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Abstract: Fucoidan is a natural derived compound found in different species of brown algae
and in some animals, that has gained attention for its anticancer properties. However, the exact
mechanism of action is currently unknown. Therefore, this review will address fucoidans structure,
the bioavailability, and all known different pathways affected by fucoidan, in order to formulate
fucoidans structure and activity in relation to its anti-cancer mechanisms. The general bioactivity
of fucoidan is difficult to establish due to factors like species-related structural diversity, growth
conditions, and the extraction method. The main pathways influenced by fucoidan are the PI3K/AKT,
the MAPK pathway, and the caspase pathway. PTEN seems to be important in the fucoidan-mediated
effect on the AKT pathway. Furthermore, the interaction with VEGF, BMP, TGF-β, and estrogen
receptors are discussed. Also, fucoidan as an adjunct seems to have beneficial effects, for both
the enhanced effectiveness of chemotherapy and reduced toxicity in healthy cells. In conclusion,
the multipotent character of fucoidan is promising in future anti-cancer treatment. However, there is
a need for more specified studies of the structure–activity relationship of fucoidan from the most
promising seaweed species.
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1. Introduction

For centuries, plants have been used in traditional medicines in the treatment and prevention of
different diseases. Multiple anticancer agents in clinical use, are derived from plants such as, paclitaxel,
vinblastine, and camptothecin [1,2]. The different conditions in marine environments result in a
huge stock of potential bioactive compounds that are in general easily tolerated by the human body,
resulting in few side-effects [3]. The advantages of natural products compared to synthetic include;
lower development costs, widespread accessibility, and potential reduced side effects. Currently, it is
estimated that more than 60% of the anticancer drugs are derived from plants, bacteria, and marine
organisms [4].

Fucoidan is a natural derived compound found in different species of brown algae (Phaeophyceae)
and in some animals, that has gained attention for its anticancer properties. Fucoidan is a sulfated
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polysaccharide molecule, and part of the cell wall of algae [5,6]. Algae are an exceptionally diverse
group of organisms. In reference to biomass, brown algae are the dominant organism in many
coastal regions and have evolved independently from each other, exhibiting many novel features [7].
Despite their phylogenetic proximity to brown algae, red and green algae do not have fucoidan in their
cell walls [8]. In East Asia, brown seaweed has been utilized in the local cuisine and as a medicine for
centuries [9]. Epidemiological studies have reported that the incidence of chronic diseases, such as
heart disease, diabetes, and cancer is lower in China and Japan than in western countries, which may
be attributed to differences in lifestyle and diet [10]. This has led to a renewed interest in the properties
and contents of brown algae. In the past 50 years, more than 3000 products, derived from algae,
have been discovered [11]. The polysaccharides have attracted much attention and have been deemed
the most promising for their anticancer activities [12–15].

Over the course of time, various reviews have reported on fucoidans bioactivity and structure.
The published reviews can be distinguished into two groups. The first is mainly based on the
structure and the purification techniques [16] The second is mainly activity-based, for instance, the
influence of fucoidan on inducing apoptosis and reducing migration [17]. This review will focus
on the structure–activity relationship, the main cellular pathways affected by fucoidan, and the
cell-specific effect of fucoidan. Subsequently, the existing data will be translated to determine the
potential relevance of fucoidan in cancer treatment. Finally, challenges to clinical implementation of
fucoidan-based cancer treatment are defined.

2. Summary of Literature

Despite the growing interest in fucoidan, there are only a few studies concerning the
structure–activity relationship. In this section the main findings of the different studies concerning the
structure of fucoidan (Section 2.1), the molecular weight (Section 2.2), the sulfate groups (Section 2.3),
and the pharmacokinetics (Section 2.4) will be summarized. Subsequently, the cellular pathways
(Section 2.5) and receptors (Section 2.6) that can interact with fucoidan are summarized.

2.1. Structure of Fucoidan

The structure of fucoidan depends highly on the algae species, but it always contains a backbone
of sulfated fucans. In some species, the sulfated fucans backbone contains branching, consisting of
different sugars, fucose, or uronic acid. Because of the branching and the heterogeneous biochemical
properties, it is very difficult to study the molecule as a whole. Many studies limit their structural
research on highly purified fractions, limiting our understanding on the bioactivity of the whole
molecule [18]. The backbone of fucoidan does not cover the whole structure of the compound, as it
is far more complex and has diverse branching. Yet, the backbone is often used as reference and to
classify the molecules. Furthermore, the structure–activity relationship of the backbones is more
obvious. Two types of fucoidan molecules can be distinguished. A backbone of (1 → 3)-linked
α-L-fucopyranose residues (type 1, Figure 1A) or alternating (1→ 3)-linked α-L-fucopyranose and
(1 → 4)-linked α-L-fucopyranose residues (type 2, Figure 1B) [19]. The structure of fucoidan from
Fucus vesiculosus is the best-studied, being a relatively simple structure consisting mainly of fucose
and sulfate branching [20] (Figure 1C). Fucoidans, extracted from F. vesiculosus, contains a backbone of
α-(1→ 3)-linked fucose and α-(1→ 4) linked fucose residues. Sulfation occurs mainly at O-2 and at a
lesser extent at O-3. Also, 2, 3-O-disulfate fucose residues were sometimes found [21,22]. The sulfate
groups and the 2, 3-O-disulfate fucose, in particular, are important for the bioactivity of fucoidan
molecules [16].

For a long time, it was thought that fucoidan consists of pure sulfated fucose residues (and some
traces of other sugars) until the structure of fucoidan from Macrocystis pyrifera was found to have a
heteropolymer of fucose, galactose, and trace xylose [16]. The presence of neutral sugars was also
discovered in other fucoidans. The presence of these sugars resulted in increased complexity of
structural analysis [16].
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The reported structures of fucoidan from different species of brown algae resulted in an improved
categorization of the structures. For instance, most of the fucoidans from species belonging to the
Fucales order show an alternating linkage of (1 → 3)-α-L-fucose-(1 → 4)-α-L-fucose [20,23–26].
The structures of Ascophyllum nodosum [27] and F. vesiculosus resemble each other, only differing
in sulfation patterns and the presence of glucuronic acid in A. nodosum. Most fucales species like
Fucus distichus, Pelvetia canaliculata and Fucus serratus have a similar backbone but are more diverse
in the branching and the presence of different sugars [24,25,28]. However, there are exceptions, for
instance, fucoidans from Himanthalia elongata and Bifurcaria bifurcata do not follow this trend [29]. Thus,
it seems challenging to identify the structure of fucoidan based on the order they belong to.
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Figure 1. The backbone structure of fucoidan (simplified). (A): Structure of type 1 fucoidan molecules with a
backbone of (1→ 3)-linkedα-L-fucopyranose residues. The ‘R’ can be a monosaccharide or a sulfate group. (B):
Structure of type 2 fucoidan molecules with a backbone alternating (1 → 3)-linked α-L-fucopyranose
and (1→ 4)-linked α-L-fucopyranose residues. The ‘R’ can be a monosaccharide or a sulfate group (C):
Structure of fucoidan from F. vesiculosus, with a backbone of alternating (1→ 3)-linked α-L-fucopyranose and
(1→ 4)-linked α-L-fucopyranose residues and the presence of sulfate groups on both O-2 and O-3 [21,22,30].
R = uronic acid/rhamnose/glucose/galactose/xylose/mannose/arabinose/ribose/glucuronic acid (common
found monosaccharides in fucoidan) [31–40].

Also, the structure of fucoidan is dependent on the harvest season. Fucoidan from
Undaria pinnatifida showed distinct characteristics and bioactivity when harvested in different
conditions and seasons [41,42].

Moreover, the structure of fucoidan is dependent on the purification method. New purification
techniques led to the discovery that the structure of fucoidan consisted of multiple fractions. Besides the
major components, consisting of linked fucose-residues, also smaller fractions were noted, consisting of
neutral sugars [20]. A study reported that the structure of crude fucoidan from A. nodosum was a
predominant repeat of [→(3)-α-L-Fuc(2SO3−) - (1→ 4)-α-L-Fuc(2,3diSO3−)-(1)]n [21]. But a purified
fraction from the same species consisted of primarily α-(1 → 3)-fucosyl residues with a sparse
α-(1→ 4) linkage and being highly branched [33]. Different extraction techniques lead to different
structures. Importantly; one species was reported to produce two distinct different fucoidan structures,
namely galactofucans and uronofucoidans [32]. Therefore, the purification method is an important
determinant of the structure and the related bioactivity. Additionally; some brown algae species
contain multiple different fucoidan structures.

2.2. Molecular Weight

The molecular weight is relevant in anticancer effects, as high molecular weight fucoidan is often
more effective than low molecular weight fucoidan. They are classified into: low molecular weight
fucoidan (LMWF) (<10 kDa), middle molecular weight fucoidan (MMWF) (10–10,000 kDa), and high
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molecular weight fucoidan (HMWF) (>10,000 kDa) [43]. LMWF (Cladosiphon navae-caledoniae) is able
to induce apoptosis in breast cancer cell lines [44]. In bladder cancer cell lines, LMWF (Sargassum
hemiphyllum) inhibited angiogenesis through interaction with the HIF-1a/VEGF signaling pathway [45].
The proliferation of T24 bladder cancer cell lines, implanted in mice, showed to be inhibited by LMWF
treatment. LMWF has been shown to enhance the therapeutic effect of chemotherapy when applied
in combination and reduce the side effects [46]. The angiogenetic effect of fucoidan is molecular
weight-dependent. LMWF (<15 kDa) induced angiogenesis on human umbilical vein endothelial
cells [47,48], whereas HMWF (30 kDa) showed an inhibitory effect [49].

The final bioactivity of LMWF is dependent on the type of extraction method. Acidic hydrolysis
is often used, but due to the loss of branching, the bioactivity is reduced [17]. Interestingly, enzymatic
degradation of HMWF resulted in a more bioactive LMWF, due to retaining of the sulfate groups,
that could alternatively be obtained by gamma-irradiation with even better anticancer properties [50].
LMWF might have more favorable pharmacokinetically properties, however, the degradation of crude
fucoidan to LMWF often leads to loss of bioactivity.

In conclusion: the molecular weight is directly linked to fucoidans bioactivity and to the
extraction method.

2.3. Sulfate Groups

Both the sulfate content and the position of the sulfate groups are important for the bioactivity [16,51].
Studies report that the presence of different other sugars like galactose or xylose, are only important
because of the attached sulfate groups [16]. A fucoidan fraction from Sargassum fusiforme with a molecular
weight of 12.4 kDa and 7.5% of sulfate content, was unable to inhibit the angiogenesis of HMEC-1 cells.
However, a larger fraction with higher sulfate content (MW: 47.5 kDa and 20.8% sulfate), showed an
inhibitory effect on the angiogenesis of HMEC-1 cells [52].

Low and high molecular weight fucoidans (U. pinnatifida) were chemically modified to yield more
sulfate groups. The oversulfated LMWF (56.8%) was the most effective at inhibiting the growth of
cancer cells. Furthermore, the authors suggested that LMWF is more suitable for oversulfation due to
less steric hindrance, compared to HMWF [53]. The oversulfation of fucoidan (F. vesiculosus) resulted
in a stronger inhibition of angiogenesis [54]. Sulfated extracts from the same species exerted higher
antiproliferative effects on breast cancer cell lines [55]. It was suggested that the oversulfation resulted
in an increased negative charge that was responsible for the increased bioactivity [56].

In addition to the content of sulfate groups, also the position is relevant for the bioactivity [57].
Most of the sulfate groups in S. cichorioides, F. evanescens and Saccharina japonica are in axial

positions [58], determining the conformational flexibility of fucoidan [59].
Thus, the sulfate content and position of the sulfate groups are important determinants for

fucoidans bioactivity.

2.4. Pharmacokinetics

There are only a few studies addressing the absorption, distribution, metabolism, and excretion
(ADME) of fucoidan. Since the molecular weight of crude fucoidan is relatively high, absorption is
low, as confirmed by ELISA with fucoidan-specific antibody in humans [21,60].

Fucoidan (F. vesiculosus, 737 kDa) absorption was studied in rats, where a maximum concentration
was reached after 4 h. Most of the absorbed fucoidan accumulated in the kidney, which has repeatedly
been confirmed by others [61–63]. Importantly, accumulation in the kidney was confirmed by others
that studied the absorption of fucoidan (Cladosiphon okamuranus) in rats. The authors suggested that
a small portion of fucoidan was absorbed via endocytosis [64]. Based on the fact that the molecular
weight of absorbed fucoidan (C. okamuranus) was not altered it can be concluded that fucoidan is not
degraded by enzymes nor that the molecular weight is altered by bacterial flora in the intestine [65,66].
However, the acidic conditions in the stomach are able to hydrolyze fucoidan in a limited fashion,
explaining the small fraction of altered fucoidan found in urine [65]. In healthy volunteers, the limited
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absorption of orally administered fucoidan to the bloodstream was noted [65]. Currently there are
two ongoing clinical trials, concerning the tolerance and biodistribution of fucoidan(-like) compounds.
The safety, biodistribution, and dosimetry of a labelled fucoidan compound is tested in healthy
humans volunteers (Clinicaltrials.gov, Bethesda, MD, USA, NCT03422055). In the other ongoing trial,
the addition of fucoidan to chemotherapy is studied in patients with stage III-IV Non-Small Cell Lung
Cancer (NSCLC) in a placebo-controlled trial to determine impact on quality of life Clinicaltrials.gov
(Bethesda, MD, USA, NCT03130829). Outcomes of these clinical trials will gain insight in the toxicity
and ADME of fucoidan in humans.

In animal models, even relative high repeated doses of fucoidan did not trigger a toxic response [67,68].
This is in accordance with the in vitro results of testing fucoidan on healthy human cells from other
studies [50,69–71].

Due to the large molecular weight fucoidan has a poor absorption rate when administered orally.
An alternative to the oral administration fucoidan can also be administered intravenously. In rabbits,
the intravenous administration of low-molecular-weight fucoidan (50 mg/kg of body weight) led to
a rapid absorption [72]. Otherwise, low molecular weight fucoidan (LMWF) may be developed for
clinical purposes. In a comparative study on the absorption of LMWF and MMWF (S. japonica), it was
demonstrated that LMWF had better absorption rate and bioavailability then MMWF supporting its
potential [49].

Fucoidan has favorable pharmacokinetics, in reference to toxicity. However, there is not much
known on the biodistribution in humans. Animal models show low bioavailability, raising interest in
developing LWMF as a potential solution.

2.5. Cellular Mechanisms in Relation to Fucoidan Anti-Cancer Activity

In this section, all the reported pathway and receptors affected by fucoidan are summarized.
Due to cross-interaction between pathways and different receptors, there will be overlap between the
sections. Fucoidan is a multipotent molecule interacting with various cancer-related cellular pathways.
The most important reported pathways: PI3K/AKT, the MAPK, and the caspase pathway are described
in detail.

2.5.1. The PI3K/AKT Pathway

The phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) signaling
pathway is a central player in diverse cellular functions. This pathway is often upregulated in tumor
cells and is often targeted in cancer treatment. The ability of tumor cells to resist cell death and to
migrate has been connected with an upregulation of the PI3K/AKT pathway [73–81]. Studies have
found that the PI3K/AKT pathway is involved in stimulation of the expression of different matrix
metalloproteinases (MMPs) in cancer cells [82–85]. These MMPs are involved in the breakdown of
extracellular matrix (ECM), and are often expressed in metastatic cancer cells [82–86]. In various cancer
types, the interaction between fucoidan and the kinase AKT has been reported (Figure 2, Table 1).

In colon carcinoma cell lines, the protein levels of phosphorylated AKT were reduced in vitro,
after fucoidan treatment, resulting in apoptosis [87]. In bladder cancer cell lines, fucoidan (F. vesiculosus)
inhibited the phosphorylation of the PI3K/AKT pathway in vitro, resulting in apoptosis and inhibition
of telomerase activity [88].

Fucoidan (U. pinnatifida) inhibited the phosphorylation of PI3K/AKT in prostate cancer cell lines
in vitro [89]. AML cell lines showed a reduction of phosphorylated AKT in vitro, upon treatment with
fucoidan [90]. The same reduction in AKT was seen in two other AML cell lines (NB4 and HL60) when
treated with fucoidan in vitro, derived from F. vesiculosus [69]. A fucoidan extract from F. vesiculosus
was tested on different female cancer cell lines (breast-, ovarian-, uterine-, endometrial carcinoma)
in vitro. In most cancer cell lines, fucoidan treatment resulted in a decrease in phosphorylated PI3K,
AKT and mTOR. The reduced activity of mTOR led to autophagy in the tested cell lines [91].
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In highly metastatic lung cancer cell lines, fucoidan (F. vesiculosus) showed an inhibitory effect
on the migration and invasion by reducing the expression of MMP-2 in vitro. Western blot revealed
a decrease in phosphorylated protein levels of PI3K, AKT and mTOR [92]. When hepatocarcinoma
cells in mouse were treated with purified fucoidan from U. pinnatifida (UPS), PI3K/AKT signaling was
inhibited in vitro, resulting in a reduced metastasis [93].

In urinary bladder cancer cell lines, fucoidan (F. vesiculosus) inhibited MMP-9 expression without
affecting AKT protein levels in vitro [88]. However, the protein levels of MMP-9 was reduced.
Fucoidan-treated bladder cancer cell lines showed a decrease in MMP-9 expression but, at the same
time, an increase in phosphorylated AKT protein level in vitro [94]. In the same study, the activity of
NF-kB was reduced in vitro, after treatment with fucoidan. NF-kB is the upstream target of AKT and
is able to stimulate MMP-9 expression [95]. This suggests that fucoidan is able to inhibit the activity of
NF-kB in an AKT-independent manner.

In colorectal cancer, fucoidan induced upregulation of AKT and expression of p21WAF1
expression in vitro. It was suggested that the upregulated AKT signaling was vital for the induction
of the cell cycle inhibitor p21WAF1 [96]. Similar results were seen, when bladder cancer cells were
treated with fucoidan in vitro. The upregulation of AKT signaling led to the induction of p21WAF1,
leading to the subsequent inhibition of the cell cycle [94]. In HCT-15 cells, fucoidan treatment led to an
increase in AKT phosphorylation after 6 h, resulting in the generation of reactive oxygen species (ROS)
in vitro. There are some studies reporting that an upregulated AKT signaling pathway leaves the cell
more vulnerable for ROS induction [97,98]. This can be a potential fucoidan-mediated pathway.

As stated before, the regulation of the AKT pathway is complex. One of the negative regulators
of AKT is the protein phosphatase and tensin homolog (PTEN), being a potential target of fucoidan.
To examine this potential interaction, the PTEN expression of the affected cancer cell lines was retrieved
from existing literature [99–112]. Almost all the cancer cell lines who were vulnerable for fucoidan,
showed PTEN expression, except for PC-3 (bladder cancer) [101], MES-SA (uterine sarcoma) [102],
and RL95-2 (endometrial cancer) [103]. These three cell lines are PTEN-deficient, but their growth is
still inhibited by fucoidan. The ovarian carcinoma, Caov-3 cell line, is the only cell line unaffected by
fucoidan while having wild-type PTEN expression [104]. The interaction of fucoidan with PTEN is
probably just one of the different regulators of the PI3K/AKT pathway.

Some cancer cells seem to be largely insensitive for the effect of some types of fucoidan.
Different uveal melanoma cancer cell lines are able to resist the anti-proliferative effect of fucoidan
(F. vesiculosus) [113]. The underlying mechanism for their immunity remains unclear. All the cell lines
contain a mutation in their G-protein coupled receptor rendering them constitutively in their active
GTP state [114]. This results in the overactivation of MAPK, PKC, and PI3K/AKT pathways [115].
The inhibitory effect of fucoidan appears to be insufficient to have a significant effect on the proliferation
of these cancer cells.

Thus, it becomes clear that fucoidan is able to interact with the PI3K/AKT pathway, decreasing
both cell proliferation and migration, however not all cancer types are affected. The fucoidan-mediated
inhibition of PI3K/AKT pathway can partially be explained by direct stimulation of PTEN.
The PI3K/AKT pathway is a central player in fucoidan-mediated inhibition of various cancer cell lines.

2.5.2. MAPK Signaling Pathway

The MAPK/ERK pathway is often dysregulated in cancer cells, therefore it is the subject of many
studies to identify the pathway as a potential target in cancer treatment [116]. There are multiple
components of MAPK/ERK pathway, that are often mutated in different types of cancer (Figure 2) [117].
Furthermore; the MAPK/ERK pathway is also involved in cell migration and invasion. The p38 MAPK
and JNK pathways are also involved in tumorigenesis [118–121]. The best-studied is the MAPK/ERK
pathway and fucoidan-mediated effects on this pathway are often mentioned. Some studies have
reported fucoidan-induced regulation on p38 MAPK, but their relationship is less obvious. Here,
we will discuss these the ERK1/2 and the p38 MAPK pathways (Table 1).
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In a human lymphoma cell line, fucoidan (F. vesiculosus) decreased the protein level of
phosphorylated ERK1/2 in vitro, seemingly crucial for the induction of apoptosis [122]. Similar to
the PI3K/AKT pathway, ERK1/2 is able to prevent the cell from undergoing apoptosis. In breast
cancer cell lines, fucoidan (F. vesiculosus) induced apoptosis, as well as reducing the protein levels
of ERK1/2, survivin and Bcl-2 in vitro [123]. Fucoidan had no effect on healthy mouse fibroblasts
in vitro. Fucoidan reduced, in vitro, the expression of ERK1/2 in an acute promyelocytic leukemia
cell line [69]. In lung cancer cell lines, fucoidan from F. vesiculosus and S. Japonica reduced the
level of active ERK1/2 in vitro. The fucoidan-induced growth inhibition can thus be partially
attributed to the negative regulation of fucoidan on ERK1/2 in vitro [124]. In prostate cancer cell
line, fucoidan (U. pinnatifida) exerted also an apoptotic effect in vitro. Western blot showed, that the
fucoidan-induced apoptosis paired with the reduction in ERK1/2 and AKT. The same results were
noted in vivo [125]. Fucoidan (F. vesiculosus) induced apoptosis in a human mucoepidermoid carcinoma
cell line, by inhibiting ERK1/2 in vitro [126].

Upon fucoidan (F. vesiculosus) treatment, the ability to migrate and invade in lung cancer cell lines
was inhibited in vitro. The inhibition was associated with a decrease in ERK1/2 and PI3K/AKT/mTOR
signaling. As both pathways are linked with MPP-9 and MPP-2 expression [82,83,124], it remains
unclear what their individual effect is on migration and invasiveness. Human keratinocyte cell line
showed a decreased ultraviolet-B (UVB) induced expression of MMP-1 after treatment with fucoidan
(Costatia costata) in vitro [127]. Earlier studies showed that the inhibition of ERK1/2 leads to a reduced
MMP-1 expression [128].

In an attempt to uncover the cellular mechanism of fucoidan-mediated inhibition of ERK1/2, all the
known mutations and receptor expression of the different types of cancer cells were assessed [95,129–131].
However, there was no clear mutation or absence of a particular receptor which was connected with
the failure to inhibit the ERK1/2 expression. For some cancer cell lines, we found clues in the existing
literature that might serve as an explanation. For instance, U937 leukemia cells have constitutive low
MAPK activity and have proven to be more resistant for MAPK-targeting therapies [129]. It was not
possible to extrapolate it to the other unaffected cancer cells.

Fucoidan (F. vesiculosus) increased the expression of p38 MAPK in colon carcinoma cell lines
in vitro, resulting in the induction of apoptosis [87]. In a leukemia cell line, the activation of the
p38 MAPK pathway was crucial in the induction of apoptosis mediated by fucoidan (F. vesiculosus)
treatment [132]. In gastric cancer cell lines, treatment with fucoidan (C. okamuranus) decreased
expression of apoptosis signal-regulating kinase 1 (ASK1) and led to a decrease in phosphorylated
p38 MAPK in vitro. ASK1 is genetically upregulated in these cells and stimulates cell proliferation via
the cell cycle [133]. ASK1 is downstream activated by p38 MAPK. This suggests that fucoidan exert
his effect via the p38 MAPK pathway [134]. Thus, both stimulation and inhibition of the p38 MAPK
pathway leads to reduced proliferation. The same fucoidan (F. vesiculosus) was used in both of the
studies on leukemia and colon cancer cells, whereas another type of fucoidan (Cladosiphon okamuranus)
was used on the gastric cancer cells. Thus, the differences in the effect on p38 MAPK phosphorylation
is due to fucoidans structural differences and differences in cancer cell characteristics [20,23–26].

The role of p38 MAPK in fucoidan-induced cell cycle arrest is further uncovered with a study on
hepatocarcinoma cell lines. Fucoidan (F. vesiculosus) induced cell cycle arrest in HepG2 by stimulating
cell cycle inhibitors p16INK4a-pRb and p14Arf-p53 via p38 MAPK stimulation in vitro [135].

However, there are other studies reporting that fucoidan had no effect on the phosphorylation of
p38 MAPK [91,94].

In conclusion, fucoidan can induce the inhibition of ERK1/2 and, to a lesser extent, p38 MAPK.
This effect is dependent on cancer cell line and fucoidan species.
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2.5.3. The Caspase Pathway

The caspase pathway plays a central role in both the intrinsic and extrinsic induction of apoptosis.
Upon activation, by cleavage, caspase will activate the apoptotic pathway. Caspases are cleaved
by the apoptosome complex, consisting of cytochrome C and Apaf- [137]. Cytochrome C (Cyt c) is
released from the mitochondria, regulated by multiple members of the Bcl-2 family (Figure 2) [138,139].
In an in vitro study on human mucoepidermoid carcinoma cell lines, fucoidan (F. vesiculosus) induced
apoptosis by activation of caspase-3 [126]. Similar effect was noted when human lymphoma cell lines
were treated in vitro with different concentrations of fucoidan (F. vesiculosus). The loss of mitochondrial
membrane potential (MMP) and the subsequent release of Cyt c caused the activation of caspase 3 [122].
In mouse breast cancer, fucoidan (F. vesiculosus) induced the release of Cyt c in vivo and in vitro [123].
Fucoidan-induced apoptosis in human breast cancer cells by cleavage of caspase-3. The same effect was
noted in vivo in mice [140]. Melanoma cells showed to be sensitive to fucoidan (Sargassum henslowianum
and F. vesiculosus), inducing apoptosis by cleavage of caspase-3 in vitro [141].

As demonstrated (Figure 2), the caspase pathway is connected with both the PI3K/AKT and the
MAPK pathway. By decreasing activity of these pathways, the pro-apoptotic members of the Bcl-2
family are activated [142–144]. Fucoidan-induced apoptosis is often associated with a decrease in
PI3K/AKT and/or MAPK signaling. Furthermore, a study reported on fucoidan activating the caspase
pathway independently from PI3K/AKT or MAPK [145]. Fucoidan is able to activate the caspase
pathway, proving the multipotent character of fucoidan.
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2.6. Growth-Involved Receptors

The MAPK and the PI3K/AKT pathways are the main pathways affected by fucoidan. Besides,
the importance of the fucoidan-induced regulation of cellular organization, the receptor interaction
also draws attention. The importance of receptor expression has been recognized in cancer research.
Nowadays, there are multiple drugs that are targeting the receptors and consequently the underlying
cellular mechanism [146–148]. Fucoidan is able to inhibit the expression of different proteins and
receptors in cancer cells as shown in the following section.

2.6.1. Transforming Growth Factor Beta

The cytokine transforming growth factor beta (TGF-β) plays a central role in cancer-related
processes like metastasis and tissue invasion [149]. Multiple studies have reported the inhibitory
effect of fucoidan on transforming growth factor receptors. In human renal cell lines, treatment with
fucoidan inhibited, in vitro, the activation of TGF-β1 and decreased the receptor binding of TGF-β1.
HMWF, from F. vesiculosus was more effective than the purified and low molecular weight form of
fucoidan in this study [150,151]. Fucoidan (S. hemiphyllum) decreased in vitro TGF-β signaling in
hepatocellular carcinoma cell lines, resulting in the inhibition of metastasis. [152]. In a triple negative
breast cancer cell line, treatment with fucoidan, from F. vesiculosus, accelerated the ubiquitin-dependent
degradation of TGF-β receptors I and II (TGF-RI and TGF-RII) in vitro [153]. In non-small cell lung
cancer cell lines, fucoidan stimulates the ubiquitin-dependent degradation in vitro of TGF-RI/II via
Smurf2/Smad7 [154].

In human foreskin fibroblast, the expression of TGF-RII was increased after treatment with
fucoidan in vitro (S. hemiphyllum). Importantly, the authors tested 4 different fractions of fucoidan
with different molecular weight and sulfate content. The two fractions with the highest sulfate content
were the most potent stimulators of the TGF-RII signaling [50]. Thus, it is clear that fucoidan is able to
inhibit the TGF-β signaling pathway both in vitro and in vivo. Furthermore, in healthy cells fucoidan
appears to have a stimulatory effect on TGF-β signaling.

2.6.2. Bone Morphogenetic Protein

Bone morphogenetic proteins (BMPs) belongs to the large family of transforming growth
factor-beta (TGF-β). It is a subfamily of cytokines, involved in the regulation of bone formation
and frequently upregulated in cancer cells [155]. A HMWF fraction of Nemacystus decipiens
inhibited angiogenesis via the inhibition of BMP4 in vitro in human mesenchymal endothelial cells.
The expression of BMP4 was significantly reduced, and the phosphorylation of the Smad pathway was
reduced [156]. However, fucoidan (S. japonica) stimulated in vitro osteoclast differentiation in human
mesenchymal stem cells. The expression of BMP2 was increased, just as the activation of the Smad
pathway was increased. Importantly, the activation of BMP2 was dependent on the phosphorylation
of JNK and ERK1/2 [157]. Accordingly; fucoidan (U. pinnatifida) was able to stimulate osteoblast
differentiation in MG-63 osteosarcoma cell line, by increasing the expression of BMP2 in vitro [158].
LMWF (S. hemiphyllum) increased the expression of BMP2 and other osteoblast differentiation markers
in vitro and in vivo [159].

The effects of fucoidan on BMP expression seems cell-specific and, importantly, molecular
weight-dependent. It is known that fucoidan interacts with BMP expression and its
downstream pathway.

2.6.3. Vascular Endothelial Growth Factor

Vascular endothelial growth factors (VEGFs) are often associated with cancer growth and
angiogenesis. The VEGF pathway is heavily embedded in the PI3K/AKT and MAPK signaling
pathways (Figure 2) [160–162].
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Various studies report both inhibitory and stimulatory effects of fucoidan treatment on VEGF
expression and its downstream effectors. Fucoidan (U. pinnatifida extract) inhibits in vitro the formation
of micro vessels in a human umbilical vein endothelial cell line by inhibiting the expression of VEGF-A
isotype [163]. In 4T1 mouse cancer cell line, fucoidan (F. vesiculosus) inhibited in vitro the expression of
VEGF and reduces angiogenesis in vivo [123]. Fucoidan (F. vesiculosus) reduced the in vitro expression
of VEGF in immortal retinal pigment epithelium cell lines. Importantly, it showed a synergistic effect
when combined with bevacizumab, a monoclonal antibody against VEGF [164]. In mice, injected
with lung cancer cells, prophylactic fucoidan (F. vesiculosus) treatment resulted in reduced metastasis
by inhibiting VEGF expression. Also, there were no cytotoxic effects on healthy cells noted [70].
Fucoidan (U. pinnatifida) was shown to inhibit VEGFR3 expression in human lymphatic endothelial cells,
resulting in the subsequent inhibition of downstream effectors and migration. Western blot analysis
reveals a decreased AKT and NF-kB protein expression. The inhibitory effect on the lymphangiogenesis
was noted both in vitro and in vivo [165]. Fucoidan was able to reduce the expression of HIF-1a
under hypoxia conditions, resulting in a reduction of VEGF expression in multiple myeloma cell lines
in vitro [166]. Sulfated fucoidan extract (S. fusiforme) inhibited migration in human microvascular
endothelial cells in vitro, by competitively inhibiting the interaction of VEGF and VEGFR2. The sulfated
fraction FP08S2, with a weight of 47.5 kDa, was the most effective at inhibiting the tube formation of
human mesenchymal endothelial cells 1 (HMEC-1) in vitro. Importantly, the desulfated derivative, with
similar molecular weight, failed to inhibit the tube formation [167].

In vivo lung cancer cells, sulfated fucoidan extract was able to inhibit the tumor growth
in vitro but via the reduction of expression of VEGF or HIF-1a [168]. To mimic the in vivo situation;
MG63 osteosarcoma cell line was co-cultured with human endothelial cells (OECs). Fucoidan treatment
(F. vesiculosus) resulted in reduced expression levels of VEGF and other pro-angiogenic factors (SDF-1,
Ang-2). The overall result was an insignificant reduction in bone formation, possibly due to the
dosage [169].

Fucoidan (F. vesiculosus) had no significant influence on different uveal melanoma cell lines.
The VEGF expression in OMM2.5, 92.1, and Mel270 cells was not reduced after fucoidan treatment,
and only reduced at high concentrations of fucoidan in OMM2.3 and OMM1 cells [113]. Another study
reported the opposite effect of low molecular weight fucoidan (LMWF) on VEGF expression in a
human umbilical vein endothelial cell line. The binding of VEGF165 to different VEGF receptors was
strongly increased upon fucoidan treatment [170]. Furthermore, fucoidan (S. japonica) stimulated
in vitro osteoblast differentiation by inducing the expression of VEGF in mesenchymal stem cells [171].

Fucoidan reduces VEGF signaling in a wide variety of cancer types both in vitro and in vivo,
without cytotoxic effects on healthy cells.

2.6.4. Estrogen Receptor

Estrogen has proliferative effect in hormone-dependent cancers such as breast-, endometrial-, and
ovarian cancer. Blocking the estrogen pathway has been a pivotal part in these hormone-dependent
cancers. A few studies have reported the interaction between fucoidan and estrogen. In a study on
the effect of fucoidan (F. vesiculosus extract, FVE) in vitro on different female cancer cell lines (breast-,
ovarian-, uterine-, endometrial carcinoma); FVE proved to inhibit estrogen receptor (ER) activation
by E2 and inhibition of E2 synthesis [91]. The overall effect was the inhibition of proliferation of
breast and ovarian cancer cell lines, in both ER positive and ER negative cells. Fucoidan extract
(Cladisphon navae-caledonia) was combined with three chemotherapeutic drugs in clinical use (tamoxifen,
paclitaxel, and cisplatin) in breast cancer cells. A highly synergistic effect occurred with all three drugs
tested. Importantly, the fucoidan extract protected healthy human fibroblast from the cytotoxic side
effects [172].

There is sufficient data that support the interaction of fucoidan with estrogen and estrogen
receptors. However, the direct inhibition of ER activity and the aromatase activity has yet not been
reported and needs to be further explored.
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Table 1. The known inhibitory effects of different types of fucoidan on different types of cancer cells.

Cancer Type Cell Line Fucoidan Mechanism Research Methods References

Breast cancer

MDA-MB-231 and MCF-7 Fucus vesiculosus Inhibiting proliferation and metastasis In vitro [153]

MCF-7 Fucus vesiculosus Inhibiting proliferation, inducing cell cycle
arrest, and inducing apoptosis In vitro [173,174]

MDA-MB-231 Fucus vesiculosus Inhibiting proliferation and inducing apoptosis In vitro [174]

MDA-MB-231 and MCF-7 Sargassum hemiphyllum Inhibiting proliferation, inducing cell cycle
arrest, and inducing apoptosis In vitro [175]

MDA-MB-231 and MCF-7 Fucus vesiculosus (extract) Inhibiting proliferation and inducing apoptosis In vitro [91]

MCF-7 Not stated (supposed
Fucus vesiculosus) Inhibiting proliferation and inducing apoptosis In vitro [176]

MCF-7 Fucus vesiculosus (derivatives) inhibiting proliferation In vitro [57]
T47D Fucus vesiculosus (extract) Inhibiting proliferation and inducing apoptosis In vitro [91]

B-cell lymphoma

HS-sultan and IM-9 Fucus vesiculosus Inhibiting proliferation and inducing apoptosis In vitro [122]

DLBCL lines Fucus vesiculosus Inhibiting proliferation, inducing cell cycle
arrest, and inducing apoptosis In vitro and In vivo [177]

Raji cells Saccharina latissima and Fucus
vesiculosus Inhibiting metastasis In vitro [178]

BCBL-1 and TY-1 Cladosiphon okamuranus Inhibiting proliferation and inducing apoptosis In vitro and In vivo [179]

T-cell lymphoma MOLT-4 Fucus vesiculosus Inhibiting proliferation and inducing apoptosis In vitro [122]
MT-2, MT-4, HUT-102,

and MT-1 Cladosiphon okamuranus Inhibiting growth and inducing apoptosis In vitro [180]

Fibroblastic sarcoma HT 1080 Cladosiphon novae-caledoniae
(extract) Inhibiting metastasis In vitro [181]

Uterine sarcoma

HeLa Cladosiphon novae-caledoniae
(extract) Inhibiting metastasis In vitro [181]

HeLa Fucus vesiculosus (derivatives) inhibiting proliferation In vitro [57]

HeLa Fucus vesiculosus (fractions) Inhibiting proliferation, growth, and
inducing apoptosis In vitro [182]

MES-SA Fucus vesiculosus (extract) Inhibiting proliferation and inducing apoptosis In vitro [91]
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Table 1. Cont.

Cancer Type Cell Line Fucoidan Mechanism Research Methods References

Lung cancer

LLC1 Fucus evanescens Inhibiting proliferation and metastasis In vitro [183]
LLC1 Sargassum sp. And Fucus vesiculosus Inhibiting proliferation and inducing apoptosis In vitro [184]
A549 Fucus vesiculosus Inhibiting metastasis In vitro [92]

LLC1, A549, and CL1-5 Fucus vesiculosus Inhibiting proliferation, metastasis and
inducing apoptosis In vitro and In vivo [154]

LLC1 Fucus vesiculosus Inhibiting proliferation and metastasis In vitro and In vivo [70]

A549 Sargassum fusiforme
(sulfated extract) Inhibiting proliferation and metastasis In vitro and In vivo [168]

A549, LLC1, and CL1-5 Fucus vesiculosus and
Saccharina Japonica Inhibiting proliferation and inducing apoptosis In vitro and In vivo [124]

Hepatocellular carcinoma

HuH-6 Cladosiphon okamuranus Inhibiting biotinidase activity In vitro [185]
Huh-6, HUH-7, SK-Hep1,

and HepG2 Sargassum hemiphyllum Inhibiting proliferation and metastasis In vitro [152]

HepG2 Fucus vesiculosus (fractions) Inhibiting proliferation, growth and
inducing apoptosis In vitro [182]

Hca-F Kjellmaniella crassifolia inhibiting proliferation In vitro [186]

Colorectal cancer

HCT-15 Fucus vesiculosus Inhibiting proliferation and inducing apoptosis In vitro [87]
HT-29 and HCT-116 Fucus vesiculosus Inhibiting proliferation and metstasis In vitro [145]

HCT-116 Fucus vesiculosus Inhibiting proliferation and inducing apoptosis In vitro [174]

HT-29 Fucus vesiculosus Inhibiting proliferation, inducing cell cycle
arrest, and inducing apoptosis In vitro and In vivo [96]

HCT-116, HT-29, and
WiDr Fucus evanescens Inhibiting colony formation and growth In vitro and In vivo [187]

HCT116 Sargassum hemiphyllum
(LMWF, oligo-fucoidan)

Inhibiting proliferation, inducing cell cycle
arrest, and inducing apoptosis In vitro and In vivo [188]

HCT116 Fucus vesiculosus Inhibiting proliferation, inducing cell cycle
arrest, and inducing apoptosis In vitro [189]

Keratinocytes HaCaT Costaria costata Inhibiting metastasis In vitro [127]

Melanoma B16 Sargassum sp. And Fucus vesiculosus Inhibiting proliferation and inducing apoptosis In vitro [184]

Bladder cancer
5637 and T-24 Not stated Inhibiting proliferation, growth and inducing

cell cycle arrest In vitro [94]

T-24 Sargassum hemiphyllum Inhibiting angiogenesis In vitro and In vivo [45]
5637 Fucus vesiculosus induction apoptosis In vitro [88]

Plasma cell myeloma RPMI8226 and U266 Not stated Inhibiting angiogenesis In vitro [190]
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Table 1. Cont.

Cancer Type Cell Line Fucoidan Mechanism Research Methods References

Leukemia
U937, HL60, K562, THP1 Fucus vesiculosus Inhibiting proliferation and inducing apoptosis In vitro [132]

NB4, HL60, and K562 Fucus vesiculosus Inhibiting proliferation and inducing cell
cycle arrest In vitro and In vivo [69]

SKM-1 Not stated
(supposed Fucus vesiculosus) Inhibiting proliferation and inducing apoptosis In vitro [90]

Stomach cancer MKN45 Cladosiphon okamuranus Inhibiting proliferation and inducing cell
cycle arrest In vitro [133]

Pancreatic cancer MiaPaCa-2 and Panc-1 Turbinaria conoides Inhibiting proliferation, metastasis and
inducing apoptosis In vitro and ex vivo [49]

Ovarian cancer OVCAR-3 Fucus vesiculosus (extract) Inhibiting proliferation and inducing apoptosis In vitro [91]

Endometrium carcinoma HEC-1B, RL95-2, and
AN3CA Fucus vesiculosus (extract) Inhibiting proliferation and inducing apoptosis In vitro [91]

Prostate cancer DU-145 Not stated (supposed
Fucus vesiculosus) Inhibiting proliferation and metastasis In vitro and In vivo [191]

Osteosarcoma MG63 Fucus vesiculosus Inhibiting angiogenesis In vitro [169]
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3. Discussion

Many studies have reported on the different pathways involved in cancer that are affected by
fucoidan. Interpretation is hampered by: structural diversity of fucoidan from different species (i),
different extraction and purification techniques (ii), cell specificity of fucoidan (iii), and limitations of
studies on fucoidan (iv). Therefore, it remains challenging to extrapolate final conclusions to other
cancer types or other brown algae species.

3.1. Structure and Bioactivity

Fucoidan consists of a backbone of heterogeneous sulfated fucans, with complex branching of
neutral sugars and sulfate groups. Due to the complexity, it is difficult to study it as a single molecule.
Most studies limit themselves to highly purified fractions, hampering understanding the bioactivity of
the whole molecule.

The structural diversity between species makes it challenging to establish a general or ‘basic’
structure for fucoidan molecules. Fucoidan, being a natural product, gives it some favorable
characteristics already mentioned earlier this review. However, it also raises the trouble of having
inconsistent products due to seasonal differences in growth conditions of the seaweed. Furthermore,
the choice of harvest season is important for the final compound [41]. The monosaccharide composition
has been connected with bioactivity on multiple occasions, but it is not clear if it contribute to their
structure or that they just enable the binding of more sulfate groups [16].

The molecular weight plays a dual role concerning the bioactivity. In general, HWMF has
shown more effectiveness than LMWF. However, LMWF has more favorable pharmacokinetically
properties. A solution could be to develop LMWF, increasing the absorption rate [50]. However,
there are concerns about the decreased bioactivity of LMWF, stressing the importance of the
purification method. Purification by gamma-irradiation retains the bioactivity, by preventing the loss
of branching. Improving the purification method of fucoidan would therefore increase the potential
use of fucoidan-based treatment. Bioactivity could be further improved by modifications of the sulfate
groups [53,55,56].

There is widespread consensus on the importance of the sulfate groups to the bioactivity. This has
led to studies where fucoidan was modified to yield more sulfate groups. This could be a strategy
to modify fucoidan molecules in order to increase the bioactivity and thus, the chance of inducing a
clinical significant response.

The toxicity of fucoidan seems to be low for humans. Fucoidan is considered to be a food
supplement and not a drug, so it is not regulated by the FDA, explaining the lack of clinical trials.
However, the two ongoing clinical trials, could give more insight into the biodistribution of fucoidan
in humans, and add data on toxicity and side-effects.

3.2. Cellular Mechanisms in Relation to Fucoidan Anti-Cancer Activity

We established now that fucoidan is able to interact with the PI3K/AKT signaling pathway,
targeting it via multiple regulators. Due to the central role of the PI3K/AKT pathway, inhibition leads
to both reduced cell proliferation and reduced migration of cancer cells.

We identified PTEN as a target for fucoidan-mediated inhibition of the PI3K/AKT signaling
pathway, however this mechanism is not fully PTEN-dependent. The other involved proteins have yet
to be discovered. The interaction with PTEN is relevant, as it is a common tumor suppressor. However,
as PTEN is often mutated in cancer cells, it is questionable if fucoidan can stimulate it in the mutated
form [192]. Moreover, the inhibitory effect on this pathway appears to be insufficient in cancer cells
with a constitutively active GTP receptor, to have a significant, fucoidan-mediated, inhibitory effect on
cell proliferation [114,115].

The MAPK pathway is associated with growth, proliferation and metastasis. There are several
studies confirming the inhibitory effect of fucoidan on the protein levels of phosphorylated
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ERK1/2. Due to the fact that the reduction of ERK1/2 was often associated with reduction of
other cellular pathways, it remains unclear if ERK1/2 is essential in fucoidan-mediated inhibition.
The ERK1/2-mediated reduction of MMP-1 by fucoidan (C. costata) is interesting, proving the
preventive potential of fucoidan in case of UVB irradiation [127]. This property of fucoidan has
been reported before and could be used in the prevention of skin cancer [50].

The role of p38 MAPK is more modest, compared to the role of ERK1/2 and AKT in
fucoidan-mediated effects. Both the reduction and stimulation of phosphorylated p38 MAPK leads to
the induction of apoptosis [87,132,134].

The caspase pathway has been mentioned several times in fucoidan-mediated apoptosis.
Pro-apoptotic members of the Bcl-2, regulated by the PI3K/AKT pathway, are able to induce
the caspase pathway by releasing Cyt c from the mitochondria [193,194]. Tumor necrosis factor
(TNF) and TNF-related apoptosis-inducing ligand receptor 1 (TRAIL) are transmembrane receptors
(death receptors), able to induce the caspase pathway, upon activation [195]. It is not yet clear if
fucoidan is able to activate the caspase pathway via these receptors, however some studies suggests
this mechanism [145]. The interaction between the death receptors and fucoidan could be another
significant mechanism of fucoidan-mediated apoptosis. Due to the regulation of Bcl-2 by the PI3K/AKT
pathway, it is not known if fucoidan can interact directly with this side of the caspase pathway.

3.3. Receptors in Relation to Fucoidan Anti-Cancer Activity

The most relevant receptors for fucoidan activity are TGF-β, VEGF and ER. Since fucoidan is a
large polysaccharide that has limited capability to cross the cell membrane, the impact of fucoidan on
the cellular pathways is directly linked to fucoidans specificity for certain transmembrane receptors.

Transforming growth factor-beta (TGF-β) plays a dual role in tumorigenesis and is often
upregulated in metastatic cancer cells. A potential fucoidan-mediated mechanism is the accelerated
ubiquitin-dependent degradation of TGF-β receptors, by stimulating Smurf2 [150,154]. The bone
morphogenetic proteins (BMPs) is a subfamily, belonging to the family of TGF-β, of cytokines involved
in bone transformation. The intracellular pathway is similar to TGF-β [196]. The dual role of TGF-β
and BMP in tumorigenesis has been reported by various studies [197]. TGF-β and BMP signaling were
both reduced in cancer cells, after fucoidan treatment, while activated in healthy cells. These properties
support fucoidan as an additional therapy to existing chemotherapy to improve treatment effect and
reduce side effects. At the moment, there is limited evidence pointing out a synergistic effect of
fucoidan, in reference to TGF-β and BMP. However, this deserves further exploration.

Fucoidan from various seaweeds is able to inhibit VEGF expression in different cancer cell
lines. Importantly, the inhibition of fucoidan on VEGF signaling in multiple in vivo experiments is
significant for fucoidans potential [168,169]. VEGF signaling is heavily embedded in the FAK and
PI3K/AKT pathway, making the interaction with fucoidan a significant contribution in creating a
clinical meaningful effect. It was further confirmed that the sulfate groups are important for fucoidans
bioactivity, because a desulfated fraction failed at inhibiting tube formation [167], provoking more
interest in modifying fucoidan molecules by adding more sulfate groups.

The supposed inhibitory effect of fucoidan on estrogen synthesis and ER activation, is interesting.
Combatting cancer by blocking the estrogen pathway has been a pivotal method, however, has been
criticized due to severe side effects [198]. The reported minimal effects of fucoidan on healthy cells and
the ability to inhibit estrogen pathways, candidates fucoidan as a potential drug for estrogen-dependent
cancer. Unfortunately, there are only few studies concerning this topic. A fucoidan extract from F.
vesiculosus has been proven to inhibit the binding of estrogen to its receptor [91]. However, the exact
mechanism is not fully understood. More elaborate studies are necessary to examine the potential of
fucoidan (extract) in the treatment of estrogen associated cancer types.

The synergistic effects of fucoidan with other drugs, has been mentioned several times in the
course of this review. When fucoidan was combined with various chemotherapy drugs, there was
a synergistic effect noted on MDA-MB-237 cell lines, increasing the expression of pro-apoptotic
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biomarkers [199]. Various studies have also confirmed that fucoidan treatment does not interfere with
the pharmacokinetics of other drugs [200]. Furthermore, fucoidan appears to increase the efficacy of
some chemotherapeutics [46]. This could be an extra use of fucoidan in cancer treatment. However,
due to the limited studies on this topic, it is challenging to assess the importance of this characteristic
of fucoidan.

3.4. Clinical Significance

Fucoidan is a multipotent molecule that is, able to affect multiple pathways and types of
receptors. Establishing a general mechanism of action is challenging, due to the limited knowledge
and understanding of the different pathways and receptors. With the identification of PTEN as a target
for fucoidan, we obtain more insight in the cellular mechanism of action of fucoidan. The discovery of
PTEN as a target of fucoidan could stimulate more dedicated research into the precise mechanics of
this interaction. Until now, there are no studies on the interaction of fucoidan with PTEN. That could
be a possible next step to establish the importance of PTEN. However, the interaction with PTEN is just
one of the many pathways and proteins that are affected. Despite the increased interest in fucoidan,
we still lack the knowledge to grasp its effect on cellular mechanism. In some studies, fucoidan showed
a dual role in its effect on the MAPK and PI3K/AKT pathway, resulting in either the stimulation
or the inhibition of the pathways. In either case, it always led to apoptosis or at least a decrease in
proliferation. This would suggest that the effects of fucoidan are more complex than we now know.

Targeting, of the growth-involved receptors by fucoidan could be useful in cancer treatment.
Often, these receptors are overexpressed on the cancer cells. Mapping all the involved receptors is a
valuable strategy to gain knowledge of all its interactions. However, the effect on the cellular mechanics
remains unclear.

Studies have repeatedly shown that the structure of fucoidan is the most important determinant
of its effect. The biggest challenge lies in the identification of the parts of fucoidan that are most
active, so that the most optimal form of fucoidan can be employed in further treatment. Thus,
understanding the structure could help us potentiate the compound to make it more suited for
treatment. The structural variety also make it challenging to interpret data and extrapolate between
multiple studies or cell lines.

3.5. Future Perspectives

There is clear evidence that fucoidan is able to inhibit the growth and proliferation of cancer cells.
Therefore, fucoidan is a very promising candidate for future anticancer therapy. There seems to be no
side-effects on healthy cells, it can interact with multiple targets increasing the change of producing a
clinical meaningful effect, and it has wide-spread effect on many cancer types [201].

Despite the numerous studies on this topic, there are still very few clinical trials completed
or planned. This is likely the result of a lack of comparative studies on, for instance, on specific
fucoidan species. Instead, a lot of studies are examining different types of fucoidan on different
cancer cell lines. This makes it difficult to establish a general mechanism of action of a specific type of
fucoidan. Furthermore, there is relatively little known about the absorption, distribution, and excretion
of fucoidan.

The best-studied fucoidan is the one derived from F. vesiculosus, that showed to negatively
regulate the growth and proliferation of different types of cancer. The structure is also well understood.
F. vesiculosus seems, for now, the ideal candidate to be further studied and eventually, tested in
a clinical study. A good start will be the absorption and excretion properties of F. vesiculosus in
humans. Furthermore, the development of LMWF, without the loss of bioactivity, of F. vesiculosus
is interesting. This LMWF could then be used in clinical trials in an attempt to obtain more insight
in the pharmacokinetics. The obtained data can then be used to eventually further transform the
molecular characteristics of fucoidan, which has already been proven to be a potential way to improve
bioavailability and bioactivity.
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4. Methods

An electronic search was performed to identify relevant articles from the online databases
Medline and Web of Science from inception until 15 October 2018. Search terms included ‘fucoidan’,
‘sulfated polysaccharides’, ‘cancer’ and ‘pharmacokinetics’. Citation lists were manually searched for
other relevant articles. The complete search strategy is described in Appendix A.

5. Conclusions

Marine natural products are interesting as potential sources for cancer treatment. The amount
of diverse bioactive compounds enlarges the chance of finding a suitable molecule with the right
biochemical properties.

It is now well established that fucoidan interacts with multiple pathways, including PI3K/AKT
and MAPK, and caspase pathway. Furthermore, various studies have confirmed the interaction
of fucoidan with TGF-β, VEGF, BMP, and estrogen receptor. The omnipotent character of fucoidan
increases the chance of producing clinically meaningful effects in future trials. However, the structural
variety of the different types of fucoidan makes it challenging to draw conclusions about fucoidans
bioactivity. The number of clinical trials in this topic is limited, resulting in restricted knowledge about
fucoidans pharmacokinetics, safety, dosage, and potential interactions with other drugs. To prove
fucoidans potential utility in cancer treatment, there is a need for standardization of purification
method, focus research and development of LWMF of one promising seaweed species (F. vesiculosus),
and the conduction of further clinical trials. In summary, based on the results obtained in preclinical
studies fucoidan has anti-neoplastic properties, and considered to have a promising future in
cancer treatment.
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ADME Absorption, distribution, metabolism, and excretion
AKT Protein Kinase B
Ang-2 Angiopoietin-2
ASK1 Apoptosis Signal-regulating Kinase 1
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BMP Bone morphogenetic protein
Da Dalton
E2 Estradiol
ECM Extracellular Matrix
EGF Epidermal Growth Factor
ELISA Enzyme-linked Immuno Sorbent Assay
EMT Extracellular Matrix Kinase
ER Estrogen Receptor
ERK Extracellular Signal-Regulated Kinase
FGF Fibroblast Growth Factor
FGFR Fibroblast Growth Factor Receptor
FVE Fucus vesiculosus Extract
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GTP Guanosine-5′-triphosphate
HIF-1a Hypoxia-Inducible Factor 1-alpha
HMEC-1 Human Microvascular Endothelial Cell line-1
HMWF High Molecular Weight Fucoidan
JNK c-Jun N-terminal Kinase
LMWF Low Molecular Weight Fucoidan
MAPK Mitogen-Activated Protein Kinase
MMP Matrix Metalloproteinase
MMWF Medium Molecular Weight Fucoidan
mTOR mammalian Target of Rapamycin
NF-kB Nuclear Factor kappa-light-chain-enhancer of activated B cells
NRP1 Neuropilin 1
PKC Protein Kinase C
PTEN Phosphatase and Tensin Homolog
ROS Reactive Oxygen Species
SDF-1 Stromal cell Derived Factor-1
TGF-β Transforming Growth Factor-Béta
TGF-R Transforming Growth Factor-Receptor
UPS Undaria pinnatifida purified fraction
VEGF Vascular Endothelial Growth Factor
VEGFR Vascular Endothelial Growth Factor Receptor

Appendix A

Appendix A.1 Web of Science

Part 1: Fucoidan

• TOPIC:(fucoidan) AND TOPIC: (structure)
• TOPIC: (sulfated polysaccharides) AND TOPIC:(structure)
• TOPIC: (sulfated polysaccharides) AND TOPIC:(pharmacokinetics)
• TOPIC: (sulfated polysaccharides) AND TOPIC:(absorption)
• TOPIC:(fucoidan) AND TOPIC: (absorption)
• TOPIC:(fucoidan) AND TOPIC:(pharmacokinetics)
• TOPIC:(fucoidan) AND TOPIC: (degradation)
• TOPIC:(fucoidan) AND TOPIC: (preparation) NOT TOPIC: (nanoparticles)
• TOPIC:(fucoidan) AND TOPIC: (sulfate)
• TOPIC:(fucoidan) AND TOPIC: (species)
• TOPIC:(fucoidan) AND TOPIC: (fucus vesiculosus)
• TOPIC: (fucus vesiculosus) AND TOPIC: (structure)
• TOPIC: (Undaria pinnatifida) AND TOPIC: (structure)
• TOPIC:(fucoidan) AND TOPIC: (Undaria pinnatifida)
• TOPIC:(fucoidan) AND TOPIC: (cladosiphon okamuranus)
• TOPIC:(fucoidan) AND TOPIC: (ascophyllum nodosum)
• TOPIC:(fucoidan) AND TOPIC: (fucales)
• TOPIC:(fucoidan) AND TOPIC: (brown algae)

Part 2: Fucoidan & cancer

• TOPIC:(fucoidan) AND TOPIC: (cancer)
• TOPIC:(fucoidan) AND TOPIC: (tumor)
• TOPIC: (Undaria pinnatifida) AND TOPIC: (cancer)
• TOPIC: (fucus vesiculosus) AND TOPIC: (tumor)
• TOPIC:(fucoidan) AND TOPIC: (endometrial cancer)
• TOPIC:(fucoidan) AND TOPIC: (breast cancer)
• TOPIC:(fucoidan) AND TOPIC: (colon cancer)
• TOPIC:(fucoidan) AND TOPIC: (lung cancer)
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Part 3: Mechanism

• TOPIC:(fucoidan) AND TOPIC: (PI3K/AKT)
• TOPIC:(fucoidan) AND TOPIC: (MAPK)
• TOPIC:(fucoidan) AND TOPIC: (transforming growth factor beta)
• TOPIC:(fucoidan) AND TOPIC: (PTEN)
• TOPIC: (Low molecular weight fucoidan) AND TOPIC: (structure)
• TOPIC:(Low molecular weight fucoidan)
• TOPIC:(fucoidan) AND TOPIC: (VEGF)
• TOPIC:(fucoidan) AND TOPIC: (Bone morphogenetic protein)
• TOPIC:(fucoidan) AND TOPIC: (estrogen)
• TOPIC:(fucoidan) AND TOPIC: (migration)
• TOPIC:(fucoidan) AND TOPIC: (apoptosis)
• TOPIC: (fucoidan) AND TOPIC: (caspase)
• TOPIC: (fucoidan) AND TOPIC: (caspase pathway)
• TOPIC: (fucoidan) AND TOPIC: (extrinsic apoptosis)
• TOPIC: (fucoidan) AND TOPIC: (intrinsic apoptosis)

Appendix A.2 Criteria for Considering Studies for This Review

We consider all the subject-related studies for this review, especially experimental articles published around
2016–2018 provoke our interest. Furthermore, relevant articles from the bibliography of articles we found
with above-mentioned search terms are considered for this review. Articles concerning the use of fucoidan as
nanoparticles are excluded for this review.

Appendix A.3 Search Methods

The primary search was performed by the first author in the time period, august 2018 to October 2018 in the
Web of Science database. We did not impose a date restriction, however preferred recent published experimental
articles. Only articles published in English were considered. To remove duplicates, we used the ‘’Find duplicates”
function of Endnote (version X8, Thomson Reuters, New York, NY, USA). 201 publications made the final version.
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