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Abstract
Context: Traumatic brain injury (TBI) is a leading cause of death, disability, and resource consumption per year. There are two kinds of 
brain injury in TBI, primary and secondary injuries. Primary injury refers to the initial physical forces applied to the brain at the moment 
of impact. Secondary injury occurs over a period of hours or days following the initial trauma and results from the activation of different 
pathways such as inflammation, coagulation, oxidation, and apoptosis.
Evidence Acquisition: This review focuses on new prognostic biomarkers of mortality in TBI patients related to inflammation, 
coagulation, oxidation, and apoptosis.
Results: Recently circulating levels of substance P (SP), soluble CD40 ligand (sCD40L), tissue inhibitor of matrix metalloproteinases (TIMP)-
1, malondialdehyde (MDA), and cytokeratin (CK)-18 fragmented have been found to be associated with mortality in TBI patients. Substance 
P is a neuropeptide of the tachykinin family, mainly synthesized in the central and peripheral nervous system, with proinflammatory 
effects when binding to their neurokinin-1 receptor (NK1R). Soluble CD40 ligand, a member of the tumor necrosis factor (TNF) family 
that is released into circulation from activated platelets, exhibit proinflamatory, and procoagulant properties on binding to their cell 
surface receptor CD40. Matrix metalloproteinases (MMPs) are a family of zinc-containing endoproteinases involved neuroinflammation 
and TIMP-1 is the inhibitor of some of them. Malondialdehyde is an end-product formed during lipid peroxidation due to degradation 
of cellular membrane phospholipids, that is released into extracellular space and finally into the blood. Cytokeratin -18 is cleaved by the 
action of caspases during apoptosis, and CK-18 fragmented is released into the blood.
Conclusions: Circulating levels of some biomarkers, such as SP, sCD40L, TIMP-1, MDA, and CK-18 fragmented, related to inflammation, 
coagulation, oxidation, and apoptosis have been recently associated with mortality in patients with TBI. These biomarkers could help in 
the prognostic classification of the patients and open new research lines in the treatment of patients with TBI.
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1. Context
Traumatic brain injury (TBI) is a leading cause of death, 

disability, and resource consumption per year (1). There 
are two kinds of brain injury in TBI, primary, and second-
ary injuries. Primary injury refers to the initial physical 
forces applied to the brain at the moment of impact. Sec-
ondary injury occurs over a period of hours or days fol-
lowing the initial trauma, and results from the activation 
of different pathways such as inflammation, coagulation, 
oxidation, and apoptosis (2-10).

2. Evidence Acquisition
This review focuses on new prognostic biomarkers of 

mortality in TBI patients related to inflammation, coagu-
lation, oxidation and apoptosis.

3. Results

3.1. Substance P
The tachykinins are a group of related peptides, with 

proinflammatory action, that are mainly synthesized in 
the central and peripheral nervous system, but are also 
present in a variety of non-nervous system cells such 
as endothelial cells, inflammatory cells, immune cells, 
placenta, and hematopoietic cells (11-13). The tachyki-
nin family includes the neuropeptides substance P (SP), 
neurokinin A (NKA) and neurokinin B (NKB), and endo-
kinins. Until now, three tachykinin receptors termed 
NK1R, NK2R, and NK3R have been identified. Substance P 
and endokinins exhibit preferential binding to the NK1R, 
NKA to NK2R, and NKB to NK3R, respectively. Substance 
P is involved in inflammatory diseases (such as asthma, 
sarcoidosis, chronic obstructive pulmonary disease, in-
flammatory bowel disease, and rheumatoid arthritis) 
and malignant diseases (14-16).

The findings of different studies suggest that SP could 
play a role in TBI (17-23). In murine models, an increase 
of NK1 receptors in the central nervous system has been 
found after its injury (17, 18), and that these receptors are 
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functional as demonstrated by the ability of SP to initi-
ate activation of the nuclear factor-kappa B (NF-κB) (18). 
An increase of SP in brain tissue of TBI mice compared 
to control mice has also been found (19). In addition, in 
a study of postmortem brain material from TBI patients, 
13 with and 10 without neuropathological abnormalities, 
increased SP was found in brain tissue from patients with 
neuropathological abnormalities (20). In addition, in 
animal models, SP release has been found to be integrally 
linked to increased vascular permeability and edema for-
mation after TBI (21, 22), as well as axonal injury (23).

In a study by our team (to our knowledge, the first study 
to include data on serum SP levels in patients with severe 
TBI) was found that non surviving TBI patients showed 
higher serum SP levels than survivors (420 (310 - 815) vs. 
250 (99 - 496); P = 0.002), and that serum SP levels were 
associated with TBI severity and with early mortality (24). 
We found that the area under the curve (AUC) for serum 
SP levels as a predictor of 30-day mortality was 0.70 (95% 
CI = 0.60-0.79; P < 0.001). In the multiple binomial logis-
tic regression analysis was found that serum SP levels 
higher than 299 pg/mL were associated with 30-day mor-
tality controlling for acute physiology and chronic health 
evaluation (APACHE)-II score and computer tomography 
(CT) findings (OR = 5.97; 95% CI = 1.432 - 24.851; P = 0.01) 
and controlling for GCS and age (OR = 5.71; 95% CI = 1.461 
- 22.280; P = 0.01). In addition, we found in the survival 
analysis that patients with serum SP levels above 299 pg/
mL presented higher 30-day mortality than patients with 
lower levels (HR = 3.7; 95% CI = 1.75 - 7.94; P < 0.001). Be-
sides, a negative association between serum SP levels and 
TBI severity assessed by glasgow coma scale (GCS) (rho = 
-0.22; P = 0.03) was found in our study.

From a therapeutic perspective, the use of SP modula-
tors could be used as a new class of drugs for the treat-
ment of TBI (22, 25, 26). Thus, the administration of a NK1R 
antagonist and of a substance that induces SP depletion 
from sensory nerves in TBI animal models has attenuated 
brain edema formation and improved functional out-
come (22, 25, 26).

3.2. Soluble CD40 Ligand
The CD40 ligand (CD40L) is a member of the tumor 

necrosis factor (TNF) family and is expressed as a trans-
membrane protein in activated platelets. CD40L and its 
soluble counterpart (sCD40L) are proteins with proin-
flamatory and procoagulant effects when binding to 
their cell surface receptor CD40 (27-29). CD40L is stored 
in α-granules of unstimulated platelets but when plate-
lets become activated it rapidly translocates to the sur-
face. Afterwards, CD40L is cleaved on the platelet surface, 
and released as sCD40L into circulation. The sCD40L 
binds to CD40 receptor on endothelial cell surfaces, and 
activated endothelial cells produce the overexpression 
of transcriptional factors such as nuclear factor-kappa B 
[NF-kß] (30). This leads to the subsequent up regulation of 

proinflammatory and prothrombotic factors. The proin-
flammatory effects of sCD40L is mediated by the expres-
sion of several proinflammatory mediators, such as the 
interleukin (IL)-1, IL-6, IL-12, TNF-alpha, and interferon-
gamma (31, 32). The prothrombotic effect of sCD40L is 
mediated by induction of tissue factor (TF) (33-36), reduc-
ing expression of thrombomodulin expression (35, 36), 
and binding to the glycoprotein IIb/IIIa platelet receptor 
(37, 38). All these prothrombotic effects could facilitate 
the development of vascular thrombosis, brain ischemia, 
and finally the death of the patient.

There has been found increased circulating levels of 
sCD40L in patients with acute coronary syndrome (39, 
40), stroke (41-45) and sepsis (46, 47) than in control sub-
jects. In addition, there has been found an association 
between circulating sCD40L and prognosis in patients 
with acute coronary artery syndrome and (48) and sep-
sis (46, 47). In a study by our team (to our knowledge, the 
first study reporting data on serum sCD40L levels in pa-
tients with severe TBI) was found that nonsurviving TBI 
patients had higher serum sCD40L levels than surviving 
ones (4.00 (2.36 - 5.46) vs. 1.80 (0.60 - 2.79); P < 0.001), and 
an association between serum sCD40L levels and TBI se-
verity and mortality (49). We found that the AUC for se-
rum sCD40L as a predictor of 30-day mortality was 0.79 
(95% CI = 0.70 - 0.86; P < 0.001). In the multiple binomial 
logistic regression analysis was found that serum sCD40L 
levels were associated with 30-day mortality controlling 
for APACHE-II and CT findings (OR = 1.58; 95% CI = 1.12 - 
2.21; P = 0.008) and controlling for GCS and age (OR=1.43; 
95% CI=1.05 - 1.95; p = 0.02). In addition, we found in the 
survival analysis that patients with serum sCD40L levels 
higher than 2.11 ng/mL presented higher 30-day mortality 
than patients with lower levels (HR = 9.0 (95% IC = 4.25 - 
19.27); P < 0.001). Besides, we found for the first time an 
association between serum sCD40L levels and patient se-
verity assessed by APACHE-II score (rho = 0.33; P = 0.001), 
and GCS (rho = -0.21; P = 0.04). However, we did not found 
an association between serum sCD40L and TNF-alpha. 
Neither, we found an association between serum sCD40L 
and TF levels, which has been described in culture of vas-
cular endothelial cells (33-36). It is possible that other re-
ported prothrombotic effects of sCD40L, such as reduced 
thrombomodulin expression (35, 36) and binding to the 
glycoprotein IIb/IIIa platelet receptor (37, 38) could lead 
to vascular thrombosis, brain ischemia and, finally, death 
in these patients with TBI.

From a therapeutic perspective, the modulation of cir-
culating sCD40L levels could be used as a new approach 
for the treatment of TBI (50, 51). There has been found 
that the use of statins decreased circulating sCD40L lev-
els in patients with coronary artery disease (50) and im-
prove outcome in animal TBI models (50, 51).

3.3. Tissue Inhibitor of Matrix Metalloproteinases-1
Matrix metalloproteinases (MMPs) are zinc-containing 



Lorente L 

3Arch Trauma Res. 2015;4(4):e30165

endoproteinases implicated in degradation and remod-
elling of the extracellular matrix (ECM). Matrix metallo-
proteinases can be classified according to the substrate 
specificity as follows: collagenases (MMP-1, -8, and -13), 
gelatinases (MMP-2 and -9), stromelysins (MMP-3, -10, -11), 
elastases (MMP-7 and -12) and membrane-type (MT-MMPs, 
MMP-14, -15, -16, and -17). The activity of MMP is down-reg-
ulated by tissue inhibitors of matrix metalloproteinases 
(TIMPs). Matrix metalloproteinases have a role in nor-
mal physiological processes such as the menstrual cycle, 
morphogenesis, tissue remodelling, and angiogenesis, 
and also in several pathological circumstances with ab-
normal ECM turnover, such as arthritis, sepsis, tumour 
invasion, aneurysm formation, and atherosclerosis (47, 
52-55). Besides, MMPs are involved in the mechanisms 
associated with neuroinflammation (56-58) and are in-
volved in the disruption and permeability of the blood 
brain barrier, edema formation, and inflammation after 
TBI (59-61).

There has been found in small studies (sample size few-
er than 50 patients) higher circulating levels of MMP-2 
and MMP-9 in patients with TBI than in healthy control 
subjects (62-68). In addition, higher levels of MMP-2 and 
MMP-9 in brain extracellular fluid of patients with TBI 
than in control subjects has been found (59, 62).

In a study by our team (to our knowledge, the largest se-
ries reporting data on MMP levels in patients with severe 
TBI) was found, for the first time, that non-surviving TBI 
patients had higher serum TIMP-1 levels than surviving 
ones (302 (221 - 474) vs. 219 (177 - 258); P < 0.001) and an 
association between serum TIMP-1 levels and the severity 
and mortality of TBI patients (69). We found that the AUC 
for serum TIMP-1 levels as a predictor of 30-day mortality 
was 0.73 (95% CI = 0.624 - 0.844; P < 0.001). In the multiple 
binomial logistic regression analysis was found that se-
rum TIMP-1 levels were associated with 30-day mortality 
controlling for APACHE-II and CT findings (OR = 1.01; 95% 
CI = 1.001 - 1.013; P = 0.03), and controlling for GCS and age 
(OR = 1.01; 95% CI=1.003 - 1.015; P = 0.002). In addition, we 
found in the survival analysis that patients with serum 
TIMP-1 levels above 220 ng/mL presented higher 30-day 
mortality than patients with lower levels (HR = 2.9; 95% 
CI = 1.37 - 6.23; P = 0.02). Besides, an association between 
TIMP-1 and APACHE-II (rho = 0.33; P = 0.001), TF (rho = 0.43; 
P < 0.001), and TNF-alpha (rho = 0.43; P < 0.001) was found 
in our study.

The physiological role of circulating TIMP-1 levels TBI 
patients is still unknown. We think that the higher circu-
lating TIMP-1 levels in nonsurvivors than in survivor TBI 
patients may be a consequence of increased MMP-2 and 
MMP-9 levels in nonsurvivors during the initial phase of 
TBI to try maintain the balance on the activity of MMPs 
and TIMPs. However, we only found a trend to higher cir-
culating MMP-9 levels in nonsurviving than in surviving 
TBI patients, and circulating MMP-2 levels to test this pos-
sible explanation were not measured on our study. Inter-
estingly, circulating TIMP-1 levels have been found to be 

associated with brain edema in ischemic stroke patients 
(70). In addition, the appearance of coagulopathy after 
TBI has been associated with prognosis of TBI (71-73). An 
interesting finding of our study, the first time described, 
was the association between circulating levels of TIMP-1 
and TF. That association could contribute in a procoagu-
lant state, capillary thrombosis, and in the increase of 
secondary brain injury by ischemia induction. Besides, a 
systemic inflammatory response syndrome (SIRS) could 
appears after TBI due to the synthesis and leaking of 
proinflammatory cytokines into the circulation (74, 75). 
Moreover, this SRIS may cause capillary thrombosis, mul-
tiple organ failure, and finally the death of the patient. 
Interestingly, there was found an association between 
TIMP-1 and TNF-alpha levels on our study. We think that 
it is possible that the increased serum TIMP-1 levels in 
nonsurvivors TBI patients is not the cause of death in TBI 
patients, but only a biomarker associated with mortality. 
From a therapeutic perspective, the modulation of MMP 
activity could be used as a new approach in the treatment 
of TBI patients (59-61).

3.4. Malondialdehyde
After TBI there is an increase in the production of reac-

tive oxygen species (ROS) and they are involved in the 
secondary brain injury (6-9), contributing to cellular 
dysfunction, loss of microvascular regulation, vasogenic 
edema, and progressive posttraumatic ischemia. The in-
crease of ROS leads to lipid peroxidation and malondial-
dehyde (MDA) is an end-product formed during this lipid 
peroxidation, due to degradation of cellular membrane 
phospholipids. Malondialdehyde is released into extra-
cellular space and finally into the blood; and it has been 
used as an effective biomarker of lipid oxidation in other 
clinical circumstances as sepsis (76, 77).

There has been found higher levels of MDA in patients 
with TBI than in controls (78-82). In addition, in studies 
of small sample size (fewer than 50 patients) were found 
higher levels of MDA in erythrocytes (81, 82) or serum (83) 
in nonsurviving than in surviving TBI patients. 

In a study by our team (to our knowledge, the largest se-
ries reporting data on circulating MDA levels in patients 
with severe TBI) was found, for the first time, an associa-
tion between serum MDA levels and mortality in TBI pa-
tients (84). We found higher serum MDA levels in nonsur-
viving than in surviving TBI patients (1.99 (1.31 - 2.76) vs. 
1.35 (1.02 - 1.79); P < 0.001). In addition, we found that the 
AUC for serum MDA levels as a predictor of 30-day mortal-
ity was 0.76 (95% CI = 0.663 - 0.838; P < 0.001). In the mul-
tiple binomial logistic regression analysis was found that 
serum MDA were associated with 30-day mortality con-
trolling for APACHE-II and CT findings (OR = 3.12; 95% CI 
= 1.040 - 9.365; P = 0.04) and controlling for GCS and age 
(OR = 4.66; 95% CI = 1.466 - 14.824; P = 0.01). In addition, we 
found in the survival analysis that patients with serum 
MDA levels above 1.96 nmol/mL presented higher 30-day 
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mortality than patients with lower levels (HR = 3.5; 95% 
CI = 1.43 - 8.47; P < 0.001). Besides, an association between 
serum MDA levels and TBI severity assessed by APACHE-
II score (rho = 0.232; P = 0.012) and GCS (rho = -0.212; P = 
0.02) were found in our study.

From a therapeutic perspective, the administration of 
antioxidant agents could be used as a new approach for 
the treatment of TBI patients. The use of different anti-
oxidant agents such as melatonin (85, 86) or memantine 
(87) has been found to reduce MDA levels in brain tissues 
in animal models. In addition, in a small randomized 
clinical trial (36 patients), the administration of aman-
tadine sulphate reduced MDA levels and mortality in TBI 
patients (88).

3.5. Cytokeratin-18 Fragmented 
The programmed death cell or apoptotic process has a 

role in normal physiological processes such as morpho-
genesis, tissue remodelling, and resolution of the im-
mune response (10). In addition, apoptotic changes in 
brain tissue samples have been found from animals (89-
91) and humans (92, 93) after a TBI. Besides, SIRS could ap-
pear after TBI (94) and this SIRS could activate the cellular 
death by apoptosis (95).

Cytokeratins (CK), named as CK-1 to CK-20, are proteins 
of intermediate filaments found in the intracytoplasmic 
cytoskeleton of epithelial tissue, conforming a complex 
network from the surface of the nucleus to the cell mem-
brane. These CK filaments play an important role in cel-
lular functions (tensile strength to the cells, mitosis, and 
cell movement) (96). CK-18 is cleaved by the action of cas-
pases during apoptosis, and CK-18 fragmented is released 
into the blood (97).

Circulating CK-18 fragmented levels, as a biomarker of 
apoptosis, have been reported in patients with different 
pathological processes as liver (98-101), tumoral (102, 103), 
graft-versus-host (104), and septic processes (105-108).

In a study by our team (to our knowledge, the first study 
reporting data on serum CK-18 fragmented levels in pa-
tients with severe TBI) was found that nonsurviving TBI 
patients had higher serum CK-18 fragmented levels than 
surviving ones (347 (160 - 401) vs. 180 (151 - 224); P = 0.003), 
and an association between serum CK-18 fragmented 
levels and TBI mortality (109). We found that the AUC for 
serum CK-18 fragmented levels as a predictor of 30-day 
mortality was 0.69 (95% CI = 0.59 - 0.78; P = 0.006). In the 
multiple binomial logistic regression analysis was found 
that serum CK-18 fragmented levels higher than 201 u/L 
were associated with 30-day mortality controlling for 
APACHE-II and CT findings (OR = 9.789; 95% CI = 2.196 - 
43.643; P = 0.003) and controlling for GCS and age (OR = 
8.476; 95% CI = 2.087 - 34.434; P = 0.003). In addition, we 
found in the survival analysis that patients with serum 
CCCK-18 higher than 201 u/L presented higher 30-day 
mortality than patients with lower levels (HR = 3.9; 95% CI 
= 1.81-8.34; P < 0.001).

From a therapeutic perspective, the modulation of 
apoptotic activity could be used as a new approach for 
the treatment of patients with TBI. The intrathecal infu-
sion of a caspase-3 inhibitor was reported to reduce apop-
tosis, contusion size and brain tissue loss in a rat model, 
although there was not found an effect on functional out-
come (110).

4. Conclusions
Circulating levels of some biomarkers, such as SP, 

sCD40L, TIMP-1, MDA, and CK-18 fragmented, related to in-
flammation, coagulation, oxidation, and apoptosis have 
been recently associated with mortality in patients with 
TBI. These biomarkers that could help in the prognostic 
classification of the patients could open new research 
lines in the treatment of patients with TBI.
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