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(MRI) and diffusion tensor imaging (DTI) can describe parameters such as fractional anisotropy (FA), mean
diffusivity (MD) or apparent diffusion coefficient (ADC). These parameters, when measured in the substantia
nigra (SN), have not only shown promising but also varying and controversial results.

To clarify the potential diagnostic value of nigral DTI in PD and its dependency on selection of region-of-interest,

lgzmgggi-s disease we undertook a high resolution DTI study at 3 T. 59 subjects (32 PD patients, 27 age and sex matched healthy
Parkinsonism controls) were analysed using manual outlining of SN and substructures, and voxel-based analysis (VBA). We
Diffusion weighted imaging also performed a systematic literature review and meta-analysis to estimate the effect size (Dgs) of disease
Magnetic resonance imaging related nigral DTI changes.

Substantia nigra We found a regional increase in nigral mean diffusivity in PD (mean 4 SD, PD 0.80 £ 0.10 vs. controls 0.73 &
Fractional anisotropy 0.06 - 1073 mm?/s, p = 0.002), but no difference using a voxel based approach. No significant disease effect

was seen using meta-analysis of nigral MD changes (10 studies, Dgs = +0.26, p = 0.17, I> = 30%). None of the
nigral regional or voxel based analyses of this study showed altered fractional anisotropy. Meta-analysis of 11
studies on nigral FA changes revealed a significant PD induced FA decrease. There was, however, a very large
variation in results (I = 86%) comparing all studies. After exclusion of five studies with unusual high values of
nigral FA in the control group, an acceptable heterogeneity was reached, but there was non-significant disease
effect (Dgs = — 0.5, p= 0.22, I> = 28%).
The small PD related nigral MD changes in conjunction with the negative findings on VBA and meta-analysis limit
the usefulness of nigral MD measures as biomarker of Parkinson's disease. The negative results of nigral FA
measurements at regional, sub-regional and voxel level in conjunction with the results of the meta-analysis of
nigral FA changes question the stability and validity of this measure as a PD biomarker.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

Abbreviations: PD, Parkinson's disease; MRI, Magnetic resonance imaging; DT, Parkinson's disease (PD) is a progressive neurodegenerative disease

Diffusion tensor imaging; MD, Mean diffusivity; ADC, Apparent diffusion coefficient; SN, characterised bv depletion of piemented dopaminergic neurons of the
Substantia nigra; SNc, Substantia nigra pars compacta; Dgs, Effect size of disease related y dep p1g p 8

nigral changes; VBA, Voxel based analysis; TCS, Transcranial sonography; ACE, substantia nigra pars compacta (SNc) (Tretiakoff, 1919). The correlation
Addenbrooke's cognitive examination test battery; UPDRS, Unified Parkinson's disease of the dopaminergic cell loss in SN with the progressive symptoms of PD
rating scale; EPI, Echo planar imaging; ROI, Region/regions of interest; ICC, Intraclass (Ma et al,, 1997) makes SN imaging promising for biomarker search in
CS??;‘F“?” coefficient. o A PD. The clinical diagnosis of PD is based on the application of the
is is an open-access article distributed under the terms of the Creative Commons . . . . .
Attribution-NonCommercial-No Derivative Works License, which permits non- Queen Square P arkinson Brain Bank Criteria with accuracy rates varying
commercial use, distribution, and reproduction in any medium, provided the original  from excellent in specialised centres (Hughes et al,, 2002) to 15-25%
author and source are credited. false positive rate in some community studies (Meara et al., 1999;
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brain changes were reported for both modalities throughout many
different brain regions with a wide variety of accuracy and repeatability
(Auer, 2009; Berg et al, 2011). However, none of these techniques to
date accomplished the required accuracy and reliability to justify
introduction in standard clinical practice or as part of interventional clinical
trials. Particularly promising, but equally controversial, are results
obtained with diffusion tensor MR imaging (DTI) to probe SN diffusion
characteristics.

MRI diffusion metrics assess the random movement of water
protons in terms of overall extent (mean diffusivity, MD) and
orientational dependence (fractional anisotropy, FA). The complex
ultrastructure of the brain results in a distinctive pattern of diffusion
restriction and anisotropy against which subtle alterations in intra-
and extracellular diffusion barriers can be well described. Neuro-
degenerative cell loss removes diffusion barriers and their orientational
dependence, which results in increased diffusivity and reduced
anisotropy as demonstrated in a number of neurodegenerative diseases.
In atypical parkinsonism, regional diffusional abnormalities enable the
distinction of multi-system atrophy and progressive supranuclear
palsy from PD and control patients (Blain et al., 2006; Schocke et al.,
2002; Seppi et al., 2005).

In order to differentiate PD from healthy controls, several studies
reported alterations of nigral FA, MD or the related apparent diffusion
coefficient (ADC) using manual or ‘semi-manual’ delineation of the
SN. Recently, a remarkable diagnostic accuracy was reported in a 3 T
DTI study for a latero-dorsal sub-region of the SN (Vaillancourt et al.,
2009). The authors suggested that their unique diagnostic accuracy
resulted from the resolution and the location of the region of interest
(ROI). The latter is plausible due to the known spatial heterogeneity of
dopaminergic cell loss, predominantly affecting nigrosome 1 in the
latero-dorsal aspect of the SNc (Damier et al., 1999). In addition, the
borders of the SN are not well delineated and reported studies use
different non-standardised landmarks.

In this study we aimed to evaluate the diagnostic accuracy of high
resolution nigral DTI to distinguish PD from controls using a selection
of ROI as well as voxel-based group analysis. To determine whether
nigral diffusion metrics (FA and MD) qualify as candidate biomarkers
we undertook a systematic review and meta-analysis of continuous
data to estimate their ‘relative disease effect size’ (Dgs) for PD.

2. Material and methods
2.1. Diffusion tensor MRI case-control study

The study was approved by the local Ethics Committee and Research
and Development department. All participants gave written informed
consent prior to enrolment into the study. 67 participants were
investigated, 8 were excluded from further analysis due to technical
artefacts/factors or significant cognitive impairment. 32 patients
fulfilling the UK Brain Bank criteria for PD were recruited from
movement disorders clinics at two local NHS trusts. 27 age and gender
matched controls were recruited from spouses, friends or within the
university. The subjects underwent the Addenbrooke's cognitive
examination (ACE) test battery (Bak and Mioshi, 2007) and were
excluded if they had a history of cognitive impairment or an ACE score
of <80. Five controls did not complete the ACE test battery, however,
these participants did not have any past cognitive problems nor a
neurological, neurosurgical or psychiatric history. Parkinson's disease
severity was scored using the UPDRS (Fahn et al,, 1987) and Hoehn
and Yahr staging (Hoehn and Yahr, 1967).

MR imaging was performed at 3T (Achieva scanner, Philips Medical
Systems, Best, Netherlands) with a standard eight-channel head coil.
Axial diffusion tensor imaging was obtained using a single shot fat
saturated spin echo EPI (TR/TE = 7415/60 ms, 52 slices, acquisition
matrix of 112 x 112 with pixel size of 2 x 2 x 2 mm?, interpolated to
1x1x2mm?, sense factor of 2, partial Fourier factor of 0.7, 32 diffusion

gradient directions with b = 1000 s/mm?, and three repeats of b = 0).
Patients were assessed and scanned whilst medicated.

2.1.1. Substantia nigra regional manual measurements

The image processing was completed using the diffusion tools in the
FSL 4.1.0 software package (Jenkinson and Smith, 2001; Woolrich et al.,
2009). DTI processing consisted of motion correction, affine registration
to reduce the effects of eddy currents, and calculation of the diffusion
tensor parametric maps of MD and FA.

Regions-of-interest were manually drawn by an experienced
researcher with 5 years of experience in PD imaging research to outline
the SN using JIM software (www.xinapse.com) or an in house
developed image analysis software package NeuRoi (Dr C. Tench,
University of Nottingham, UK). Anatomical landmarks were identified
on the T2 weighted image for the red nucleus as hypointense structure,
and on FA maps for the cerebral peduncle as hyperintense area and used
to constrain the lateral border of the SN. Two types of SN and separate
control ROI were used (Fig. 1): 1. Small SN ROI — three ROI measuring
2x2x2mm? (4 pixels in plane) placed over each of the T2 hypointense
SN ventrally, medially and dorsally on two slices (lowest slice
containing the red nucleus and one below) in accordance with
anatomical landmarks and dimensions used in Vaillancourt et al
(2009), 2. Large SN ROI — Manual outlining of the hypointense region
between the cerebral peduncles and posterior tegmentum on three
slices (two at the lower level of the red nucleus and one below in
accordance to landmarks and variable size in (Du et al, 2011)). 3.
Control region — 2 x 2 x 2 mm?> ROI placed in the cerebral peduncles
on the same slices as analysis 2.

Reproducibility of manual SN ROI placement was assessed by
calculation of intraclass correlation coefficients (ICC) for inter-rater
(2nd researcher with 5 years experience in MRI research in PD) and
intra-rater variability in 20 random subjects with a minimum of
12 weeks of interval between analyses. ‘Absolute agreement’ coef-
ficients were calculated assuming a two-way random effect model
with random people and measurement effects.

2.1.2. Voxel-based analysis

Individual FA images were aligned to FMRIB58_FA standard-space
template and corresponding transformation matrixes were applied on
MD images using FMRIB's Nonlinear Registration Tool as part of the
FSL 4.1.0 software package (FMRIB's software library, http://www.
fmrib.ox.ac.uk/fsl/ (Jenkinson and Smith, 2001; Woolrich et al., 2009)).

The spatially normalized MD and FA images were smoothed with a
8-mm isotropic Gaussian kernel to reduce the level of noise and correct
the misalignment. Statistical comparisons were performed using
statistical parametric mapping (SPM5, http://www: fil.ion.ucl.ac.uk/
spm) by a two sample t-test between controls and patients with age
as covariates of no interest. An uncorrected p <0.001 at voxel level for
multiple comparisons were considered as significant.

2.1.3. Statistics

Statistical tests were performed using IBM® SPSS® for windows
(version 19.0). Demographics were compared between all patients
and controls using analysis of variance or chi-square test. Non-
parametric tests were used for group comparisons if the data was
found to be not normally distributed. Results from right and left SN
measures were averaged. Values are given as mean 4 SD unless stated
otherwise; significance was defined at p<0.05.

2.2. Systematic review and meta-analysis

To identify relevant literature three databases and reference lists of
articles were searched (PubMed, ScienceDirect and EMBASE 1980-
2013) in accordance to the ‘preferred reporting items for systematic
reviews and meta-analysis’ (PRISMA) statement (Liberati et al., 2009).
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Fig. 1. Example of a DTI scan of a healthy control and ROI positions in the SN and control regions. Columns represent: 1st: T2 weighted by image; 2nd: colour coded map of the principle
eigenvector of the diffusion matrix; 3rd: FA map; and 4th: MD maps. ROIs are demonstrated in the second row for small ROI (analysis 1) and in the third row for total SN and control ROl in

the cerebral peduncle (analysis 2).

The search was performed independently by two researchers using
multiple Medical Subject Headings.

Out of 25 reviewed articles 14 were excluded for the following
reasons: 10 publications because of missing description of regional SN
DTI measures, 2 publications because of overlapping participant
populations with studies included in the meta-analysis, 2 publications
because of a missing healthy control arm.

Apart from FA, MD and ADC measures the following data was
extracted from the publications if available: PD and control group age,
measure of PD disease severity (HY-stage or UPDRS), Scanner make,
scanner field strength, number of channels within the receiver head
coil, number of diffusion gradient directions, voxel size, DTI post-
processing software, motion and eddy current correction and method
of ROI placement. In case of visual identification and manual outlining
of the SN the method of ROI placement was classified as ‘manual’. In
case of manual identification and automated digital boundary detection
by changes in gradients (Rolheiser et al,, 2011) or manual identification
and SN sub-categorisation into pars compacta and pars reticulata by
using connectivity measures (Menke et al., 2010) the ROI placement
was classified as ‘semi-manual’.

Where available, mean and standard deviation measures of FA, MD
or ADC were extracted. Results of two studies reporting nigral ADC
values instead of MD values were also included into the meta-analysis.
Even if the absolute values of ADC and MD differ, they are both
descriptors of diffusivity with averaged out factors of directional
diffusivity (anisotropy). For calculation of the effect size within the
meta-analysis the relative difference of MD or ADC when comparing
PD and controls was included. In one case only non-normal distribution
measures such as median, range and quartiles were presented (Chan
et al., 2007). To allow comparability within the meta-analysis, mean
and standard deviation values were estimated by using previously
published conversion techniques (Hozo et al., 2005).

In case of multiple publications on the same or overlapping study
populations, the study describing results in the largest number of
subjects was included in the meta-analysis. If values were only available
as part of a diagram the values were extracted by manual measurement

(using an image editing tool, GIMP, version 2.8, from www.gimp.org) on
two separate occasions (4weeks apart) and averaged. In two studies the
SN was subdivided into three small regions of interest (rostral, middle
and caudal) and only values of the sub-regions of the SN were described
(Prakash et al., 2012; Vaillancourt et al.,, 2009). To allow comparability
within the meta-analysis the mean FA over all three regions was
calculated. Also for the purpose of the meta-analysis, the averaged
results of subdivided ROI measures of this study were included
(according to the data included from Vaillancourt et al. (2009)).

For further details see the supplementary material in Appendix A.

The disease effect size (Dgs) was defined as the standardised
difference of nigral DTI measures between the PD patient group and
healthy volunteer group using Cohen's d (Cohen, 1988). We used
MetaAnalyst software (MetaAnalyst, version: Beta 3.13, Tufts Medical
Centre (Wallace et al, 2009)) for continuous data using the
DerSimonian and Laird random effect model and the assumption of
unequal within study variances. > — values were computed as a
measure of in between study heterogeneity (Higgins, 2003).

3. Results
3.1. Case-control DTI study

One participant had to be excluded because of significant cognitive
impairment (ACE score 75), 7 participants were excluded because of
usage of a previous DTI scanning protocol and/or scanning artefacts.
The remainder 59 subjects did not show demographic differences (32
PD, age: 64.8 4+ 11.8, 16 male and 27 controls, age 59.9 + 10.5, 11
male). In 5 healthy controls the ACE was not obtained, however, these
subjects had no past cognitive problems and no neurological,
neurosurgical or psychiatric history. There was no difference in
cognitive performance in the subjects assessed with ACE (n = 32, PD:
92.7 4+ 4.8; n = 22 Controls 94.3 £ 6.4, n.s.). Patients had mild to
moderate degrees of PD severity: mean UPDRS, 26.1 4 13.9; mean HY
score, 1.7+ 0.9.
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Table 1
Different types of SN ROI analysis in PD patients and controls.

Analysis 1 (average of small SN ROI)

Analysis 1b (small dorsal SN ROI)

Analysis 2 (variable size whole SN ROI)

PD Controls p PD Controls p PD Controls p
FA 0.44 + 0.05 0.45 + 0.05 0.39 0.45 + 0.06 0.46 + 0.05 0.46 0.44 + 0.04 0.45 + 0.05 043
MD 0.801 £ 0.102 0.728 + 0.064 0.002 0.816 £ 0.097 0.748 + 0.053 0.002 0.795 + 0.099 0.732 £ 0.055 0.005

Independent of the type of ROI (small ROI of analysis 1 or large ROI
of analysis 2, see Fig. 1) the intraclass correlation coefficients for intra-
rater and inter-rater concordance were high with correlation coef-
ficients ranging from 0.6 to 0.85 (all p < 0.003). There were no dif-
ferences in FA or MD in the control region between PD and controls
excluding technical bias.

There were no differences in nigral FA between patients with PD and
controls in the whole SN or the small dorsal SN known to be the most
affected part. In contrast, a significant increase in nigral MD in PD was
found independent of ROI used for analysis (Table 1).

Voxel based analysis of co-registered FA and MD maps did not reveal
any differences in nigral DTI measures when comparing patients with
PD to controls (uncorrected p<0.001).

3.2. Systematic review and meta-analysis

The search of three databases revealed 169 unique database
entries. After applying in- and exclusion criteria 25 articles were
reviewed out of which 11, including 10 studies for FA measures
and 9 studies for MD or ADC measures were retained. The results
presented above were added as a further study to the meta-
analysis. Relevant publications and study intrinsic technical factors
are listed in Table 2. Population details of the included studies are
listed in the supplements (Inline Supplementary Table S1).

Inline Supplementary Table S1 can be found online at http://dx.doi.
org/10.1016/j.nicl.2013.10.006.

3.2.1. Meta-analysis of PD induced nigral FA changes

The initial meta-analysis included nigral FA measures in a popu-
lation of 547 subjects (n =268 controls, n=279 PD). We found a highly
significant PD induced nigral FA reduction with an estimated weighted
pooled disease effect size of —0.90 (p <0.0001, Forrest plot see Fig. 2,
values of individual studies see the supplements, Inline Supplementary
Table S2). However, review of the heterogeneity measures revealed a
very high level of in-between study result variation (> =86%). To assess
for potential causes of the observed high variability of study results an

Table 2
Overview of studies included in the meta-analysis.

exploratory Dgs regression analysis with the categories of field
strengths, DTI-directions, voxel-size, relative disease severity and
mean age as independent variables was performed. This did not reveal
any significant dependence of Dgs on these factors (smallest p = 0.43)
but is of limited value due to the small number of included studies.

Inline Supplementary Table S2 can be found online at http://dx.doi.
org/10.1016/j.nicl.2013.10.006.

Interestingly, we found a strong variation of the mean nigral FA in
the control populations between the different studies. Moreover, the
strongest variation in Dgs was found in studies with the highest control
FA values (Fig. 3). We therefore repeated the meta-analysis after
exclusion of those studies with unexpected high FA value in SN based
on a normative value derived from a freely available standard reference
DTI atlas of 24 healthy adults (SRI24, Rohlfing et al., 2010). ROI were
drawn as described above and averaged over duplicate measures two
weeks apart which revealed a maximum mean nigral FA of 0.47. We
hence chose to exclude studies reporting nigral FA > 0.48 in controls.
This reduced the between study heterogeneity to an acceptable level
(12 = 28%) for the 6 finally included studies (307 subjects, n = 154
controls and n = 153 PD) resulting in a pooled weighted disease effect
size of —0.5 (95% CI: —0.8 to —0.2, p = 0.22, Inline Supplementary
Figure S1) which proved non-significant.

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.nicl.2013.10.006.

3.2.2. Meta-analysis of PD induced nigral MD changes

The meta-analysis of MD or ADC — SN measures included a
population of 471 subjects (n = 236 controls, n = 235 PD). Over all
studies there was a non-significant increase in MD/ADC of the SN
when comparing PD patients to controls (see also Forest plot:
Fig. 4). The pooled weighted disease effect size over all studies was
estimated to be +0.26 (95% Cl: 0.028-0.497, p = 0.17). Computation
of heterogeneity measures revealed an acceptable level of in between
study heterogeneity (1> = 30%, Inline Supplementary Table S3).

Inline Supplementary Table S3 can be found online at http://dx.doi.
org/10.1016/j.nicl.2013.10.006.

Field-str. Head coil DTIdir. Voxel size [mm] DTI proc.

M-corr. Eddy cur. ROI placem.

Study name FA MD (ADC) Scanner make

Prakash et al. 2012 () Philips Achieva 3T ?
Duetal. 2012 I Siemens Magnetom Trio 3T 8
Skorpil et al. 2012 v Philips Intera 15T 16
Rolheiser et al. 2011 v General Electrics 15T 8
Wang et al. 2011 S Siemens Magnetom Trio 3T ?
Zhan et al. 2012 S Bruker/Siemens Medspec 4T ?
Menke et al. 2010 S Siemens Trio 3T 12
Peran et al. 2010 S Siemens Allegro 3T ?
Gattellaro et al. 2009 I Siemens Magnetom Avanto 1.5T 4
Vaillancourt et al. 2009 General Electrics, Signa 3T 8
Chan et al. 2007 () Siemens Avanto 15T ?
this study S Philips Achieva 3T 8

16 09x09x3 DTI studio V3.0.3 ? ? Manual
42 2Xx2x2 DTIPrep I I Manual
32 1.8x18x3 FSL I d d Manual
31 2.03x2.03x3 FSLV4.1 I I Manual
64 2x2x2 Matlab V7.8 ? ? Manual
6 2x2x3 FSL 4 g Semi - Manual
60 2x2x2 FSL I I Semi - Manual
30 18x18x18 FSL V4 Id d Manual
12 19x19x25 ? ? ? Manual
27 0.78x0.78 x4  DTI studio I d I Manual
12 12x12x4 ? I I Manual
32 2x2x2 FSL V4.1 I I Manual

FA = fractional anisotropy measures extracted from study, MD = mean diffusivity measures extracted from study, Field-str. = Field-strength of magnet, Headcoil = Number of channels
within the receiver head coil, DTI dir. = Number of DTI diffusion directions for data acquisition, Voxel size [mm] = Size of voxels for acquisition, DTI proc. = Software used to process the
DTI data prior to analysis, M-corr = Motion correction used, Eddy cur. = Eddy current correction used, ROI placem. = method of ROI placement. ‘.*’ is used as a positive indicator, ‘?" is used

in unclear cases.
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Forest Plot: 95% Confidence Interval

Study Name N

Prakash et al. (2012) 23
Du et al. (2012) 68
Skorpil et al. (2012) 26

Rolheiser et al. (2011) 28

Wang et al. (2011) 60
Zhan et al. (2011) 32
Menke et al. (2010) 20
Peran et al. (2010) 52

Vaillancourt et al. (2009) 28

Chan et al. (2007) 151
Own dataset 59
Overall

Confidence Interval

-0.263 (-1.085, 0.559)
-0.915 (-1.422, -0.407)
-1.222 (-2.064, -0.379)
-1.091 (-1.889, -0.293)
0.520 (0.005, 1.034)

-2.169 (-3.071, -1.267)

-0.314 (-1.197, 0.568)
-0.716 (-1.284, -0.148)
-5.541 (-7.219, -3.862)
-0.414 (-0.736, -0.091)

-0.196 (-0.709, 0.317)

-0.900 (-1.417, -0.382)

Fig. 2. Fractional anisotropy disease effect size Forest plot. Forest plot of the computed diseases effect sizes (Dgs, Xx-axis) of studies included into the initial meta-analysis on fractional
anisotropy measures of the substantia nigra when comparing PD patients and controls. All but one included studies demonstrate a decrease of nigral FA in PD patients as indicated by
a negative Dgs. The estimated pooled weighted Dgs was — 0.9 was highly significant (p <0.0001), however, there was a large heterogeneity of study results (I> = 86%).

4. Discussion
4.1. PD induced nigral MD increase

In our prospective case-control study we found a significant
increase in nigral MD in patients with PD compared to matched controls
when using ROI to outline the SN. There were no significant MD
differences when using a voxel-based analysis approach. The meta-
analysis of PD induced nigral MD changes did also not confirm a sig-
nificant disease effect.

Regional increases in diffusivity metrics like ADC or MD, are useful
markers of neurodegeneration that can help to distinguish the
parkinsonian variant of MSA from PD (Blain et al., 2006; Schocke et al.,
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Fig. 3. Scatter-plot of Dgs versus nigral FA in control arm of studies included in the initial
meta-analysis. The scatter-plot demonstrates that studies with a higher FA in the control
arm show the largest variation in disease effect (Dgs) of PD induced nigral FA changes.

2002; Seppi et al., 2005). It is less clear whether increased diffusivity
can also index PD induced nigral pathology. Strong nigral MD increases
were found in one animal model of PD (Boska et al., 2007), while other
studies found less or no disease effect (Soria etal., 2011; van Camp et al.,
2009). This is largely in line with our findings of a small increase in
nigral MD, but no effect in the meta-analysis or VBA. A tendency of
increased MD or ADC can be seen in most studies, and the lack of
observable pooled disease effect may be a type II error. Alternatively,
these inconsistencies may reflect differences in patient characteristics
or ROI selection. Nevertheless, against the criteria of identifying
promising biomarkers, nigral MD measurements have limited value to
reliably differentiate PD pathology from the healthy brain on a case by
case basis.

4.2. PD induced nigral FA change

We did not observe a PD induced reduction of nigral FA in our
studied population. This observation is in contrast with some recent
publications claiming very high diagnostic accuracy (Vaillancourt
et al,, 2009), but well in line with other reports showing small or no
PD induced nigral FA decrease (Chan et al., 2007; Focke et al., 2011;
Menke et al., 2010). A single study even reported an increase of nigral
FA in PD patients (Wang et al., 2011). Interestingly in animal models
of PD findings also range from increasing (van Camp et al., 2009) to
decreasing nigral FA (Boska et al., 2007; Soria et al., 2011). The research
synthesis of the published literature assessing PD induced nigral FA
changes revealed a significant FA reduction in the first instance
(weighted pooled disease effect size of —0.9, p<0.0001), however, we
found a very high variation of results of the included studies which is
reflected in an exceptionally large > of 86%. Evaluation of Dgs of
individual studies demonstrate that our study findings of FA changes
are well within the range of the majority of studies with overlapping
confidence intervals between our and the pooled Dgs. In contrast, the
reported study by Vaillancourt et al. (2009) and Wang et al. (2011)
need to be considered as outliers with Dgs and CI outside the range of
results from the other 10 studies, and from each other.
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A recently published meta-analysis by Cochrane and Ebmeier
describes DTI changes in parkinsonian syndromes and found similar
highly significant PD induced nigral FA reduction (Dgs = —0.64,
p < 0.0001) but a much smaller variation in results comparing the
different studies (1> = 9.5%) (Cochrane and Ebmeier, 2013). The reason
for the difference in results of the two meta-analyses is likely due to two
main reasons: The 1st reason is a difference in studies included in the
two meta-analyses. Cochrane and Ebmeier included two studies not
included in this meta-analysis, one by Yoshikawa et al. (2004) which
describes changes in peri-nigral FA rather than changes of the SN and
a second one by Focke et al. (2011) which did not find any PD induced
nigral FA changes nor reported any relevant FA values (and was
therefore excluded from this meta-analysis). Cochrane and Ebmeier
for unknown reasons did not include the only study reporting a PD
induced nigral FA increase by Wang et al. (2011) which contributes
largely to the variation of results we identified when comparing all
studies. Further newer studies which were unpublished at the time of
Cochrane's meta-analysis (Prakash et al,, 2012; Skorpil et al,, 2012)
and this study are included additionally in this meta-analysis. The 2nd
reason for the observed differences is likely due to a variation of
extracted values from included studies. When directly comparing the
extracted values and Forest plots of the two meta-analyses study by
study, there is a good correlation of effect sizes and CI for most of the
studies. However, two studies with the largest effect sizes
(Vaillancourt et al,, 2009; Zhan et al., 2012) differ in reported Dgs and
ClL Vaillancourt et al. (2009) used sub-regional SN analysis with values
demonstrated in diagrams only which could explain a variation in
value extraction for both analyses. Zhan et al. (2012), however,
illustrated absolute SN FA measures including SD and p-values which
seem to be underestimated in Cochrane and Ebmeier's meta-analysis.
Therefore methodical differences are likely contributing to the
dissimilar results of heterogeneity measures, however, by including
new studies and solely focusing on nigral FA changes this meta-
analysis provides new insights, specifically the large variation of
observed nigral FA Dgs throughout the literature.

A potential factor contributing to the in this meta-analysis observed
large in between study heterogeneity could be technical aspects

resulting in limited quality of FA measurements. Indirect assessment
of technical quality of published DTI studies is challenging. However, a
preliminary exploratory regression analysis did not show an obvious
association between field strength, number of diffusion directions and
nigral FA in the control population of the studies. Further potential
contributing factors are study population characteristics such as disease
severity conceivably causing difference in Dgs. However, a recent study
demonstrating nigral FA changes in PD did not find any correlation of
disease severity with FA changes (Du et al., 2012) nor did we find an
indication of disease severity related nigral FA changes on the
exploratory regression analysis. We also investigated the influence of
choice of ROI on nigral FA changes. The pars compacta of the substantia
nigra (SNc) contains the cells that progressively deplete in PD.
Delineation of the SNc on MRI in vivo is not standardised and varies
from study to study using indirect landmark based techniques to outline
the SN or SNc. This is causing considerable anatomical variability with
some studies using small sub regions within the iron rich SN pars
reticulate as ROI (Chan et al., 2007; Vaillancourt et al., 2009) whilst
other studies outline the whole of the SN as ROI (Du et al., 2012).
Interestingly, Vaillancourt et al. (2009) described the by far the largest
Dgs when choosing a small ROI in the dorso-caudal region of the SN.
Even when replicating these ROI we could not reproduce their finding
nor could we or others (Scherfler et al, 2006) identify altered SN
substructures when using an operator independent voxel-based
analysis.

There was considerable variation in reported nigral FA of the control
group across studies ranging from 0.37 to 0.7 which covered the entire
range of reported nigral FA in patients. This highlights a larger between
study heterogeneity in nigral control FA than potential disease effect
pointing to either grossly different choice of region-of-interest or
substantial technical differences. The SN is a grey matter nucleus, for
which FA values as a measure of orientation dependence are expectedly
small. FA values closer to 1 are expected to be found in highly organised
white matter structures rather than poorly organised grey matter
structures. The FA values of the hippocampal region in control
populations in Alzheimer's disease studies for example range from 0.1
to 0.2 (den Heijer et al., 2012; Hong et al., 2010; Palesi et al., 2012).

Forest Plot: 95% Confidence Interval

Study Name N

Prakash et al. (2012) 23

Confidence Interval

Skorpil et al. (2012) 26

0.431 (-0.398, 1.259)

0.204 (-0.567, 0.975)

Zhan et al. (2011) 32

Wang et al. (2011) 60

Rolheiser et al. (2011) 28

0.410 (-0.314, 1.133)

-0.285 (-0.794, 0.224)

0.174 (-0.568, 0.916)

Menke et al. (2010) 20

Peran et al. (2010) 52

0.319 (-0.563, 1.202)

0.345 (-0.209, 0.899)

Gatellaro et al. (2009) 20

0.791 (-0.123, 1.704)

Chan et al (2007) 151 0.010 (-0.309, 0.329)
Own dataset 59 0.841 (0.306, 1.376)
Overall —— 0.262 (0.028, 0.497)
1 ——
-0.5 0.0 0.5 1.0 1.5

Fig. 4. Mean diffusivity disease effect size Forest plot. Forest plot of the computed diseases effect sizes (Dgs, x-axis) of different studies on mean diffusivity measures of the substantia nigra
when comparing PD patients and controls. In the majority of studies a small increase of MD in PD patients can be observed as indicated by a positive Dgs.
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The FA in the region of the basal ganglia like the globus pallidus,
thalamus, caudate and putamen are reported in the range from 0.19 to
0.41 (Pfefferbaum et al., 2010) which is also lower than most of the
reported nigral control FA values. Iron deposition in the basal ganglia,
specifically in the Substantia nigra increases with age (Daugherty and
Raz, 2013) and this process is accelerated in PD (Lotfipour et al., 2012)
with some evidence that iron deposition even correlates with disease
stage in PD(Martin et al., 2008). The effect of iron increase on DTI
measures like FA are poorly understood, however, age-dependent
increase in putaminal iron deposition was found to significantly
correlate to an increase of FA in the same region raising the possibility
of iron deposition induced FA alterations. It is conceivable that
accelerated nigral iron deposition in PD (Lotfipour et al., 2012; Martin
et al,, 2008) affects FA measures and decreases observable differences
when comparing PD patients and controls.

The bulk of between study heterogeneity in this meta-analysis of
nigral FA changes was observed in studies reporting higher nigral FA
values in healthy controls including the two studies with the largest
effect size. This raises the possibility of the inclusion of peri-nigral
fibre tracts into ‘SN’ ROI especially in studies with relative thick slices
(4mm in '"). In fact, FA changes of the white-matter closely related to
the SN and within the basal ganglia have been well described
(Yoshikawa et al., 2004). Also, the study using the most advanced
segmentation of the SN reported the lowest FA in controls and did not
find a significant disease effect (Menke et al., 2010). Therefore variation
in size and placement of the ROI with resulting inclusion of adjacent
white matter is likely to contribute to the large observed heterogeneity
of FA-Dgs. Exclusion of studies with unexpectedly high nigral FA in
controls in our meta-analysis confirmed a non-significant PD induced
nigral FA reduction.

This case-control study and meta-analysis of nigral DTI measures
demonstrates that usage of nigral FA changes as biomarker of PD is
neither reliable nor useful at this point in time. Even if there is some
evidence of nigral FA decrease in some published studies, it is unclear
if this is a true PD induced effect or rather due to other factors like
inclusion of peri-nigral white matter or differences in iron deposition
in the area of the SN. To clarify the diagnostic value of PD induced nigral
FA alterations and development of this technique as PD biomarker
future studies would need to address a range of issues:

1. Confirmation and standardisation of anatomical position of SN/SNc
ROI using magnetic resonance imaging. MR sequences demon-
strating neuromelanin (black pigment of the SN) dependent contrast
might be helpful to confirm the definite localisation of the SN pars
compacta (Sasaki et al., 2006; Schwarz et al, 2011) and could be
used to improve and/or standardize SN ROI placement.

2. Assessment of influence of nigral iron deposition on FA changes and
correlation to age related physiological SN changes.

3. Assessment of validity and repeatability of nigral FA measures by
assessing volunteers on varying scanner platforms.

4.3. Limitations of this study

In common with all literature searches and meta-analyses, publi-
cation practices may bias the results. Hence the reported mean Dgs is
probably overestimated as unpublished negative study results are
probably under-represented.

Due to the large heterogeneity of the results of studies included in
the FA meta-analysis we decided to introduce a relative quality measure
(atlas derived upper threshold for nigral FA value in the healthy
population arm) to identify studies for inclusion in the final FA meta-
analysis. This meta-analysis resulted in an acceptable distribution of
study Dgs, however, with the limitation that it is not entirely repre-
sentative of all published studies in this field.

5. Conclusion

In conclusion, this DTI study in 59 subjects together with the
systematic review and meta-analysis of available published reports do
not support nigral DTI metrics as useful diagnostic marker of PD at
this point in time.
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