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Abstract

Mitochondrial Ca2+ is a key regulator of organelle physiology and the excessive increase

in mitochondrial calcium is associated with the oxidative stress. In the present study, we

investigated the molecular mechanisms linking mitochondrial calcium to inflammatory and

coagulative responses in hepatocytes exposed to high glucose (HG) (33mM glucose).

Treatment of HepG2 cells with HG for 24 h induced insulin resistance, as demonstrated by

an impairment of insulin-stimulated Akt phosphorylation. HepG2 treatment with HG led to

an increase in mitochondrial Ca2+ uptake, while cytosolic calcium remained unchanged.

Inhibition of MCU by lentiviral-mediated shRNA prevented mitochondrial calcium uptake

and downregulated the inflammatory (TNF-α, IL-6) and coagulative (PAI-1 and FGA) mRNA

expression in HepG2 cells exposed to HG. The protection from HG-induced inflammation

by MCU inhibition was accompanied by a decrease in the generation of reactive oxygen

species (ROS). Importantly, MCU inhibition in HepG2 cells abrogated the phosphorylation

of p38, JNK and IKKα/IKKβ in HG treated cells. Taken together, these data suggest that

MCU inhibition may represent a promising therapy for prevention of deleterious effects of

obesity and metabolic diseases.

Introduction

The evidence suggests that insulin resistance in skeletal muscle, adipose and liver tissues plays

an important role in development and initiation of type 2 diabetes (T2D) [1]. In recent years,

there has been strong evidence that hyperglycemia, hyperinsulinemia, hyperlipidemia, and

pro-inflammatory states contribute to development of insulin resistance [2]. The liver as a vital

member of the vertebrates plays a central role in coordination of the entire metabolism. Some

of the main functions of the liver include gluconeogenesis, glycogenolysis, glycogenesis, lipo-

genesis, cholesterol synthesis, synthesis of blood coagulation factors such as fibrinogen and

plasminogen activator inhibitor-1 (PAI-1). Liver insulin resistance leads to increased produc-

tion of glucose, lipoproteins, inflammatory factors such as TNF-α and interleukin 6 (IL-6),
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and coagulation factors such as fibrinogen A (FGA), fibrinogen B (FGB) and plasminogen

activator inhibitor-1 (PAI). The consequence of these disorders is to exacerbate insulin resis-

tance in the liver, as well as in peripheral tissues [3]. Hyperglycemia is considered as one of the

most important causes of insulin resistance in liver cells. Glucose toxicity has been proposed to

induce insulin resistance by different mechanisms including the formation of advanced glyco-

sylation end products (AGEs), glucosamine production, increased protein kinase C activity,

glucose auto-oxidation and a moderate increase in the level of glycolytic reactions [4]. All of

these processes are usually involved in the formation of reactive oxygen species (ROS) [5]. On

the other hand, inflammation is one of the most important factors in the pathogenesis of

hepatic insulin resistance. A number of epidemiological and animal studies have examined the

relationship between hepatic insulin resistance and increased production of inflammatory fac-

tors such as TNF-α and IL-6 [6, 7].

One critical function of the liver is the integration of multiple signals to maintain normal

blood glucose levels. Many of the functions of the liver including glucose metabolism, biliary

secretion, mitochondrial physiology, and cell regeneration are regulated by Ca+2 [8]. Cyto-

plasmic calcium fluctuations play a crucial role in regulating these signals. One of the mecha-

nisms controlling the cytoplasmic calcium fluctuations is the absorption of calcium by

mitochondria [9]. Ca2+ uptake into mitochondria is mediated by the “mitochondrial calcium

uniporter,” (MCU) a multisubunit Ca2+ channel complex [10]. Mitochondrial Ca2+ regulates

several basic biological functions, including the efficiency of mitochondrial ATP production

and the onset of mitochondria-mediated cell death [10]. The excessive increase in mitochon-

drial calcium is also associated with the pathological conditions such as apoptosis or necrosis

[11]. It was reported that increase in mitochondrial Ca+ 2 is associated with the accumulation

of ROS, leading to the stable opening of the permeability transfer pores sensitive to cyclospor-

ine (PTP), causing a rapid decomposition of ΔCm and mitochondrial swelling, loss of pyridine

nucleotides and cytochrome c, ATP drainage and ultimately cell death [12]. Given the crucial

role of mitochondrial calcium in generation of ROS and because high glucose, known as

inducer of pro-inflammatory responses, has been implicated in oxidative stress conditions, we

in the present study questioned whether mitochondrial calcium is involved in high glucose

(HG)-induced inflammatory and coagulative responses in HepG2 cells. In this study we evalu-

ated the effect of mitochondrial calcium inhibition on the expression of pro-inflammatory and

coagulation factors in HepG2 cells exposed to high concentration of glucose.

Methods & material

Materials

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), and trypsin EDTA

were purchased from Gibco (Gibco, Germany). Tissue culture flasks and disposable plastic

ware purchased from Greiner Bio-One (Frickenhausen, Germany). N-Acetyl-L-cysteine and

secondary antibodies were purchased from Sigma Aldrich (Taufkirchen, Germany). All pri-

mary antibodies were purchased from Abcam (Cambridge, UK). Polyvinylidene difluoride

(PVDF) membrane was from Millipore (Schwal-bach, Germany). ECL reagents were from

Amersham Pharmacia Corp. (Piscataway, NJ, USA). DHE and MitoSOX red were from Invi-

trogen (San Diego, CA, USA).

Cell culture and lentivirus infection

HepG2 and HEK T293 cells were purchased from the Iranian Biological Resource Center

(IBRC). Cells were cultured at 37˚C (in an atmosphere of 5% CO2) in DMEM containing 10%

FBS, and 1% penicillin–streptomycin. In order to induce insulin resistance, HepG2 cells were
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treated with 33 mM d-glucose (HG). D-mannitol (27.5 mM mannitol) was used as an osmotic

control in normal glucose (NG) (5.5mM glucose) treated sells. Selection of the time and dose

of glucose treatment were based on previously published study [13].

Lentiviruses were prepared as previously described [13]. Briefly, the transfer and packaging

(PMD2 and PUMVC) plasmids were transfected into T293 packaging cells. Viral supernatants

were collected after 48–72 h transfection and filtered on 0.44 μm filters. HepG2 cells were

infected with viral supernatants of SC (scramble) and shRNA-MCU in the presence of 10 μg/

ml polybrene for 48 hours.

Real time PCR

RNA was isolated using GeneAll RibospinTM total RNA purification kit (GeneAll Biotechnol-

ogy, South Korea). Complementary DNA (cDNA) was reverse transcribed using a RevertAid

First Strand cDNA Synthesis Kit (Thermo Fisher Scientific). Gene expression analysis was

evaluated by qRT-PCR using SYBR Green RealQ Plus 2x Master Mix Green (Ampliqon) on

Corbett Rotor Gene 6000 Light Cycler (Qiagen, Hilden, Germany). The levels of the target

gene transcripts were normalized relative to β-actin. The 2^-dCt method was used to calculate

the relative expression.

Western blot analysis

Western-blot analysis was carried out according to our previous report [14]. The antibodies

used were MCU, p-JNK, p-ERK, p-P38, JNK, ERK, p38 and Ikkα/β (Cell Signaling Technol-

ogy, Beverly, MA, USA) and β-actin (Abcam, Cambridge, MA, USA)

Measurement of intracellular reactive oxygen species (ROS) level

CM-H2DCFDA (Life Technologies) was used in the measurement of the ROS production.

Briefly, HepG2 cells were washed twice with PBS and then incubated with CM-H2DCFDA for

30min, rinsed, and fluorescence measured. MitoSOX red indicator (Life Technologies) was

used to measure mitochondrial superoxide. Briefly, cells were incubated in MitoSOX for

15min, rinsed, and fluorescence time course measured. Fluorescence was measured using both

a Carl Zeiss Axiovert 200M Inverted Microscope and an Envision Multilabel Plate Reader

(Perkin Elmer, Milan, Italy).

Calcium measurements

HepG2 cells on a 96 well plate were infected with the adenoviruses expressing the cytosolic

(Ad-cytAEQ) or the low-affinity mitochondrial probe (Ad-mtAEQmut) [15]. Ad-GFP was

used as control for adenoviral transduction. The plates were incubated with 5μM coelentera-

zine for 1–2 h in Krebs-Ringer modified buffer supplemented with 1mM CaCl2. All aequorin

measurements were carried out in krebs-ringer bicarbonate buffer. 100nM bradykinin was

used to stimulate Ca2+ release. All the experiments were terminated by cell lysis with 100 μM

digitonin in a hypotonic Ca2+-rich solution (10 mM CaCl2 in H2O) to discharge the remaining

reconstituted active aequorin pool. Signals were measured using an Envision Multilabel Plate

Reader (Perkin Elmer, Milan, Italy).

Statistical analyses

All statistical analyses were conducted using SPSS22. (SPSS, Chicago, IL, USA). Statistical sig-

nificance was considered at p<0.05. Comparisons among all groups were performed with the
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one-way analysis of variance with Tukey’s HSD post-test when appropriate. Results are

expressed as the mean±SEM of at least three independent experiments.

Results

Because of the close link between the oxidative stress and mitochondrial calcium uptake [16],

we first studied the correlation between hepatic insulin resistance and changes in mitochon-

drial calcium homeostasis. Insulin-stimulated Akt phosphorylation reduced after 24 h treat-

ment of HepG2 cells with 33mM glucose (HG) indicating the development of hepatic insulin

resistance (Fig 1A). HG treatment led to a marked increase in mitochondrial Ca2+ uptake

(+75%, Fig 1B), while cytosolic Ca2+ remained unchanged (Fig 1C), demonstrating an

increased mitochondrial calcium uptake in insulin resistance condition.

Metabolic inflammation is a major player in the development of hepatic insulin resistance

[6]. Given the link between high glucose condition and increased mitochondrial calcium in

HepG2 cells, we then investigated whether there is an association between MCU and inflam-

matory cytokines and coagulation factors in hepatocytes. To assess the functional significance

of MCU in hepatocytes inflammation, we generated a stable cell line where the expression of

MCU was silenced. Lentiviral-mediated shRNA knockdown of MCU in HepG2 resulted in a

decrease of mRNA and protein levels of MCU by 70 and 87%, respectively (Fig 2A and 2B).

MCU inhibition also reduced HG-induced mitochondrial calcium in HepG2 cells (Fig 2C).

Treatment of hepatocytes with HG resulted in a 35% reduction in p-Akt compared to controls,

whereas MCU inhibition completely reverted this effect (Fig 2D). We observed that while HG

Fig 1. The effect of high glucose on insulin resistance and mitochondrial calcium homeostasis. A: The effect of 33mM glucose (HG) on Akt

phosphorylation was performed by western blotting method. B&C: The effect of HG on mitochondrial calcium was assessed using the adenoviruses

expressing the low-affinity mitochondrial probe. D&G: The effect of HG on cytosolic calcium was evaluated by adenoviruses expressing the cytosolic probe.

Data are shown as a mean ± SEM of at least three separate experiment. NG: normal glucose, HG: high glucose, #<0.05, � <0.01, NS = not significance.

https://doi.org/10.1371/journal.pone.0196580.g001
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induces the expression of inflammatory and coagulation factors, MCU inhibition resulted in a

decrease of TNF-α, IL-6, PAI-1, FGA and FGB expression in HG-treated cells (Fig 2E–2H).

These data suggest a strong association between the pro-inflammatory and coagulative

responses and mitochondrial Ca2+ uptake in liver cells.

We next sought to identify the mechanism underlying the observed reducing effect of

MCU inhibition on hepatic inflammation. Since high glucose is the major cause of oxidative

stress, we measured ROS level, the production of which largely relies on the activity of the

mitochondrial electron transport complexes. HG treatment results in an increase of both intra-

cellular and mitochondrial ROS levels using DCFDA and MitoSOX dyes, respectively (Fig 3A

and 3B). We also observed that MCU knock-down cells exhibited a decrease in ROS level sug-

gesting the key role of MCU in regulating the oxidative stress (Fig 3A and 3B).

Fig 2. Importance of MCU inhibition in high glucose-induced pro-inflammatory and coagulative responses. HepG2 stable cells were generated by

infecting the cells with the supernatants of lentiviruses expressing MCU shRNA. Real-time PCR and western blotting were used to detect MCU mRNA and

protein levels in HepG2 stable cells, respectively. A: Protein levels of MCU, B: mRNA level of MCU, C) mitochondrial calcium concentration in MCU-KD

cells. D: the effect of MCU inhibition on the mRNA expression of TNF-α (E), IL-6 (F), PAI-1 (G), FGA (H), and FGB(I) were measured using real time PCR.

Data are shown as a mean ± SEM of at least three separate experiment. MCU-KD: MCU knockdown cells, SC: Scramble, NG: normal glucose, HG: high

glucose, #<0.05, � <0.01, � � <0.001.

https://doi.org/10.1371/journal.pone.0196580.g002

MCU knockdown prevents HG-induced inflammation
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Oxidative stress has been shown to induce the inflammatory and coagulative responses by

activating the mitogen-activated protein kinases (MAPKs) and nuclear Factor kappa-light-

chain-enhancer of activated B cells (NF-kB) pathways [17]. To elucidate the mechanism by

which MCU knockdown relieved the increase of inflammation induced by HG, we examined

the phosphorylation levels of MAPKs and IKK: IκB kinase (IKKα/IKKβ) in HepG2 cells over

HG stimulation. We found that MCU inhibition attenuated HG-induced phosphorylation of

c-Jun N-terminal kinase (JNK) and p38, but not extracellulare signal-regulated kinases (ERK)

in HepG2 cells (Fig 4A–4C). The level of p-IKKα/IKKβ was also diminished in MCU-knock-

down cells treated with HG (Fig 4D). These results suggest that MCU inhibition prevented

HG-induced inflammation in HepG2 cells by mechanisms involving the decreasing the activ-

ity of the JNK, p38 and NF-κB pathways.

Discussion

The liver plays a central role in inflammation through its ability to produce acute anti-inflam-

matory phase proteins and inflammatory cytokines via Kupffer cells and resident lymphocytes

[18]. There is evidence that in addition to Kupffer cells and lymphocytes in the liver, hepato-

cytes can also secrete pro-inflammatory cytokines when they are stimulated by inflammatory

markers or fatty acids [19]. The research during the past decades has revealed the mechanism

Fig 3. The effect of MCU inhibition on ROS production in HepG2 cells. HepG2 cells were treated with HG for 24 h. A: H2O2 levels were

measured using flow cytometry with DCFH-DA. B: Mitochondrial ROS level using MitoSOX red dye. Data are shown as a mean ± SEM of at least

three separate experiment.: MCU knockdown cells, SC: Scramble, NG: normal glucose, HG: high glucose, #<0.05, � <0.01, � � <0.001.

https://doi.org/10.1371/journal.pone.0196580.g003

MCU knockdown prevents HG-induced inflammation
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by which hyperglycemia-induced oxidative stress leads to chronic inflammation [20]. On the

other hand, mitochondrial Ca2+ overload has been reported to induce oxidative stress by

increasing production of ROS [21]. Therefore, we in the present study aimed to investigate the

role of mitochondrial calcium in inflammatory and coagulative responses in hepatocytes by

targeting the MCU, a transmembrane protein that allows the passage of calcium ions from the

cytosol into mitochondria.

Fig 4. The effect of MCU inhibition on the phosphorylation of MAPK and NF-κB pathway. HepG2 cells were treated with HG for 24 h. After

treatment, cells were lysed and protein extracts were immunoblotted with specific antibodies. The effect of MCU inhibition on JNK (A), P38 (B),

ERK (C) and IKKα-β (D) phosphorylation has been demonstrated. Data are shown as a mean ± SEM of at least three separate experiment. MCU

knockdown cells, SC: Scramble, NG: normal glucose, HG: high glucose, #<0.05, � <0.01, � � <0.001.

https://doi.org/10.1371/journal.pone.0196580.g004

MCU knockdown prevents HG-induced inflammation
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In this study we first investigated the subcellular calcium flux in HG-treated hepatocytes.

Chronic HG was associated with a 49% increase in mitochondrial Ca2+, while cytosolic Ca2+

remained stable. This result is in the line with the data obtained from previous studies. Jorge

Suarez et al. showed that calcium transients in cardiomyocytes exposed to HG for 48 h were

prolonged compared with transients of the cells cultured in NG [22]. Sand Kim Kumar et al.

also observed that HG induces calcium accumulation in the mitochondria of cardiomyocyte

H9c2 cells in a time-dependent manner [23]. Mitochondria play significant roles in shaping

the Ca2+signal released from the endoplasmic reticulum (ER) [24]. Under normal physiologi-

cal conditions, the bulk of the Ca2+ resides within the ER lumen and, during cellular events

requiring a Ca2+ signal, a small proportion crossing the outer mitochondrial membrane. In

pathological conditions such as ER stress, increased release of Ca2+ from the ER result in mas-

sive and/or a prolonged mitochondrial Ca2+ overload [25] In this regard, various pathological

conditions including ER stress, oxidative stress, palmitate, and chronic high glucose decreased

ER calcium levels in pancreatic β cells [26]. Importantly, the rate of ER calcium-depleted β
cells was increased by chronic high glucose [26]. Therefore, because of the stable condition of

cytosolic calcium in HG treatment, it appears that increased mitochondrial calcium observed

in this study results from increased release of calcium from ER to mitochondria. However, fur-

ther studies are required to confirm this idea.

In the following experiments, we investigated the relationship between mitochondrial cal-

cium accumulation and the inflammatory and coagulative responses in HepG2 cells by inacti-

vation of MCU. In consistent with the results of the other studies, we found that a 70%

decrease of MCU expression was associated with 78% reduction of the absorption of calcium

by mitochondria [27]. Insulin-sensitive MCU-knockdown cells exhibited a drastic reduction

in the expression of TNF-α, IL-6, PAI-1, FGA and FGB. In agreement with our findings, a

recent study reported that a decrease of mitochondrial calcium by Mcub-overexpressing in

adipocytes led to a reduction in the release of TNF-α and IL-6 [16]. Furthermore, it was sug-

gested that accumulation of calcium in the mitochondria matrix through the MCU triggers

nod-like receptor protein 3 (NLRP3) inflammasome activation and IL-1β release in lung epi-

thelial cells [28]. All together, these data demonstrate a link between mitochondrial calcium

and inflammation, thus suggesting a possible role for MCU in the development of obesity-

associated metabolic inflammation.

Oxidative stress has been proposed to link with the inflammatory responses. In this regard,

it has been demonstrated that ROS can trigger the activation of NF-κB and MAPKs signaling

pathways resulting in an increase of the inflammatory processes in various cell types [29, 30].

To investigate the molecular mechanism underlying the anti-inflammatory effect of MCU

inhibition, we targeted the oxidative stress and the signaling pathways of MAPKs and NF-kB.

In this study HG could promote generation of ROS in HepG2 cells. In support of this finding,

it has been demonstrated that oxidative stress was increased following treatment of HepG2

cells with high glucose [31]. MCU inhibition could attenuate HG-induced ROS production in

HepG2 cells. Mitochondria are an important source of ROS within most mammalian cells

[32]. Given that MCU inhibition completely blocked HG-induced MitoSOX intensity in

HepG2 cells, therefore it is plausible to suggest that MCU inactivation may suppress the

inflammatory responses by inhibiting mitochondrial ROS production in HepG2 cells. In

accordance with this notion, it was reported that decreasing mitochondrial calcium could

affect mitochondrial metabolism including the activity of oxidative enzymes, mitochondrial

respiration, membrane potential, and ROS production in adipocytes [16]. In the following

experiments, we found that HG could induce the phosphorylation of JNK and P38 in HepG2

cells. It is worthy note that a role for JNK and P38 in regulating the inflammatory processes

has been previously reported in skeletal muscle and adipose tissues [33, 34]. Interestingly, we

MCU knockdown prevents HG-induced inflammation
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were able to demonstrate that MCU inhibition could attenuate HG-induced phosphorylation

of JNK and P38. In parallel with the previous reports, we found that HG activates NF-κB path-

way as demonstrated by an increased phosphorylation of IKKα/IKKβ [35]. Enhanced phos-

phorylation of IKKα/IKKβ leads to degradation of IκB protein and subsequent release of NF-

κB to translocate to the nucleus [36]. Importantly, we found that MCU inhibition decreased

HG-increased phosphorylation of IKKα/IKKβ and thereby NF-κB activity. Collectively, the

present data suggest that MCU inhibition ameliorates HG-induced inflammation in HepG2

cells by attenuating oxidative stress and decreasing the activity of JNK, P38 and NF-KB path-

ways. Because of the cancerous nature of the HepG2 cells used in this study, our findings need

to be interpreted cautiously and the data should be confirmed in another cell line or primary

hepatocytes. However, in support of the data of this study, we should note that HepG2 cells

have been widely used as a model of insulin resistance. These cells have ability to synthesize

and release bile acids, secrete plasma proteins such as albumin, alpha-fetoprotein, fibrinogen,

and apolipoproteins and have receptor for asialoglycoprotein, insulin, transferrin, estrogen,

low density lipoprotein (LDL), and high density lipoprotein (HDL) [37–40]. More impor-

tantly, a similar profile of the inflammatory responses to different stimuli such as lipopolysac-

charide (LPS) and palmitate was reported from HepG2 cells and primary hepatocytes [19, 41].

Akt is responsible primarily for many of the metabolic actions of insulin [42]. Not surpris-

ing, therefore, the depression of Akt activation significantly correlated with the increase of

insulin resistance condition. In this regard, mice lacking both hepatic isoforms (Akt1:Akt2)

show marked glucose intolerance and insulin resistance [43]. Studies have found that chronic

and/or increased production of ROS triggers the activation of serine/threonine kinase cascades

such as JNK, NF-kB, and others that in turn phosphorylate multiple targets, including the

insulin receptor and the insulin receptor substrate (IRS) proteins. Increased serine phosphory-

lation of IRS and subsequently decreased phosphorylation of Akt explains the molecular basis

of oxidative stress-induced insulin resistance [44]. In the present study we observed a lower

Akt phosphorylation in HG treated cells. MCU inhibition reversed the effect of HG on Akt

phosphorylation indicating an increase in insulin sensitivity of MCU-KD cells. According to

above mentioned scenario, our findings of lower mitochondrial calcium and subsequently

decrease of oxidative stress, decrease of MAPKs and NF-KB activations may explain the

molecular mechanism linking MCU inhibition and increased Akt phosphorylation in

MCU-KD cells exposed to chronic HG.

In conclusion, here we demonstrated an association between mitochondrial calcium and

the inflammatory and coagulative responses in a model of insulin resistance. Normalizing

mitochondrial calcium by inhibiting MCU in HepG2 cells attenuated HG-induced insulin

resistance and inflammation by mechanisms involving the inhibition of ROS production and

decreasing the activity of the MAPKs and NF-κB signaling pathways. The data suggest that

MCU inhibition may represent a promising therapy for prevention of deleterious effects of

obesity and metabolic diseases.
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