kdB and kdA/kST were .10, and the degree of

additive synergism for kdA/KT was also .10.

When S = 10, the NB and AE curves were also close for all three

pairs. Additive antagonism was nearly eliminated when S = 10.

Mutual excitation also increased the peak level of T. This effect

was particularly significant when S = 10, because the additional

percentage increases of the T peak due to parameter variations

were much smaller when S = 10 than when S = 1, which indicated

saturation of the peak level of T. Therefore, with mutual

excitation, increasing stimulus strength tends to eliminate both

synergism and antagonism, apparently due to a ceiling effect

caused by the combination of mutual excitation and strong

stimulation.

Positive feedback from T to A and B. The effects of

positive feedback from T to A and B (Fig. 1E) on NB synergism

and additive synergism were similar to the effects of a mutual

excitation loop between A and B (Fig. S5). Reduced synergism, or

even antagonism, was evident when S = 1. Increasing the stimulus

strength eliminated antagonism, possibly due to a ceiling effect.

Mutual inhibition loop between A and B. The effects of a

mutual inhibition loop on NB synergism and additive synergism

(Fig. 1B3) were simulated with the same three parameter pairs

when S = 1 (Fig. S2, panels A1, B1, C1) or S = 10 (Fig. S2, panels

A2, B2, C2). When S = 1, for kdA/kdB, both NB synergism and

additive synergism were greatly enhanced by the inhibition

(compare Figs. 5A1 and S2A1). The degrees of both forms of

synergism were enhanced at least four-fold. In contrast, for kdA/

kST and kdA/KT, the NB and AE curves were intertwined.

Compared to the corresponding AE and NB curves in the original

Variant M (Fig. 5), NB synergism and additive synergism were

greatly reduced.

The differential effects of mutual inhibition on synergism for

different parameter pairs may be due to the fact that mutual

inhibition and kdA/kdB are both involved in the deactivation of A

and B, whereas kST and KT are involved in the activation of T.

Mutual inhibition enhanced NB synergism and additive synergism

if both parameters were chosen from the reactions regulated by the

inhibition. In contrast, mutual inhibition reduced both forms of

synergism if at least one of the parameters was chosen from a

different reaction or interaction, even if that reaction was

downstream and indirectly regulated by the inhibition.

When S = 10, for kdA/kdB, both NB synergism and additive

synergism remained strong. The NB curve was well above the AE

curve (Fig. S2A2). The degrees of NB synergism and additive

synergism decreased by ,40% as compared to the degrees when

S = 1. However, the presence of mutual inhibition still increased

the values of both degrees by .100%. For kdA/kST and kdA/KT,

the NB and AE curves were no longer intertwined. The AE curves

were slightly below the NB curves. In addition, kdA/KT shows

substantial NB synergism when S = 10 (degree of NB syner-

gism = 23). Thus for these two parameter pairs, with mutual

inhibition, both forms of synergism are enhanced with increasing

stimulus strength.

Positive auto-regulation of A. The effects of a positive auto-

regulation loop on NB synergism and additive synergism (Fig. 1C1)

were simulated with the same three parameter pairs when S = 1

(Fig. S3, panels A1, B1, C1) or S = 10 (Fig. S3, panels A2, B2, C2).

When S = 1, for kdA/kdB, both NB synergism and additive

Figure 6. Simulations of three parameter pairs with Variant M
generated dose-effect curves that describe the relationships
between NB synergism and stimulus strength (A), and between
additive synergism and stimulus strength (B). The strength of
stimulus (S) was varied from 1 to 40.
doi:10.1371/journal.pcbi.1003524.g006
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synergism were strong. The NB curve was well above the AE curve

(Fig. S3A1) and the degrees of both types of synergism were

increased by at least 40% by positive auto-regulation. Indeed

NB synergism was enhanced for all three pairs (compare Fig. 5,

A1–C1 with Fig. S3, A1–C1). For kdA/kST and kdA/KT, NB

synergism was evident. Surprisingly, however, for these two pairs

the AE curves were above the NB curves (additive antagonism).

Additive synergism was reversed for kdA/KST (Fig. S3B1) and

kdA/KT (Fig. S3C1). Therefore for a weak stimulus (S = 1), positive

auto-regulation enhances NB synergism for all pairs, but has

diverse, parameter-specific effects on additive synergism. When

S = 10, the NB and AE curves were close for all three pairs and no

substantial NB synergism or additive synergism was observed. The

positive auto-regulation eliminates NB synergism and additive

synergism for a strong stimulus. Similarly to the mutual excitation

loop discussed previously, this elimination of synergism for a

strong stimulus might be due to an enhanced ceiling effect.

Negative auto-regulation of A. The effects of a negative

auto-regulation loop on NB synergism and additive synergism

(Fig. 1C2) were simulated in the presence of negative auto-

regulation for the same parameter pairs. When S = 1, the degrees

of NB synergism and additive synergism for all three pairs were at

least 25% lower than the corresponding synergism degrees in the

absence of the negative auto-regulation loop (the original Variant

M). Therefore, negative auto-regulation reduces NB synergism

and additive synergism when the stimulus is weak. For S = 10,

negative auto-regulation enhanced NB synergism and additive

synergism for kdA/kST, and additive synergism for kdA/KT,

compared to the corresponding degrees without negative auto-

regulation. However, negative auto-regulation reduced NB

synergism and additive synergism for kdA/kdB, and NB synergism

for kdA/KT. The negative auto-regulation loop has a complicated,

parameter-specific and stimulus-dependent effect on both forms of

synergism.

Coherent positive feed-forward loop, or negative feed-

forward loop, from A to B. For the same three parameter

pairs, in the presence of a positive feed forward loop (P-FFL)

(Fig. 1B1A), the degrees of additive synergism were negative or ,1

when S = 10. When S = 1, for all pairs, these degrees of additive

synergism were .50% less than the corresponding degrees in the

absence of the feed-forward loop. The degrees of NB synergism for

all three pairs were always 0, except for kdA/kST when S = 10

(degree = 4). The feed forward loop reduces NB synergism and

additive synergism.

The negative feed forward loop (N-FFL) (Fig. 1B1B) had similar

effects as did the P-FFL. For the same three parameter pairs, the

degrees of NB and additive synergism for all pairs were reduced

regardless of stimuli.

Negative feedback between A and B, or from T to A and

B. The effects of a negative feedback loop between A and B

(Fig. 1D1) were simulated for the same parameter pairs when

S = 1 and when S = 10. With this negative feedback, the degrees of

NB synergism for all pairs were zero regardless of stimuli. When

S = 1, for all pairs, the degrees of additive synergism were .50%

less than the corresponding degrees in the absence of negative

feedback. When S = 10, for kdA/kdB, the degree of additive

synergism was ,0.9. In contrast, the degree of additive synergism

for kdA/kST was ,26, whereas the degree was ,4 in the absence

of negative feedback. The degree of additive synergism for kdA/KT

was ,7, whereas the degree was negative without negative

feedback. This type of negative feedback reduces NB synergism

and exhibits a parameter-specific and stimulus-dependent effect on

additive synergism.

Finally, the effects of a negative feedback loop in which

increased T accelerates deactivation of A and B (Fig. 1D2) were

simulated when S = 1 (Fig. S4, panels A1, B1, C1) or S = 10 (Fig.

S4, panels A2, B2, C2). When S = 1, the degrees of NB and

additive synergism for kdA/kdB were ,20% greater than in the

absence of negative feedback, whereas the degrees of additive and

NB synergism for kdA/kST were, respectively, ,40% and ,5%

lower. The degree of additive synergism for kdA/KT was reduced

by ,25%. In contrast, the degree of NB synergism for kdA/KT

was small but positive (,4), whereas the degree was 0 in the

absence of negative feedback. Negative feedback from T to A and

B has a diverse, parameter-specific effect on both forms of

synergism.

When S = 10, NB and additive synergism was enhanced for all

three pairs. For kdA/kdB the degrees of NB and additive synergism

were at least 100% greater than in the absence of negative

feedback from T to A and B. For kdA/kST the degree of NB

synergism was small (,1) but positive and the degree of additive

synergism was ,11, both increased above the degrees without

feedback (NB synergism: 0; additive synergism: ,4). For kdA/KT

the degree of NB synergism was ,22, more than 100% greater

than without negative feedback (,10). Additive synergism was also

present (degree ,11), in contrast to the antagonism seen without

negative feedback (degree ,24) (Fig. 5B2). Negative feedback

from T to A and B can enhance both NB and additive synergism

when the stimulus is sufficiently strong.

Substantial enhancement of synergism was only seen for

a subset of motifs. Fig. 7 summarizes the degrees of NB and

additive synergism simulated for the canonical model and seven

other motifs, for S = 1 and 10. Positive feedback from T to A and

B, and the negative feed forward loop, were not included in Fig. 7,

because their effects on synergism and antagonism were respec-

tively similar to mutual excitation and to the positive feed forward

loop. Variations of kdA/kdB in the mutual inhibition loop

produced the greatest enhancement of synergism when compared

to the canonical model. NB and additive synergism were greatly

enhanced, and degrees in excess of 250 were simulated. However,

with the other parameter pairs in the mutual inhibition loop, only

kdA/KT showed an evident synergism increase, and only for NB

synergism for S = 10. Negative feedback from T to A and B

yielded a similar pattern. Substantial enhancement of all forms of

synergism was again seen for kdA/kdB, especially for S = 10.

Again, with the other parameter pairs, only kdA/KT exhibited

substantially enhanced synergism, and only for NB synergism for

S = 10. In both motifs, kdA/kST and kdA/KT showed an evident

but modest synergism increase for additive synergism for S = 10,

although some degrees did not exceed 10 or were only slightly

above 10.

For kdA/kdB in other motifs, positive auto-regulation was also

seen to substantially enhance both forms of synergism, but only for

S = 1, whereas for S = 10, both forms were abolished. For kdA/

kST, three other instances of substantial synergism enhancement

(degrees .10) were seen in Fig. 7. Positive auto-regulation

increased the NB synergism degree to 29 for S = 1. Negative

auto-regulation enhanced both forms of synergism for kdA/kST,

but only for S = 10, and a negative feedback loop between A and B

enhanced additive synergism for kdA/kST for S = 10. The two

remaining motifs, the mutual excitation loop and the positive feed

forward loop, did not exhibit significant synergism for any

conditions simulated.

Indeed, kdA/kdB in the mutual excitation loop exhibited evident

NB and additive antagonism. A degree as negative as 270 for

additive synergism was simulated for S = 1. One other instance of

Simulating Synergism in Network Motifs

PLOS Computational Biology | www.ploscompbiol.org 11 March 2014 | Volume 10 | Issue 3 | e1003524



substantial antagonism (degree ,228) occurred for kdA/KT and

positive auto-regulation (additive antagonism, S = 1).

The effects of network motifs on NB synergism and
additive synergism in the CREB model

Three network motifs are included in the model of Song et al.

(2007) (Fig. 8A1): a positive auto-regulatory loop in which CREB1

enhances its own synthesis; a negative auto-regulatory loop in

which CREB2 represses its own synthesis; and a negative feedback

loop in which CREB2 represses the synthesis of CREB1. There

are 8 parameters in Eqs. 14 and 15, leading to 28 possible distinct

combinations of two parameters. The effects of these three motifs

on NB synergism and additive synergism were examined by

varying all 28 parameter pairs.

Figure 7. Summary of the degrees of NB and additive synergism observed for all motifs for S = 1 and S = 10. Degrees of synergism are
plotted for kdA/kdB (A), kdA/kST (B), and kdA/KT (C). Motif abbreviations are as in Fig. 1. Vertical dashed lines delineate each motif and its associated
synergism degrees (four for each combination of a motif and a parameter pair). For each motif and parameter pair, the degrees of additive synergism
are plotted as blue and light green bars, and the degrees of additive synergism are plotted as black and grey bars, for S = 1 and S = 10 respectively.
Negative values represent degrees of antagonism. In a few cases, the NB and AE curves were intertwined (e.g., Fig. S1B1) and exhibited both additive
synergism and additive antagonism. For those cases only positive values (synergism) are plotted. The values of some data are too small to be easily
visualized.
doi:10.1371/journal.pcbi.1003524.g007
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In Song et al. [26], when the standard parameter values are

used, the model has two stable steady states: LOW and HIGH

states. Vx is transiently increased from 0.4 min21 to 3.7 min21 to

simulate the application of a neurotransmitter, 5-HT [26]. A

standard 5-HT protocol that is widely used to induce long-term

synaptic facilitation (LTF) (5 pulses of 5 min 5-HT with

interstimulus interval of 20 min) [39] is simulated, by increasing

Vx for 5 min for each of the 5 pulses. After the 5-HT stimulus,

CREB1 and CREB2 were switched from the LOW state to the

HIGH state (Fig. 8A2). The ratio of [CREB1]/[CREB2] after

they converge to the HIGH state was considered to represent the

response to 5-HT. An increase in this ratio corresponds to an

increase in the level of the transcription activator CREB1 and/or

a decrease in the level of the transcription repressor CREB2.

Therefore an increase in this ratio corresponds to increased

induction of genes necessary for LTF. LTF is a cellular correlate of

long-term memory (LTM), and an increase of [CREB1]/[CREB2]

corresponds qualitatively to improved formation of some forms of

LTM. The [CREB1]/[CREB2] ratio in the absence of parameter

changes was regarded as the control, and the percentage increase of

the ratio over the control was taken as the simulated response to

each of the 28 variations in parameter pairs. As was done previously

for the three-node motifs (Methods), for each parameter pair,

individual parameters were varied in the direction that acted to

increase the response, i.e., the [CREB1]/[CREB2] ratio.

After systematic, concurrent variation of each of the 28 pairs of

parameters, only one pair of parameters, Vx/Kdy, was found to

exhibit degrees of NB and additive synergism that exceeded 20

(Fig. 8B). Vx is the maximum induced synthesis rate of CREB1,

whereas Kdy is the degradation rate of CREB2. In these

simulations, Vx and Kdy were both increased, because for both

parameters, an increase acts to elevate [CREB1]/[CREB2].

Increasing Vx enhances the strength of the positive auto-regulatory

loop of CREB1. Increasing Kdy suppresses the negative feedback

between CREB1 and CREB2 and suppresses the negative auto-

regulatory loop of CREB2 by accelerating the degradation of

CREB2. Thus increasing positive auto-regulation while simulta-

neously suppressing negative auto-regulation was found to be the

only way to obtain substantial NB synergism and additive

synergism. These simulation results are consistent with the earlier

results from the three-node motifs, that positive auto-regulation

acts to enhance NB synergism, and that negative auto-regulation

acts to suppress synergism.

Discussion

The effects of varying parameter combinations in the context of

common motifs in biochemical pathways were simulated, and for

each motif, parameter combinations were identified that have a

relatively greater likelihood of exhibiting synergism. For every

motif (Fig. 1), simulations quantified degrees of NB synergism and

of additive synergism for an extensive set of 91 parameter pairs.

Three of these pairs, which each exhibited substantially different

amounts of synergism, were then used to analyze parameter

combination effects in detail. By concurrent simulation of NB and

AE curves, we were able to visualize which pairs produced

synergism (e.g., Fig. 5A), and which produced antagonism (e.g.,
Fig. 3C). Simulations demonstrated that NB synergism can exist

without additive synergism, and vice versa (Figs. 3C, 3D).

A canonical model that exhibits synergism
For the basic motif of two converging signaling pathways

(Fig. 1A1), the model variant with a multiplicative effect of the

pathways on the regulation of a target (Variant M) produced

stronger synergism than did the model with a simply additive effect

of the two pathways (Variant A). Thus, combined parameter

variations may be less efficacious if they occur within signaling

pathways that have additive effects on a downstream target.

However, and as discussed below, a multiplicative mechanism

does not guarantee synergistic effects in other motifs.

The synergism produced by Variant M was robust to modest

variations of parameters governing the dynamics of signal

pathways. In contrast, synergism was much more sensitive to the

strength of stimulus and to the presence of feedback or feed

forward interactions between elements and their target. NB and

additive synergism were decreased when the stimulus became

strong (Fig. 6). These results are not surprising, because increasing

stimulus intensity will saturate the signaling cascade. This ceiling

effect will prevent the combined parameter changes from further

enhancing the activation of their target. However, the relation-

ships between synergism and stimulus strength were non-

monotonic (Fig. 6). Each parameter pair exhibited maximal

synergism at a different stimulus strength. For example, kdA/kdB

produced maximal NB synergism when S = 4, but kdA/kST

produced maximal NB synergism when S = 2 (Fig. 6). When

S = 8, a simulated parameter combination was still effective (i.e.,
synergism was observed) for kdA/kdB, but not for kdA/kST (Fig. 6).

These simulations suggest that empirically, if the physiological

stimulus strength activating a given pathway varies, the optimal

choice of combined drug therapy to target that pathway might also

change.

The effectiveness of paired parameter variations depends
on the network motifs

Mutual excitation and mutual inhibition feedback loops are two

motifs commonly observed in signaling pathways [29]. Variation

of a pair of parameters yields synergistic effects in mutual

inhibition motifs (Figs. 1B3, 7, S2), but has opposite effects on

Figure 8. The model of Song et al. [26] and simulations. (A1) The
feedback loops described by the model. (A2) After 5 pulses of 5-HT
treatment, CREB1 and CREB2 switch from a LOW state to a HIGH state.
(B) The NB curve and AE curve for the parameter pair Vx/kdy. This pair
shows strong NB synergism, and additive synergism.
doi:10.1371/journal.pcbi.1003524.g008
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motifs with a mutual excitation loop (Fig. 1B2), where both NB

and additive synergism (Figs. 7, S1) were eliminated. This

elimination may be due to the self-reinforcing effect of the positive

feedback, enhancing the ability of combined parameter changes to

saturate the response. Similar results were obtained for paired

parameter changes in a positive feed forward motif (Fig. 1B1).

These results suggest that it may not be advantageous to design a

combined drug therapy for which both drugs activate a positive

feedback loop similar to that of Fig. 1B2, or a feed forward loop

similar to Fig. 1B1. In contrast, mutual inhibition tends to prevent

activation of the target from saturating, and this effect may explain

the enhanced synergism. Thus, a promising strategy for combi-

nation therapy might be to target drugs to elements of mutual

inhibition loops.

The effects of other network motifs on synergism were also

examined. A positive auto-regulation loop (Fig. 1C1) enhanced NB

synergism only if: 1) the upstream stimulus activating the signaling

pathway was weak, and 2) one or both of the parameters were part

of the positive auto-regulation loop (Figs. 7, S3). Although positive

auto-regulation surprisingly reversed additive synergism for some

parameter pairs (Fig. S3), these simulations nevertheless suggest

that given conditions 1) and 2), a positive auto-regulation loop may

be a worthwhile target of a combination drug therapy. In contrast,

a negative auto-regulation loop had a diverse, pair-specific effect

on synergism (Fig. 7). When the upstream stimulus was weak, this

auto-regulation tended to reduce synergism. Only for kdA/kST and

for a strong upstream stimulus was a substantial enhancement

(degree .10) seen. These simulations suggest that a signal pathway

with negative auto-regulation may not be a good target for

combined drug therapies that affect pathway parameters in a

similar manner to that modeled here. Simulations with the more

biologically realistic model of [26], which contains multiple motifs,

supported the above suggestions. With this model, the only way to

obtain substantial NB synergism and additive synergism was to

suppress negative auto-regulation while substantially enhancing

positive auto-regulation.

The effects of a negative feedback loop between the target and

an upstream element were similar to those of a mutual inhibition

loop between elements (Figs. 7, S2, S4). In the negative feedback

and the mutual inhibition loops:

N For kdA/kdB, both NB synergism and additive synergism were

enhanced regardless of stimulus strength, compared to the

model without feedback or inhibition.

N For kdA/kST, additive synergism was enhanced when the

stimulus was sufficiently strong (S = 10).

N For kdA/KT, both forms of synergism were enhanced when the

stimulus was sufficiently strong (S = 10).

These results further support the suggestion that some pathways

with negative interactions, either mutual inhibition between

elements, or inhibition between a downstream target and an

upstream element, may be good targets for combined drug

therapy, especially when both drugs target the parameters

involved in the negative interactions. However, a simple negative

feedback loop between A and B (Fig. 1D1) may not be a good

target for combined drug therapies that alter parameters in a way

similar to that modeled here, because with this negative feedback,

the degrees of NB synergism for all three parameter pairs were

zero regardless of stimuli (Fig. 7).

Although elements A and B are representative of enzymes

acting on a common target (T), the motifs of Figs. 1A1–1D2

are found in signaling pathways that also include regulation

of gene expression [1,29,40]. Thus A, B, and/or T could

alternatively refer to genes, or A and B could refer to

transcription factors inducing gene T. Drug combinations

targeting elements of motifs with such elements might include

antisense RNA or siRNA to affect translation of a regulatory

protein, or compounds that affect the activity of transcription

factors.

Indeed, numerous feedback loops and feed-forward motifs have

been identified in signaling pathways that include gene regulation

and that are associated with cancer and other disorders. Cui et al.
[4] mapped interactions among ,1,600 genes associated with

oncogenesis. Over 850 three-node FFLs similar to that in Fig. 1B1

were identified, and ,200 feedback loops similar to those in

Figs. 1B2 and 1B3 were found. One well-known example is the

p53-mdm2 negative feedback loop [41]. Aberrant activation of the

RasRRafRMAP kinase pathway is also commonly implicated in

cancer [42], and a strong negative feedback loop within which

activation of MAP kinase leads to inhibition of upstream Raf

kinase has been identified [43]. Considerable effort is also being

directed toward developing pharmacotherapies to improve learn-

ing and memory in individuals with cognitive deficits due to

molecular lesions (e.g., Rubinstein-Taybi syndrome [44]; or

neurofibromatosis type 1 [45]). Long-term synaptic potentiation

(LTP) is a correlate of learning and memory, and within signaling

pathways important for LTP, numerous three-node FFLs and

feedback loops have been identified [46]. Interestingly, over the

entire human gene network, three-node FFLs are the most

common regulatory motif [5].

Sensitivity of synergism to initial parameter values
A series of sensitivity analyses were performed. The results

indicated that although synergism and antagonism could be

dependent on initial setting of individual parameter space,

synergism may be less likely if parameters are concurrently

changed in two converging pathways with substantially different

dynamics. In the simulations, the highest degrees of synergism

were produced when the basal parameter values governing the

dynamics of two converging pathways were identical. This finding

that choosing two target pathways with similar dynamics tends to

favor synergism might be useful in designing some combination

drug therapies.

Implications for combination drug therapies
Combination drug therapies are commonly used for complex

diseases and neurological disorders such as Alzheimer’s disease,

depression, traumatic brain injury, cancer, type 2 diabetes, and

infections [47–54]. A potential benefit of combination therapies is

synergism [50,55–56]. With synergism, drugs administered

together have a greater effect than would be predicted by simple

addition of single-drug effects (i.e., super-additive effects). Thus

synergism allows for lower drug doses, minimizing undesirable

effects. However, the molecular mechanisms underlying the

synergism produced by combined drugs are not well understood

for many combination drug therapies. In Axelrod et al. [57], 420

drug combinations were screened in 14 different cell lines. 84

combinations were found to generate synergism in multiple cell

lines. The mechanistic analysis did help to suggest possible

mechanisms involved in the induction of synergism. For example,

the analysis implied that a combination of Ro31-8220 and

lapatinib might produce synergism by their compensatory cross-

talk between the p70S6 kinase and EGF receptor pathways [57].

However, none of the 84 combinations were synergistic in more

than half of the 14 cell lines, and no pattern of lineage specificity

was observed. Moreover, the authors found that even compounds

from the same family or with similar structures cannot substitute
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for each other to induce synergism, which reflects the diversity of

complex signaling networks.

In the current study, concurrent variation of parameter pairs to

increase a response can represent the effect of a pair of drugs

targeted to affect the corresponding interactions in a specific

pathway motif. Therefore, alterations in parameter pairs that

result in both NB synergism and additive synergism, and for which

both types of synergism are robust to moderate variations in other

parameters, may help to suggest, or to prioritize, drug combina-

tions for empirical investigation.

This study did not focus on examining how motifs affect a

parameter pair for varying initial values of all model parameters.

Instead, the aim was to investigate how network motifs affect the

degrees of synergism associated with variation of different types of

parameter pairs, when the initial values of model parameters favor

the induction of synergism. In the analysis of effects of stimulus

strength and network motifs on synergism, we examined whether

the motifs enhanced or eliminated the synergism for the parameter

pairs that already exhibited synergism in the canonical model

(kdA/kdB and kdA/kST), and whether the motifs helped to generate

synergism for the parameter pair that did not exhibit synergism in

the canonical model (kdA/KT).

The network motifs examined in the present study are obvious

simplifications of the processes taking place in realistic biological

networks and the analysis of these motifs is not expected to yield a

complete understanding of these networks and the ways in which

combined parameter variations affect them. However, models of

simplified motifs have their own advantages. They have relatively

few parameters and a relatively simple mathematical structure, so

it is possible to simulate and analyze the dynamics characteristic of

a specific motif, which can be otherwise obscured within a

complex network. Moreover, once the key dynamical elements of

basic motifs are characterized, it is easier to incorporate these

elements into more complicated and biologically realistic models.

Under some circumstances, the dynamics characteristic of a single

motif may dominate a local biological network [29,58]. Indeed,

Tyson and Novak [58] review several cases for which a single

motif appears to dominate the dynamics of a cellular response. In

these circumstances, the analysis presented here could be

particularly useful for understanding cellular responses to pairs

of drugs affecting that motif.

In summary, models such as those studied here provide insights

into the dynamical properties of network motifs. Moreover, the

stimulus protocols and parameter manipulations used here may

help to predict the extent of synergism and consequently may

prove useful in prioritizing empirical investigations of combination

therapies. If combined drugs target signaling pathways that

contain mutual excitation or positive feed forward interactions, a

single drug might be as efficient as combined drugs. Whereas, if

combined drugs target signaling pathways that contain a negative

feedback loop between the target and an upstream element, or a

mutual inhibition loop between elements, the combination may be

more likely to exhibit empirical synergism. The usefulness of this

approach is dependent on knowledge of the motifs that participate

in signaling pathways affected by specific disorders. Often this

information is currently limited. However, as progress is made in

understanding motifs affected by diseases, the use of such

computational models in the initial stage of designing combination

drug therapies may become a common and efficient methodology.

Supporting Information

Code S1 This file contains code written for the free, publicly

available software package XPPAut. This code served as the basis

for all the simulations in the manuscript.

(TXT)

Figure S1 Simulations in the model with a mutual excitation

loop between A and B generated NB curves and AE curves for

kdA/kdB (A), kdA/kST (B) and kdA/KT (C). Stimulus was weak in

the left column (S = 1), and strong in the right column (S = 10).

(EPS)

Figure S2 Simulations in the model with a mutual inhibition

loop between A and B generated NB curves and AE curves for

kdA/kdB (A), kdA/kST (B) and kdA/KT (C). Stimulus was weak in

the left column (S = 1), and strong in the right column (S = 10).

(EPS)

Figure S3 Simulations in the model with a positive auto-

regulation loop of A generated NB curves and AE curves for kdA/

kdB (A), kdA/kST (B) and kdA/KT (C). Stimulus was weak in the

left column (S = 1), and strong in the right column (S = 10).

(EPS)

Figure S4 Simulations in the model with negative feedback from

T to A and B generated NB curves and AE curves for kdA/kdB (A),

kdA/kST (B) and kdA/KT (C). Stimulus was weak in the left

column (S = 1), and strong in the right column (S = 10).

(EPS)

Figure S5 Simulations in the model with positive feedback from

T to A and B generated NB curves and AE curves for kdA/kdB (A),

kdA/kST (B) and kdA/KT (C). Stimulus was weak in the left

column (S = 1), and strong in the right column (S = 10).

(EPS)
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