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Human immunodeficiency virus (HIV) type 1 uses the CD4 molecule as its principal receptor to infect T cells. HIV-1 integrates its 
viral genome into the host cell, leading to persistent infection wherein HIV-1 can remain transcriptionally silent in latently infected 
CD4+ T cells. On reactivation of replication-competent provirus, HIV-1 envelope glycoproteins (Env) are expressed and accumulate 
on the cell surface, allowing infected cells to be detected and targeted by endogenous immune responses or immune interventions. 
HIV-1 Env-specific antibodies have the potential to bind HIV-1 cell surface Env and promote elimination of infected CD4+ T cells 
by recruiting cytotoxic effector cells, such as natural killer cells, monocytes, and polymorphonuclear cells. Harnessing humoral and 
innate cellular responses has become one focus of research to develop innovative strategies to recruit and redirect cytotoxic effector 
cells to eliminate the HIV-1 latently infected CD4+ T-cell reservoir.

Keywords. Antibodies; innate immunity; bispecific antibodies; HIV-1; ADCC; latency; cure.

Cellular and humoral adaptive immune responses partially con-
trol virus replication during natural human immunodeficiency 
virus (HIV) type 1 infection and affect the virus set point [1, 2]. 
HLA class I–restricted CD8+ T-cell responses effect decline in virus 
load after acute infection [3, 4], and polyfunctional CD8+ T cells 
potently select for virus escape mutants [5–7]. HIV-1 antibodies 
comprise 2 major classes, neutralizing antibodies (NAbs) that can 
prevent the infection of target cells by binding to virion envelope 
glycoproteins (Env), and nonneutralizing antibodies (non-NAbs) 
that are unable to bind to virion Env and prevent infection but are 
able to recognize HIV-1 Env on the surface of HIV-1–infected cells 
at the time of virus entry or virus assembly/budding and mediate 
antiviral activity through Fc effector functions [8, 9]. NAbs apply 
immune pressure to select virus escape mutants and, like CD8+ T 
cells, shape the virus repertoire in chronic HIV-1 infection [10]. 
These Env antibody virus escape mutations can also select anti-
body responses with broader neutralizing activity [10–13]. In 
contrast, the role of non-NAbs in inducing virus escape mutations 
during acute infection has been less studied, but mutations selected 
by non-NAbs can be detected in a small number of individuals 
because of the ability of non-NAbs to mediate antibody-dependent 
cellular cytotoxicity (ADCC) [14].

Innate immune responses are also engaged early in 
acute HIV-1 infection (AHI), as indicated by the release of 

proinflammatory cytokines, defined as the “cytokine storm,” 
which has been described as a hallmark of AHI by Stacey et al 
[15]. Of interest, included among the first observed plasma cyto-
kine responses are increased levels of the interferons and inter-
leukin 15, cytokines with important roles in activating natural 
killer (NK) cells [16, 17]. NK cells undergo tissue redistribution 
during AHI [18] and help control virus replication through rec-
ognition of infected cells via killer immunoglobulin receptors 
and killer immunoglobulin receptor–like molecules [19–21].

Thus, both antibody and cellular immune responses can con-
tribute to limiting HIV acquisition, controlling viremia, and 
eliminating HIV-infected cells. Integration of antibody and 
cellular immunity occurs through Fc receptor (FcR)–medi-
ated effector functions [8, 22–24], including phagocytosis and 
ADCC. Naturally produced antibodies mediate these antiviral 
effector functions by recruiting canonical FcR-bearing innate 
effector cells, including monocytes, NK cells, and polymorpho-
nuclear neutrophils. In addition, HIV-specific antibodies can 
be engineered into antibody-based molecules that can specifi-
cally recruit other populations of cytotoxic effector cells, such 
as CD8+ T cells, to further promote infected cell eradication 
and to reach additional tissues or immune compartments. Thus, 
harnessing both CD8+ T-cell and NK cell effector functions to 
target HIV-1–infected cells is a key experimental strategy to 
reduce the size of, or eliminate, the HIV-1 latently infected cell 
pool. In this article, we discuss the principles guiding the devel-
opment and use of antibody and antibody-based molecules to 
treat HIV-1 infection.

HURDLES IN ELIMINATING THE LATENT RESERVOIR

During AHI, HIV-1 replicates in CD4+ T cells and causes pro-
found immune activation and CD4+ T-cell depletion [15, 25, 26].  
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After acute infection, HIV-1–specific CD4+ T cells become the 
main targets of virus infection during the transition from naive 
to effector and memory T cells [27, 28]. In addition, cytokines 
and high levels of viremia are responsible for elevated levels of 
immune activation in AHI [15], resulting in infection of both 
naive and memory CD4+ T cells [28]. Thus, HIV-1 integrates 
into the genome of a diverse population of activated prolifer-
ating CD4+ T cells. After immune control of virus replication 
immune activation declines and proviral CD4+ T cells return 
to a resting phase while harboring the provirus that can persist 
in this silent stage for the remaining of the life span of these 
cells [29]. The wide variety of CD4+ T cells among the latent 
reservoir, and their differential susceptibility to activation 
stimuli, represent significant hurdles to their elimination by 
immune responses or by combination antiretroviral therapy 
(cART) [30].

One mechanism that has been proposed to eradicate the 
latent reservoir relies on the administration of latency-re-
versing agents [31, 32] that can reactivate provirus for viral 
antigen expression, followed by elimination of the infected cell 
either through direct cytolytic effects of the virus life cycle or 
with endogenous immune responses. However, this strategy, 
originally called “shock and kill” [31, 32], has proved diffi-
cult to implement because of (1) low levels [33] and impaired 
function [34–36] of HIV-1–specific CD8+ T cells; (2) insuf-
ficient activation of HLA class  I–restricted antigen-specific 
CD8+ effector T cells [30, 33, 37]; (3) inadequate expression 
of HIV-1 antigens by reactivated CD4+ T cells [38]; (4) local-
ization of reactivated CD4+ T cells in protected sites, such 
as lymph node B cell follicles [39, 40]; and (5) viral escape 
mutants that limit virus-infected T-cell clearance by CD8+ 
cytotoxic T cells [41, 42].

To overcome the natural limitations of the immune system 
in targeting the chronic phase of HIV-1 infection and the latent 
reservoir, new strategies have been proposed that harness the 
antiviral activities of NAb or non-NAb monoclonal antibod-
ies (mAbs); mAbs can be selected based on their ability to tar-
get conserved regions of HIV-1 Env on virus-infected CD4+ 
T cells (ie, non-Nabs) or on their breadth of neutralization of 
HIV-1 isolates (ie, broadly neutralizing antibodies [bNAbs]) 
[8, 43]. Non-NAbs capable of mediating ADCC by recruiting 
Fcγ receptor (FcγR) IIIa–bearing cells such as, NK cells, are 
of interest as immune therapies to reduce the size of the latent 
reservoir because these antibodies can target Env on the sur-
face of primary virus–infected cells [44]. The use of mAb-based 
molecules that can recognize and promote infected cell killing 
combined with cART is a promising new strategy for treating 
HIV-1 infection [45–47]. Moreover, mAbs and derivative mol-
ecules could be used in combination with latency-reversing 
agents to augment endogenous immune effector functions for 
the elimination of latently infected cells on reactivation of the 
provirus.

NEUTRALIZING ANTIBODIES

The bNAbs bind to 1 of 6 sites on the virion Env and prevent 
virion infection (Figure 1). These sites of neutralization vulnera-
bility include the gp41 membrane external proximal region [48], 
the gp120-gp41 interface [49], the CD4-binding site (CD4bs) 
[50–53], variable regions 1 and 2 (V1/V2) glycan [54], the 
fusion domain [55], and variable region 3 (V3) glycan [56, 57]. 
Although the development of NAb in HIV-1–infected patients is 
rarely associated with control of disease progression [58], passive 
administration of bNAbs in nonhuman primates individually or 
in combination can prevent simian-human immunodeficiency 
virus (SHIV) infection [59–67]. The protective effect of bNAbs 
also requires Fc-mediated effector functions [68–73]. Thus far, 
no vaccine to date has been successful at eliciting bNAbs, and 
this failure seems to be linked to certain antibody characteris-
tics, such as long and hydrophobic heavy chain complementarity 
determining region 3 loops, high degrees of somatic hypermu-
tation, and/or autoreactivity—all traits of antibodies controlled 
by immune tolerance mechanisms [74–76]. bNAbs do arise in 
about 50% of HIV-1–infected individuals, but only after 2–4 
years of infection [77]. It has been demonstrated that virus diver-
sity in infected individuals arises because of pressure exerted by 
the immune system and the ability of HIV-1 to mutate, leading 
in turn to the ability of the immune response to develop more 
bNAb responses [10, 13, 78]. This cycle of events may explain the 
delay in the appearance of HIV-1 bNAb responses.

In the humanized mouse model (see the review by Nixon et 
al [79] in this special issue for the discussion of animal models 
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Figure 1. Sites of vulnerability on the human immunodeficiency virus (HIV) type 
1 envelope glycoprotein (Env) spike. The structure of a HIV-1 prefusion trimer is 
displayed and the 6 major sites of vulnerability targeted by broadly neutralizing 
antibodies discussed in this review are indicated: the variable regions 1 and 2 (V1/
V2) loop (green), the base of the variable region 3 (V3) loop (maroon), the CD4-
binding site (lavender), the interface between gp120 and gp41 proteins (magenta), 
the fusion peptide region (orange), and the membrane proximal external region 
(MPER). Because of the limited structural information, the MPER near the base of 
the Env trimer is represented by a red cylinder.
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for HIV-1 latency), passively administered postexposure pro-
phylaxis with a combination of CD4bs bNAb 3BNC117 [53], 
V3 glycan bNAb 10–1074 [56], and V1/V2 glycan bNAb PG16 
[54] decreased viremia in about 50% of the mice and substan-
tially delayed virus rebound compared to cART treated animals 
[80]. Moreover, the investigators observed a decline in the level 
of cellular-associated DNA in the aviremic mice treated with 
the 3-mAb cocktail. In addition, it was demonstrated that criti-
cal mutations that nullified the interactions of their Fc domains 
with FcγRs on effector cells attenuated the therapeutic potential 
of the mAbs. The majority (60%) of mice treated with the FcRnull 
antibody cocktails showed early rebound viremia after treat-
ment, whereas early rebound viremia was observed in only 5% 
of the mice treated with the cocktail of antibodies with unmu-
tated Fc regions. Therefore, bNAbs can significantly affect both 
plasma viremia and the pool of latently infected cells through 
recognition of HIV-1 Env on the host cell membrane [80] and 
engagement of FcγR-bearing cells, as shown elsewhere [23].

Several preclinical studies conducted in nonhuman primates 
support the observation in the humanized mouse model that 
bNAbs can not only successfully reduce the level of plasma 
viremia during chronic infection [81–83] but might also reduce 
levels of proviral DNA. The passive administration of the V3 
glycan bNAb, PGT121 [57], and the CD4bs bNAbs 3BNC117 
[53] and b12 [52] in combination reduced SHIV proviral DNA 
levels in the gut-associated lymphoid sites, lymph nodes, and 
peripheral blood [82]. Moreover, the VRC07/PGT121 com-
bination administered during acute SHIV infection in rhe-
sus macaques not only induced a lower level of peak viremia 
and reduced the pool of latently infected cells [84] but could 
also control virus replication and prevent the establishment of 
latency [85]. Whether the observed reduction of provirus DNA 
in tissue compartments can be sustained needs to be further 
investigated (see also the review by Henrick et  al [86] on the 
measurement of the latent reservoir in this special issue).

Recent human trials have evaluated the safety and efficacy 
of passively infused bNAbs as HIV therapeutics. Infusion 
of 3BNC117 bNAb reduced plasma viremia by 1 log [87]. 
Moreover, longitudinal observation of the individuals enrolled 
in this study revealed that some of the participants were capable 
of developing broader NAb responses than those present before 
the infusion of the 3BNC117 mAb, suggesting bNAb selection 
of new virus variants that drove endogenous NAb breadth [88]. 
Therefore, one positive aspect of bNAb-based immunotherapy 
resides in the possibility that it may positively alter the natural 
humoral responses. The VRC01 CD4bs bNAb was also tested 
in HIV-1–infected individuals [89], and the administration of 
a single dose of mAb induced a plasma viremia reduction of 
almost 2 log10. However, in both studies, resistant virus isolates 
were either observed before treatment, hampering the ther-
apeutic effect of the mAb [89], or appeared after infusion of 
the bNAbs during analytical treatment interruption [90]. The 

appearance of virus escape mutants should be regarded as a 
cautionary aspect of the administration of individual bNAbs, 
and advocates for the search of more potent antibodies or eval-
uations of bNAb combinations that target multiple epitopes to 
minimize the potential for virus escape.

NONNEUTRALIZING ANTIBODIES

The ALVAC/AIDSVAX B/E RV144 vaccine trial conducted in 
Thailand showed an estimated 31.2% vaccine efficacy [91]. An 
immune correlates analysis indicated that non-NAbs targeting 
the V2 region that were capable of mediating ADCC were cor-
related with decreased transmission risk [92]. ADCC antibody 
responses in HIV-1 infection may also control virus replication 
[93–95] and delay disease in adults [96, 97] and children [95]. 
Although non-NAbs have failed to protect from infection in 
nonhuman primate challenge studies, they limit simian immu-
nodeficiency virus [98] or SHIV [64, 73] replication and limit 
the number of transmitted/founder viruses [99].

During the course of study of RV144 immune correlates, it 
was found that the ADCC-mediating antibodies, while nonneu-
tralizing, bound to the surface of transmitted/founder virus–
infected CD4+ T cells [9]. Thus, these types of antibodies were 
well suited for use in developing therapeutic antibodies that 
can target virus-infected CD4+ T cells in the setting of chronic 
HIV-1 infection [45].

The therapeutic usage of mAb and mAb-derived molecules to 
eliminate latently infected cells on spontaneous or pharmaco-
logically induced reactivation of replication competent provirus 
would rely on the ability of these molecules to recognize HIV-1 
envelope as soon as it is expressed on the surface of infected 
cells. Among the non-NAbs, it has been reported that those 
directed against the CD4-inducible constant regions 1 and 2 
of the gp120 could be among the first to bind to the surface 
of infected cells [100, 101]. These observations have prompted 
interest in developing antibody-derived molecules that will 
be further discussed. Of note, the epitope recognized by these 
mAbs is also one of the most conserved sequences of the HIV-1 
envelope, providing a unique target for broad recognition of cir-
culating HIV-1 isolates [45, 102].

BISPECIFIC ANTIBODIES

To treat cancer and other human diseases, new immune ther-
apeutics have been developed by combining 2 or more anti-
gen-binding variable fragments of immunoglobulins into a 
single molecule termed bispecific (bsAb) or trispecific antibod-
ies. These antibodies can either bind to antigens presented on the 
surface of an individual cell, or on 2 distinct cells [103]. In gen-
eral, the bsAbs can be divided in 2 major categories based on the 
presence or absence of the Fc region. Its presence can be benefi-
cial during the production and purification of these molecules, 
but it also provides better solubility, stability, effector functions 

related to the ability to recruit FcR-bearing cytotoxic effector 
cells and complement, and half-life by binding to the FcR neo-
natal. In contrast, bsAbs lacking the Fc region rely exclusively on 
their ability to bind specific antigens for their biological effects.

Novel bsAbs based on bNAbs targeting neutralization-sen-
sitive regions of the HIV-1 envelope have been successfully 
developed and tested in vitro for their neutralization potency 
[104] (Figure 2A); bsAbs were found to retain the potency and 
the breadth of the parental individual mAbs and were also able 
to neutralized HIV-1 isolates that were resistant to the indi-
vidual bNabs. The same studies demonstrated that the phar-
macokinetic properties of the bsAbs were equal to those of the 
parental antibodies. These data were encouraging and indicated 
that further evaluation should be conducted in animal models 
to validate their activity and determine bispecific bNAb safety 
and efficacy. Alternative strategies for bsAbs have been explored 
and led to the design of iMabm36 [105] and 10E8v2.0/iMab [106] 
(Figure 2A). One immunoglobulin arm in these bsAbs is spe-
cific for human CD4 (iMab), which blocks the gp120-binding 
site on the CD4 molecule, and the second arm is specific for 
HIV-1 gp120 (m36 or 10E8v2.0). Thus, these novel bsAbs use a 
dual mode of action to prevent virus entry by interacting both 
with the virus itself and with the host cell surface receptor 
required for infection. The latter bsAb (10E8v2.0/iMab) [106] 
has also been tested in the humanized mouse model and was 
demonstrated to both reduce virus load and provide protection 
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related to the ability to recruit FcR-bearing cytotoxic effector 
cells and complement, and half-life by binding to the FcR neo-
natal. In contrast, bsAbs lacking the Fc region rely exclusively on 
their ability to bind specific antigens for their biological effects.

Novel bsAbs based on bNAbs targeting neutralization-sen-
sitive regions of the HIV-1 envelope have been successfully 
developed and tested in vitro for their neutralization potency 
[104] (Figure 2A); bsAbs were found to retain the potency and 
the breadth of the parental individual mAbs and were also able 
to neutralized HIV-1 isolates that were resistant to the indi-
vidual bNabs. The same studies demonstrated that the phar-
macokinetic properties of the bsAbs were equal to those of the 
parental antibodies. These data were encouraging and indicated 
that further evaluation should be conducted in animal models 
to validate their activity and determine bispecific bNAb safety 
and efficacy. Alternative strategies for bsAbs have been explored 
and led to the design of iMabm36 [105] and 10E8v2.0/iMab [106] 
(Figure 2A). One immunoglobulin arm in these bsAbs is spe-
cific for human CD4 (iMab), which blocks the gp120-binding 
site on the CD4 molecule, and the second arm is specific for 
HIV-1 gp120 (m36 or 10E8v2.0). Thus, these novel bsAbs use a 
dual mode of action to prevent virus entry by interacting both 
with the virus itself and with the host cell surface receptor 
required for infection. The latter bsAb (10E8v2.0/iMab) [106] 
has also been tested in the humanized mouse model and was 
demonstrated to both reduce virus load and provide protection 

from virus challenge. These findings support further evaluation 
of the therapeutic efficacy of bsAbs in clinical trials.

BISPECIFIC T-CELL ENGAGERS AND DUAL-AFFINITY 
RETARGETING MOLECULES

A further technological development of the bsAb concept was 
to engineer molecules that consisted of 2 single-chain variable 
fragments (scFvs) from different antibodies joined by a single 
polypeptide linker [108]. These new molecules were designed 
with the specific goals of improving the size, valency, flexibil-
ity, half-life, and biodistribution. The first-generation molecule 
included 1 scFv that bound to CD3+ T cells (CD4+ or CD8+) via 
the CD3 receptor, and the other scFv was specific for the B6.2 
molecule expressed on tumor cells; these molecules were first 
defined as bispecific T-cell engagers (BiTEs). Of note, they can 
redirect T-cell killing in an antigen-specific manner that is inde-
pendent of major histocompatibility class  I  recognition of the 
antigen-bearing cells and the presence of costimulatory mole-
cules [109, 110]. Subsequent work was performed to improve the 
stability, potency, and manufacturability of the BiTEs, which led 
to the generation of dual-affinity retargeting (DART) molecules 
[111]. In DART molecules, the variable domains of the 2 spec-
ificities are incorporated into a disulfide-linked heterodimer in 
which short linkers between the variable light chain and variable 
heavy chain segments promote a “diabody”-type association, 
with the disulfide bond stabilizing the structure [112–114].

Figure 2. Anti–human immunodeficiency virus (HIV) type 1 envelope (Env) antibody-derived molecules. A, Bispecific antibodies combine 2 antigen (Ag)–binding site variable 
fragments (Fvs) into a single immunoglobulin. The 2 Fvs (Fv1 and Fv2) can recognize 2 different antigenic regions of the HIV-1 Env [104*], or the HIV-1 Env and cellular recep-
tors involved in virus entry [105*, 106*] or in cytotoxic functions [107*]. B, Bispecific T-cell engagers (BiTEs), which are generated by using a single polypeptide linker to join 
2 single-chain Fvs (scFvs) with different antigen specificities. The first-generation HIV BiTE was designed to bind the HIV-1 envelope CD4-binding site and recruit cytotoxic 
T cells by engaging CD3 [47]. C, D, Dual-affinity retargeting (DART) molecules. The variable domains of the 2 scFvs are not only linked by a polypeptide linker to create a 
“diabody”-type structure but also stabilized into a disulfide-linked heterodimer with different antigen specificity. One arm can bind the HIV-1 envelope, and the other can bind 
cytotoxic effector cells [45]. DART molecules can also be designed to include the antibody Fc region to improve the half-life of the molecules [46].
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Both BiTEs and DART strategies have been explored to 
develop novel classes of therapeutics that can be used to treat 
chronic HIV-1 infection with the specific goal of eliminating 
latently infected cells on the reactivation of the provirus. Pegu 
et al [47] developed a BiTE molecule capable of recruiting CD3 
cytotoxic T cells and redirecting their killing by virtue of the 
anti–HIV-1 arm based on the VRC07 [51] mAb targeting the 
HIV-1 CD4bs envelope region (Figure 2B). The molecule was 
named VRC01-αCD3 and, as previously observed for the other 
BiTEs, it was shown to induce activation of CD8+ or CD4+ T 
cells only in presence of target cells expressing the HIV-1 enve-
lope. One peculiar characteristic of this molecule was its ability 
to reduce the frequency of proviral DNA positive CD4+ T cells 
in 5 of 8 subjects during a 2-day in vitro tissue culture system, 
suggesting that this molecule could be effective when used as a 
component of HIV cure treatment strategies.

As further development of the DART molecules to treat 
HIV-1 infection, Sung et  al [45] explored the ability of novel 
HIV-specific DART molecules to eliminate HIV-infected cells 
(Figure 2C). The DART molecules used in this study were com-
posed of a CD3-specific arm for recruitment of cytotoxic effec-
tor T cells and an HIV-specific arm based on the CD4-inducible 
constant regions 1 and 2 and gp41 cluster 1 non-NAbs A32 and 
7B2, respectively, for recognition of HIV-1 envelope on the 
surface of infected cells. These molecules were demonstrated 
to be able to redirect the killing of HIV-1–infected cells and 
reduce the amount of virus recovered from virus outgrowth 
assays performed with cell cultures from antiretroviral ther-
apy–treated patients on incubation with the latency-reversing 
agent vorinostat. 

Similar results were observed by Sloan et al [46], who devel-
oped DART molecules with the HIV-1 arm based not only on 
the A32 and 7B2 non-NAbs but also on bNAbs that target the 
N332 glycan (PGT121) [57], V1/V2 (PGT145) [115], CD4bs 
(VRC01) [50], and MPER (10e8) [48]. Most of these DART 
molecules had 50% effective concentrations in the picomolar 
range, suggesting that they are suitable for clinical applications 
[45]. Of note, when DART molecules specific for different HIV 
envelope regions were evaluated in combination, the investiga-
tors did not observe either antagonistic nor synergistic effects 
for their cytotoxic activity, suggesting that it may be possible 
to combine DART molecules to expand the breadth of activ-
ity against the diversity of HIV-1 isolates present in clinical 
settings.

Interestingly, both BiTEs and DART molecules were demon-
strated to be capable of redirecting normal resting cytotoxic 
T cells for killing of HIV-infected cells, bypassing the need of 
effector cell preactivation, which has been described elsewhere 
as a hurdle in the elimination of the latent reservoir by shock-
and-kill strategies because endogenous HIV-1–specific HLA 
class I-restricted CD8+ T cells require preactivation for effective 
cytolysis of reactivated latently infected cells [33].

FUTURE DIRECTIONS

Novel treatment strategies that will rely on the use of anti-
body-based immune therapies can overcome the hurdles thus far 
identified for the HIV-1–specific immune responses to eliminate 
latently infected cells alone or in combination with latency-re-
versing agents and antiretroviral therapy. However, more work is 
needed to determine the clinical impact that these molecules may 
have in treating latent HIV-1 infection. The minimum amount of 
Env antigen expressed on the surface of HIV-1–infected CD4+ T 
cells that will be needed for antibody recognition is not known. 
Moreover, it will be crucial to determine whether new molecules 
such as BiTEs and DART molecules may have a superior biodis-
tribution profile compared with other bsAbs, which would allow 
them to penetrate and recruit effector cells in the anatomic sites 
harboring the latently infected cells [39, 115].

Passive administrations of antibody have relied on the par-
enteral administration of these molecules and their derivatives. 
Therefore, a pressing challenge resides in the design of new mol-
ecules that have a longer half-life to require less frequent admin-
istration regimens while retaining the specificity of the parental 
mAb. In the case of DART molecules, for instance, there has 
already been an initial attempt at increasing the half-life of the 
molecules by engineering them to express a Fc region that can 
bind to the FcR neonatal and provide increased recirculation of 
the molecule without promoting other Fc-related effector func-
tions [46] (Figure 2D). Moreover, recombinant adeno-associ-
ated viruses have been engineered to deliver fusion proteins that 
resemble antibodies and antibody-based molecules. Gardner et 
al [116] have been able to deliver a CD4-immunoglobulin fusion 
protein in combination with a small CCR5 mimetic sulfopep-
tide that provided protection from challenge with SHIV-AD8 
for up to 40 weeks after infusion, without adverse effects. It is 
important to perform human clinical trials with these agents to 
evaluate their safety, immunogenicity and, ultimately, efficacy.

Finally, considering the advances in cancer therapy obtained 
by using mAbs that target immune checkpoints [117], and the fact 
that some of the same checkpoints have been demonstrated to be 
involved in the exhaustion of anti-HIV-specific cellular immune 
responses, such as the expression of PD-1 [34–36], efforts should 
be devoted to the antibody-mediated rescue of exhausted effec-
tor T cells by interfering with the interaction of programmed cell 
death protein 1 (PD-1) and/or cytotoxic T-lymphocytes antigen 
4 (CTLA-4) with their ligands [118–120].

CONCLUSIONS

From the work of understanding the immune correlates of the 
RV144 vaccine trial and the immunobiology of bNAb develop-
ment have come new non-NAb and bNAb reagents that—either 
as whole molecules or as engineered bispecific or trispecific anti-
body molecules—constitute a new class of therapeutic reagents 
for treating HIV-1. The field is presently in the early stages of 

evaluation of these new reagents for treatment of HIV-1 infec-
tion, for targeting the latently infected pool of CD4+ T cells, 
and to address their safety, immunoregulatory functions, and 
immunogenicity. Additional ongoing work is aimed at improv-
ing antibody-based reagent half-life and potency to increase 
the anti–HIV-1 effects of these antibodies. The hope is that new 
antibody formulations, in combination with cART and laten-
cy-reactivating agents, can promote NK or CD8+ T-cell killing 
of infected CD4+ T cells, thus adding a new class of drugs for the 
treatment, and eventual cure, of HIV-1 infection.
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evaluation of these new reagents for treatment of HIV-1 infec-
tion, for targeting the latently infected pool of CD4+ T cells, 
and to address their safety, immunoregulatory functions, and 
immunogenicity. Additional ongoing work is aimed at improv-
ing antibody-based reagent half-life and potency to increase 
the anti–HIV-1 effects of these antibodies. The hope is that new 
antibody formulations, in combination with cART and laten-
cy-reactivating agents, can promote NK or CD8+ T-cell killing 
of infected CD4+ T cells, thus adding a new class of drugs for the 
treatment, and eventual cure, of HIV-1 infection.
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