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Abstract
Two-phase outflows refer to situations where the interface formed between two immiscible

incompressible fluids passes through open portions of the domain boundary. We present

several new forms of open boundary conditions for two-phase outflow simulations within

the phase field framework, as well as a rotational pressure correction based algorithm for

numerically treating these open boundary conditions. Our algorithm gives rise to linear alge-

braic systems for the velocity and the pressure that involve only constant and time-indepen-

dent coefficient matrices after discretization, despite the variable density and variable

viscosity of the two-phase mixture. By comparing simulation results with theory and the

experimental data, we show that the method produces physically accurate results. We also

present numerical experiments to demonstrate the long-term stability of the method in situa-

tions where large density contrast, large viscosity contrast, and backflows occur at the two-

phase open boundaries.

Introduction
The current work focuses on the motion of a mixture of two immiscible incompressible fluids
in a domain that is open on part of its boundary. The domain boundary is open in the sense
that the fluids can freely leave or even enter the domain through such boundaries. In particular,
we assume that the interface formed between the two fluids will pass through the open portions
of the domain boundary. Therefore, the problem will involve truly two-phase outflow/open
boundaries.

Two-phase outflows are encountered in many situations: oil plumes in the deep sea, wakes
of surface ships, and ocean waves generated by the wind shear are some examples. The slug/
churn/bubbly flows crucial in many industrial processes (see e.g. the experiments of [1–3] for
their dynamical characterizations) provide other examples of two-phase flow situations of this
type. These problems usually involve physically unbounded flow domains. Numerical simula-
tion of such problems will therefore need to truncate the domain to a finite size, and some
open/outflow boundary condition (OBC) will be required on the artificial boundary. The
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presence of fluid interfaces at the open boundary calls for appropriate two-phase open bound-
ary conditions in such problems.

Several challenges are associated with the design of two-phase open boundary conditions.
Some of the challenges are common to those encountered with single-phase outflows, for
example, the instability associated with strong vortices or backflows at the open boundary (a.k.
a. backflow instability) [4, 5]. Others are new and unique to two-phase outflows. For example,
owing to the presence of fluid interfaces, two-phase outflow problems involve viscosity con-
trasts, density contrasts, and surface tension at the open boundaries. Large viscosity ratios and
large density ratios at the open boundary can cause severe stability difficulties [6].

While outflow/open boundary conditions for single-phase flows have been under intensive
investigations for decades, very scarce work exists for two-phase outflows or open boundaries.
In [7] the zero-flux (Neumann), convective, and extrapolation boundary conditions originated
from single-phase flows have been studied for the two-phase lattice-Boltzmann equation. The
zero-flux condition is also employed for the outflow boundary in [8] within the context of a
coupled level-set/volume-of-fluids method, and in [9] in the context of a level set method
where the outflow boundary involves only a single type of fluid. The outflow condition for two
immiscible fluids in a porous medium is discussed in [10]. The works of [11, 12] have both
considered the outflow condition for two-phase compressible flows in one dimension.

In a recent work [6] we have proposed a set of effective two-phase outflow (and also inflow)
boundary conditions within the phase field framework. A salient characteristic of these bound-
ary conditions is that they ensure the energy stability of the two-phase system. By looking into
the two-phase energy balance relation, we have shown, at the continuum level, that with these
boundary conditions the total energy of the two-phase system will not increase over time, even
in situations where there are strong vortices or backflows, large viscosity contrast, and large
density contrast at the outflow/open boundaries. In [6] we have further developed an algorithm
for numerically treating these open boundary conditions based on a velocity-correction type
splitting strategy.

In the context of single-phase incompressible Navier-Stokes equations, we have developed
in another recent work [5] a general form of open boundary conditions that ensure the energy
dissipation at the outflow/open boundary for single-phase flows. This general form represents a
family of boundary conditions that are effective in dealing with the backflow instability at the
single-phase open boundary, and its effectiveness has been demonstrated by extensive single-
phase incompressible flow simulations in [5].

In the current paper we aim to extend the general single-phase open boundary conditions of
[5] to two-phase outflows. Inspired by the general form of single-phase open boundary condi-
tions from [5], we combine the ideas of [5] and [6] in this work and suggest several new forms
of outflow/open boundary conditions for the two-phasemomentum equations within the
phase field framework. There exist some primary differences between two-phase and single-
phase open boundary conditions, namely, the variable density/viscosity and the effect of sur-
face tension in the two-phase case. Such complications are dealt with using a strategy similar to
that of [6]. We also present an algorithm for numerically treating these new open boundary
conditions. The current algorithm solves the two-phase momentum equations based on a rota-
tional pressure-correction type splitting strategy. The main numerical challenge again lies in
the variable density and variable viscosity of the two-phase mixture. By reformulating the pres-
sure and viscous terms in the two-phase momentum equations, a strategy originally developed
in [13], our algorithm gives rise to linear algebraic systems for the pressure and the velocity
after discretization that involve only constant and time-independent coefficient matrices,
despite the variable density and variable viscosity of the two-phase mixture. Therefore, these
coefficient matrices can be pre-computed during pre-processing. This makes the current
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algorithm computationally very efficient and attractive. The current algorithm extends the
pressure-correction strategy of [5] from single-phase to two-phase flows.

It is commonly observed that, with traditional splitting type schemes, the variable density in
the Navier-Stokes equation has resulted in a variable (time-dependent) coefficient matrix for
the pressure linear algebraic system after discretization [14–21]. This creates a severe computa-
tional and performance issue, due to the need for the frequent re-computation of the coefficient
matrix and the challenge in efficiently solving the resultant linear algebraic system at large den-
sity ratios. Guermond & Salgado [22] have advocated a penalty point of view toward the pro-
jection idea, leading to a Poisson type equation for the pressure; see also [23, 24]. Dong & Shen
[13] have proposed a different strategy for coping with the variable density. By a reformulation
of the pressure term in the variable-density Navier-Stokes equation, they have developed a
scheme which requires the solution of a pressure Poisson equation with constant (time-inde-
pendent) coefficient matrix; see also [6, 25–28].

The algorithmic formulation presented in the current work is different from that of [6] for
the two-phase momentum equations. The pressure correction strategy provides a different
means to de-couple the computations for the velocity and pressure. With the rotational pres-
sure correction strategy of the current work, after reformulating the pressure and viscous terms
to treat the variable density and variable viscosity, we first compute an approximate velocity
and an approximation of the divergence of this velocity, and then compute the pressure by pro-
jecting this approximate velocity to the space of divergence-free functions. In contrast, with the
velocity-correction strategy of [6] one first computes the pressure by enforcing the divergence
free condition on an approximation of the velocity, and then computes the velocity using the
newly-computed pressure. In some sense, these different formulations for de-coupling the
pressure and velocity can be considered complementary to each other. An exposition of the
pressure-correction idea for the single-phase Stokes equations can be found in the review
paper [29]. To implement the proposed open boundary conditions, our algorithm imposes a
Neumann-type condition for the discrete velocity and a Dirichlet-type condition for the dis-
crete pressure on the open/outflow boundary. Both of the discrete-velocity and discrete-pres-
sure conditions stem from the open boundary conditions developed herein.

The contributions of this paper lie in two aspects: (i) the several new forms of outflow/open
boundary conditions for the two-phase momentum equations, and (ii) the pressure-correction
based algorithm for numerically treating these two-phase open boundary conditions. On the
other hand, we would like to point out that the method for solving the phase field equation
employed in the current paper is not new. It was originally developed in [13].

The numerical algorithm presented herein has been implemented using C0 continuous
high-order spectral elements [30–32] for spatial discretizations in the current paper. It should
however be noted that the algorithm is general and can also be implemented with other spatial
discretization techniques.

Pressure Correction Scheme for Two-Phase Outflows
In this section we present several new open boundary conditions for the two-phase momentum
equations, together with an algorithm for numerically treating these open boundary conditions
based on a rotational pressure correction-type strategy.

Governing Equations and Open Boundary Conditions
Let O denote a flow domain in two or three dimensions (2-D or 3-D), and @O denote the
boundary of O. Consider the mixture of two immiscible incompressible fluids contained in O.
We use ρ1 and ρ2 to denote the constant densities of the two individual fluids, and use μ1 and
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μ2 to denote their constant dynamic viscosities. With the phase field approach, the motion of
this mixture can be described by the following system of equations [13, 33],

r
@u

@t
þ u � ru

� �
¼ �rpþr � mDðuÞ½ � � lr � ðr��r�Þ þ f ð1aÞ

r � u ¼ 0 ð1bÞ

@�

@t
þ u � r� ¼ �lg1r2 r2�� hð�Þ½ � þ gðx; tÞ ð1cÞ

where x and t are respectively the spatial coordinates and time, u(x, t) is the velocity, p(x, t) is
pressure,D(u) =ru +ruT (the superscript T denotes transpose), f(x, t) denotes some external
body force, and� represents the tensor product. ϕ(x, t) is the phase field function, −1 ⩽ ϕ ⩽ 1.
Regions with ϕ = 1 denote the first fluid, and the regions with ϕ = −1 denote the second fluid.

The function h(ϕ) is given by hð�Þ ¼ 1
Z2 �ð�2 � 1Þ; where η is the characteristic scale of the

interfacial thickness. λ is referred to as the mixing energy density coefficient and is given by
l ¼ 3

2
ffiffi
2

p sZ[34], where σ is the surface tension and assumed to be constant in the current paper.

The constant γ1 > 0 is the mobility coefficient associated with the interface. ρ(ϕ) and μ(ϕ) are
respectively the density and dynamic viscosity of the mixture, given by

rð�Þ ¼ 1

2
ðr1 þ r2Þ þ

1

2
ðr1 � r2Þ�; mð�Þ ¼ 1

2
ðm1 þ m2Þ þ

1

2
ðm1 � m2Þ�: ð2Þ

The function g(x, t) in Eq (1c) is a prescribed source term for the purpose of numerical testing
only, and will be set to g(x, t) = 0 in actual simulations. Eq (1c) with g = 0 is the Cahn-Hilliard
equation.

We assume that the domain boundary consists of three types which do not overlap with one
another, @O = @Oi [ @Ow [ @Oo. We refer to @Oi as the inflow boundary, @Ow as the wall
boundary, and @Oo as the outflow or open boundary. On the inflow and the wall boundaries,
the velocity u is assumed to be known. In addition, the phase field function ϕ is also assumed
to be known on the inflow boundary. On the wall boundary we assume that the wettability
property (i.e. contact angle) is known. On the other hand, at the outflow/open boundary @Oo

none of the flow variables (velocity u, pressure p, phase field function ϕ) is known.
Inspired by the open boundary conditions for single-phase incompressible flows of [5] and

the two-phase energy balance relation from [6], we suggest in the following several new forms
of boundary conditions for the two-phase open boundary @Oo:

�pnþ mn �DðuÞ � l
2
r� � r�þ Fð�Þ

� �
n

� 1

4
r juj2nþ ðn � uÞu� �

Y0ðn;uÞ ¼ f bðx; tÞ; on @Oo;

ð3aÞ

�pnþ mn �DðuÞ � l
2
r� � r�þ Fð�Þ

� �
n

� 1

2
r juj2nþ ðn � uÞu� �

Y0ðn;uÞ ¼ f bðx; tÞ; on @Oo;

ð3bÞ

Two-Phase Outflows

PLOS ONE | DOI:10.1371/journal.pone.0154565 May 10, 2016 4 / 38



�pnþ mn �DðuÞ � l
2
r� � r�þ Fð�Þ

� �
n

� rjuj2n� �
Y0ðn;uÞ ¼ f bðx; tÞ; on @Oo;

ð3cÞ

�pnþ mn �DðuÞ � l
2
r� � r�þ Fð�Þ

� �
n

� rðn � uÞu½ �Y0ðn;uÞ ¼ f bðx; tÞ; on @Oo:

ð3dÞ

In the above Eqs (3a)–(3d), n is the outward-pointing unit vector normal to @Oo, and |u|
denotes the magnitude of u. μ and ρ are respectively the mixture dynamic viscosity and density
given by Eq (2), and note that they are field variables and time-dependent. The function F(ϕ) is

given by Fð�Þ ¼ l
4Z2 ð1� �2Þ2; and note that l

2
r� � r�þ Fð�Þ� �

is the free energy density of

the two-phase system [33, 34]. fb is a prescribed function on @Oo for the purpose of numerical
testing only, and will be set to fb = 0 in actual simulations.Θ0(n,u) is a smoothed step function

whose form is given byY0ðn;uÞ ¼ 1
2

1� tanh n�u
U0d

	 

[4, 6], where U0 is the characteristic veloc-

ity scale, and δ> 0 is a constant that is sufficiently small. δ controls the sharpness of the
smoothed step function, and Θ0 approaches the step function as δ! 0. When δ is sufficiently
small, Θ0(n, u) essentially assumes the unit value where n � u< 0 and vanishes otherwise.

In contrast, the following open boundary condition was investigated in [6],

�pnþ mn �DðuÞ � l
2
r� � r�þ Fð�Þ

� �
n� 1

2
rjuj2n

� �
Y0ðn;uÞ ¼ 0; on @Oo: ð4Þ

Another boundary condition,

�pnþ mn �DðuÞ � l
2
r� � r�þ Fð�Þ

� �
n� 1

2
rðn � uÞu

� �
Y0ðn;uÞ ¼ 0; on @Oo; ð5Þ

was also mentioned in [6].
The physical meanings of the boundary conditions Eqs (3a)–(3d) can be analogized to that

of Eq (4) explained in [6]. Let us assume for now fb = 0 and δ! 0 in the Θ0(n, u) function. In
Eqs (3a)–(3d), the first two terms denote the fluid stress on the outflow/open boundary @Oo,
and the third term represents an effective stress exerting on @Oo induced by the free energy
flux through @Oo. On the other hand, the terms involving Θ0 can be considered as some effec-
tive stress induced by the kinetic energy influx into the domain through @Oo, which take effect
only in regions of backflow on @Oo (i.e. n � u< 0), due to the Θ0(n � u) function. The several
open boundary conditions have imposed different forms for this effective stress. This effective
stress is critical to overcoming the backflow instability at the two-phase outflow/open bound-
ary; see [5] for the single-phase cases.

Remarks:We briefly mention the following more general boundary condition for @Oo,

�pnþ mn �DðuÞ � l
2
r� � r�þ Fð�Þ

� �
n

� 1

2
r 1� yþ b1ð Þðn � uÞuþ yþ b2ð Þjuj2n� �

Y0ðn;uÞ ¼ 0; on @Oo;

ð6Þ

where 0 ⩽ θ ⩽ 1, β1 ⩾ 0, and β2 ⩾ 0 are constant parameters. This is the two-phase counterpart
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to the general form of single-phase open boundary conditions discussed in [5]. The boundary
conditions Eqs (3a)–(3d), (4) and (5) are particular cases of Eq (6). For example, Eq (3a) corre-
sponds to (θ, β1, β2) = (1/2, 0, 0) and Eq (3d) corresponds to (θ, β1, β2) = (0, 1, 0) in Eq (6).

The boundary conditions discussed so far on @Oo are for the momentum equations Eqs (1a)
and (1b). In addition to them, one also needs to supply appropriate boundary conditions on
@Oo for the phase field Eq (1c). Note that two independent conditions will be needed on each
boundary, due to the fourth spatial order of Eq (1c). For the phase field function ϕ, on the out-
flow boundary @Oo we will employ the boundary conditions developed in [6]

n � r r2�� hð�Þ½ � ¼ ga1ðx; tÞ; on @Oo ð7aÞ

n � r� ¼ �D0

@�

@t
þ ga2ðx; tÞ; on @Oo; ð7bÞ

where ga1 and ga2 are prescribed source terms on @Oo for the purpose of numerical testing
only, and will be set to ga1 = 0 and ga2 = 0 in actual simulations. The constant D0 ⩾ 0 is a chosen
non-negative constant, and 1

D0
plays the role of a convection velocity at the outflow boundary

@Oo.
The boundary conditions for the other types of boundaries (wall and inflow) will be set in

accordance with previous works [6, 25]. We impose a Dirichlet condition for the velocity on
the inflow and wall boundaries,

u ¼ wðx; tÞ; on @Oi [ @Ow; ð8Þ

where w is the boundary velocity. For the phase field function, we impose the following condi-
tion from [6] on the inflow boundary,

� ¼ �bðx; tÞ; on @Oi; ð9aÞ

r2�� hð�Þ ¼ gbðx; tÞ; on @Oi; ð9bÞ

where ϕb denotes the distribution of the phase field function on the inflow boundary, and gb is
a prescribed source term for numerical testing only and will be set to gb = 0 in actual simula-
tions. On the wall boundary we employ the the following contact-angle condition [25], consid-
ering only the effect of the static contact angle,

n � r r2�� hð�Þ½ � ¼ gc1ðx; tÞ; on @Ow; ð10aÞ

n � r� ¼ 3s
4l

cos ysð1� �2Þ þ gc2ðx; tÞ; on @Ow; ð10bÞ

where θs is the static (equilibrium) contact angle formed between the fluid interface and the
wall measured on the side of the first fluid, gc1 and gc2 are two prescribed source terms for the
purpose of the numerical testing only and will be set to gc1 = 0 and gc2 = 0 in actual simulations.

Finally, we assume that the following initial conditions for the velocity and the phase field
function are known

uðx; 0Þ ¼ uinðxÞ; �ðx; 0Þ ¼ �inðxÞ; ð11Þ

where the initial velocity uin and the initial phase field function ϕin should be compatible with
the above boundary conditions and the governing equations.
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Two-Phase Momentum Equations: Algorithm and Implementation
The system of Eqs (1a)–(1c), the boundary conditions Eqs (7a)–(10b), and one of the condi-
tions among Eqs (3a)–(3d), together with the initial conditions Eq (11) for the velocity and the
phase field function, constitute the overall system that need to be solved in numerical simula-
tions. We next consider the numerical solution of this system.

Because the phase field Eq (1c) is coupled to the momentum Eqs (1a) and (1b) only through
the convection term, it is possible and convenient to treat the momentum equations and the
phase field equation individually. Indeed, by treating the convection term in Eq (1c) explicitly,
one can de-couple the computation for the phase field function from those for the momentum
equations. On can first solve Eq (1c) for the phase field function, and then solve the momen-
tum equations for the pressure and the velocity.

In the following we will first concentrate on the momentum Eqs (1a) and (1b), together
with the associated boundary conditions Eqs (3a)–(3d) for @Oo and Eq (8) for @Oi and @Ow.
We defer the discussion of the solution to the phase field equation to an Appendix. In subse-
quent discussions of this section we assume that the variables ϕ andr2 ϕ have been computed
in appropriate ways and are already available.

To facilitate the following discussions we introduce an auxiliary pressure, P ¼ pþ l
2
r� � r�;

which will also be loosely called pressure where no confusion arises. Then Eq (1a) can be trans-
formed into

@u

@t
þ u � ru ¼ � 1

r
rP þ 1

r
rm �DðuÞ þ m

r
r2u� l

r
r2�r�þ 1

r
f : ð12Þ

We further re-write the open boundary conditions Eqs (3a)–(3d) into a unified compact form

�Pnþ mn �DðuÞ � Fð�Þn�Eðr;n;uÞ ¼ f b; on @Oo; ð13Þ

where

Eðr;n;uÞ ¼

1

4
r½juj2nþ ðn � uÞu�Y0ðn;uÞ; for boundary condition ð3aÞ;

1

2
r½juj2nþ ðn � uÞu�Y0ðn;uÞ; for boundary condition ð3bÞ;

rjuj2nY0ðn;uÞ; for boundary condition ð3cÞ;

rðn � uÞuY0ðn;uÞ; for boundary condition ð3dÞ;

8>>>>>>>>>><
>>>>>>>>>>:

ð14Þ

The following algorithm is for the Eqs (12) and (1b), together with the boundary conditions
Eq (8) on @Oi [ @Ow and Eq (13) on @Oo. Note that the variables ϕ andr2 ϕ are assumed to
be known here, as discussed before.

Let n denote the time step index, and (�)n denote the variable (�) at time step n. We use ũn

and un to denote two slightly different approximations of the velocity at time step n. Define ũ0

and ϕ0 = ϕin. By enforcing Eq (12) at time step zero, one can compute the initial pressure P0 as
follows. Let

H1
p0ðOÞ ¼ f v 2 H1ðOÞ : vj@Oo

¼ 0 g; ð15Þ

and q 2 H1
p0ðOÞ denote the test function. By taking the inner product betweenrq and Eq (12)
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and integrating by part, one obtains the weak form about P0,

Z
O

1

r0
rP0 � rq

¼
Z
O

1

r0
f 0 � ~u0 � r~u0 þ 1

r0
rm0 �Dð~u0Þ � l

r0
Cr�0 þr m0

r0

� �
� ~ω0

� �
� rq

�
Z
@Oi[@Ow[@Oo

m0

r0
n� ~ω0 � rq�

Z
@Oi[@Ow

n � @w
@t
j0q; 8q 2 H1

p0ðOÞ;

ð16Þ

where

r0 ¼ rð�0Þ; m0 ¼ mð�0Þ; ~ω0 ¼ r� ~u0: ð17Þ

@w
@t
j0 is the time derivative at time step zero, which can be numerically computed based on the

second-order backward differential formula (BDF2) because the boundary velocity w(x, t) is
known on @Oi [ @Ow.C represents the projection ofr2 ϕ0 into theH1(O) space, and is given
by the following weak form (φ denoting the test function),

Z
O

Cφ ¼ �
Z
O

r�0 � rφþ
Z
@Oi[@Ow[@Oo

ðn � r�0Þφ; 8φ 2 H1ðOÞ: ð18Þ

The weak forms Eqs (16) and (18) can be discretized in space using C0 spectral elements (or
finite elements). We solve Eq (16), together with the Dirichlet condition

P0 ¼ m0n �Dð~u0Þ � n� Fð�0Þ � n � Eðr0;n; ~u0Þ � f 0b � n; on @Oo; ð19Þ

to obtain the initial pressure P0, whereC is obtained by solving Eq (18).

Given ð~un;un; Pn; �nþ1;r2�nþ1Þ, where ϕn+1 andr2 ϕn+1 are assumed known and result
from the algorithm for the phase field equation to be discussed later, we compute ũn+1, un+1

and Pn+1, together with an auxiliary field variable ξn+1, successively in a de-coupled fashion as
follows:

For ũn+1:

g0 ~u
nþ1 � û

Dt
þ ~u�;nþ1 � r~u�;nþ1 þ 1

rm

rPn � nmr2 ~unþ1

¼ 1

rm

� 1

rnþ1

� �
rP�;nþ1 þ 1

rnþ1
rmnþ1 �Dð~u�;nþ1Þ

� mnþ1

rnþ1
� nm

� �
r�r� ~u�;nþ1 � l

rnþ1
r2�nþ1r�nþ1 þ 1

rnþ1
f nþ1

ð20aÞ
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~unþ1 ¼ wnþ1; on @Oi [ @Ow ð20bÞ

n �Dð~unþ1Þ ¼ 1� mnþ1

m0

� �
n �Dð~u�;nþ1Þ

þ 1

m0

P�;nþ1nþ Fð�nþ1ÞnþEðrnþ1;n; ~u�;nþ1Þ þ f nþ1
b

� �
; on @Oo

ð20cÞ

n � r~unþ1 ¼ n �Dð~unþ1Þ � n�ðr~u�;nþ1ÞT ; on @Oo: ð20dÞ

For ξn+1:

g0
Dt

xnþ1 � nmr2xnþ1 ¼ r �Gnþ1 þr mnþ1

rnþ1

� �
� r � r� ~unþ1 ð21aÞ

n � rxnþ1 ¼ 1

nm
n � g0w

nþ1 � ŵ

Dt
� 1

nm
n �Gnþ1

þ 1

nm

mnþ1

rnþ1
n � r � r� ~unþ1; on @Oi [ @Ow

ð21bÞ

xnþ1 ¼ r � ~unþ1; on @Oo: ð21cÞ

For Pn+1:

g0u
nþ1 � g0 ~u

nþ1

Dt
þ 1

rm

rðPnþ1 � Pn þ rmnmx
nþ1Þ ¼ 0 ð22aÞ

r � unþ1 ¼ 0 ð22bÞ

n � unþ1 ¼ n �wnþ1; on @Oi [ @Ow ð22cÞ

Pnþ1 ¼ mnþ1n �Dð~unþ1Þ � n� Fð�nþ1Þ

� n �Eðrnþ1;n; ~unþ1Þ � mminr � ~unþ1; on @Oo:
ð22dÞ

The notation employed in the Eqs (20a)–(22d) is as follows. Let J (J = 1 or 2) denote the tem-
poral order of the scheme, and χ denote a generic variable. Then in the above equations, χ� , n+1

is a J-th order explicit approximation of χn+1, given by

w�;nþ1 ¼
wn; J ¼ 1

2wn � wn�1; J ¼ 2:

(
ð23Þ

The expression 1
Dt ðg0wnþ1 � ŵÞ denotes an approximation of @w

@t
jnþ1 by the J-th order backward

differentiation formula, where Δt is the time step size and

ŵ ¼
wn; J ¼ 1

2wn � 1

2
wn�1; J ¼ 2;

8><
>: g0 ¼

1; J ¼ 1

3

2
; J ¼ 2:

8><
>: ð24Þ
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In Eqs (21a) and (21b) Gn+1 is given by

Gnþ1 ¼ 1

rnþ1
f nþ1 � ~u�;nþ1 � r~u�;nþ1 � 1

rm

rPn þ 1

rm

� 1

rnþ1

� �
rP�;nþ1

þ 1

rnþ1
rmnþ1 �Dð~u�;nþ1Þ � l

rnþ1
r2�nþ1r�nþ1:

ð25Þ

The function E(ρ,n, u) is defined by Eq (14). ρn+1 and μn+1 are given by Eq (2) and by using
ϕn+1. In Eq (22d) μmin = min(μ1, μ2).

In the above equations, ρm is a chosen constant that must satisfy the condition 0< ρm ⩽
min(ρ1, ρ2). This condition is critical to the stability of the scheme. The scheme is observed to
be unstable if this condition is violated. We will employ ρm = min(ρ1, ρ2) for the numerical sim-
ulations in later sections. νm is a chosen constant that is sufficiently large, and a reasonable con-

dition is nm⩾
1
2

m1
r1
þ m2

r2

	 

: μ0 in Eq (20c) is a chosen constant that is sufficiently large. In the

presence of open boundaries and when μ1 6¼ μ2, the scheme is observed to be unstable if μ0 ⩽
min(μ1, μ2). We will use μ0 ⩾max(μ1, μ2) in the numerical simulations in later sections. It is
observed that increasing νm tends to improve the stability. Increasing μ0 also tends to improve
the stability in the presence of open boundaries. Note that the constant μ0 here should not be
confused with the field variable μ0 = μ(ϕ0) in Eq (17), which represents the distribution of the
dynamic viscosity at time step zero.

We would like to make several comments on the above scheme:

• The computations for the pressure Pn+1 and the velocity ~unþ1 are de-coupled in this algo-
rithm, and the velocity un+1 can be evaluated based on Eq (22a) once Pn+1 is computed.

• When discretizing the momentum Eq (12) we have first reformulated the pressure term and
the viscous term as follows,

1

r
rP � 1

rm

rP þ 1

r
� 1

rm

� �
rP�

m
r
r2u ¼ nmr2uþ m

r
� nm

� �
r2u � nmr2u� m

r
� nm

� �
r�r� u�

8>>>><
>>>>:

ð26Þ

where P� and u� are respectively explicit approximations of P and u of a consistent order,
and the identityr2 u =r(r � u) −r ×r × u together with Eq (1b) has been used. The

terms 1
rm

� 1
rnþ1

	 

rP�;nþ1 and mnþ1

rnþ1 � nm
	 


r�r� ~u�;nþ1 in Eq (20a) arise from the

above reformulations.

• The auxiliary variable ξn+1 is an approximation of the quantityr � ~unþ1. One can arrive at
Eq (21a) by taking the divergence of Eq (20a) and noting thatr � û ¼ 0 thanks to Eqs (22b)

and (24), and by replacingr�r� ~u�;nþ1 withr�r� ~unþ1 in the resultant equation.
This equation about ξn+1 exists only in the discrete sense.

• The overall construction of the scheme resembles a rotational pressure-correction type strat-
egy. The scheme is obtained in two steps: (i) reformulate the pressure and viscous terms of
the momentum equation in the way as given by Eq (26) to treat the variable density and vari-
able viscosity; (ii) employ a rotational pressure-correction strategy similar to that of [5] for
incompressible Navier-Stokes equations on the reformulated two-phase system to de-couple
the velocity and pressure computations. One can note that the scheme here contains features
that distinguish it from the usual pressure-correction formulations [29]. Most notably, it
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involves a discrete equation and associated boundary conditions, Eqs (21a)–(21c), about the
auxiliary variable ξn+1. In addition, the pressure Pn+1 from the current scheme resides in the
H1(O) space. In contrast, the pressure from the usual pressure-correction formulations
resides in the L2(O) space (see [29]).

• The scheme leads to linear algebraic systems involving only constant and time-independent
coefficient matrices for the pressure, velocity, and the variable ξn+1 after discretization. This
is thanks to the reformulations of the pressure term and the viscous term, and the introduc-
tion of the constants ρm and νm in the scheme. The treatment of the pressure term for coping
with the variable density is proposed by [13]. The treatment of the viscous term for dealing
with the variable viscosity can be traced to the early works in the 1970s (e.g. [35]); see also
other works in e.g. [13, 36]. Because only constant and time-independent coefficient matrices
are involved, which can be pre-computed during pre-processing, the current scheme is com-
putationally very attractive and efficient.

• In the velocity substep we impose a velocity Neumann-type condition, Eqs (20c) and (20d),
on the open boundary @Oo. The discrete condition Eq (20c) originates from the open bound-
ary condition Eq (13). But it contains constructions involving the constant μ0, which are crit-
ical to the stability if open boundaries are present. In the absence of the μ0 constructions, the
computation is unstable when the viscosity ratio of the two fluids becomes large and when
the fluid interface passes through the open boundaries. The idea of the μ0 construction for
treating the variable viscosity at the open boundary is first proposed by [6]. However, there
exists a crucial difference in terms of stability between the current scheme and that of [6].
The algorithm of [6] is based on a velocity-correction type strategy, and it is observed that a
smaller μ0 constant tends to improve the stability of that scheme in the presence of open
boundaries [6]. In contrast, the current scheme is based on a pressure-correction type strat-
egy, and we observe that a larger μ0 constant tends to improve the stability of the scheme
when open boundaries are present.

• In the pressure substep we impose a pressure Dirichlet condition, Eq (22d), on the open
boundary @Oo. This discrete condition results essentially from taking the inner product
between n and the open boundary condition Eq (13). However, note that it contains an extra

term mminr � ~unþ1 in the construction.

We employ C0 continuous spectral elements [30–32] for spatial discretizations in the cur-
rent paper. Let us next consider how to implement the algorithm, represented by Eqs (20a)–
(22d), using C0 spectral elements. The formulations presented below with no change also
applies to C0 finite elements.

The main issue with regard to the implementation arises from the terms such as
r�r� ~u�;nþ1;r�r� ~unþ1; andr � Gn+1 involved in the algorithm. These terms cannot
be directly computed in the discrete space of C0 elements. Note that the termr2 ϕn+1 itself
may also cause difficulty to C0 elements. However, this term will be computed in a proper
fashion using C0 elements later when discussing how to solve the phase field equation. So
here we assume thatr2 ϕn+1 is already available in a suitable form.

We will derive weak forms of the algorithm for different flow variables. In the process the
terms causing difficulty to C0 elements will be treated in an appropriate way.

Let ~ω ¼ r� ~u denote the vorticity. Eq (20a) can be re-written as

g0
nmDt

~unþ1 �r2 ~unþ1 ¼ 1

nm
Gnþ1 þ û

Dt

� �
� 1

nm

mnþ1

rnþ1
� nm

� �
r� ~ω�;nþ1; ð27Þ
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where Gn+1 is given by Eq (25). Let Hu0(O) = {v 2H1(O): v|@Oi[@Ow = 0}, and φ 2 H1
u0ðOÞ

denote the test function. Taking the L2 inner product between φ and Eq (27), and integrating
by part, we get the weak form about ~unþ1,

g0
nmDt

Z
O

φ~unþ1 þ
Z
O

rφ � r~unþ1

¼ 1

nm

Z
O

Gnþ1 þ û

Dt
þr mnþ1

rnþ1

� �
� ~ω�;nþ1

� �
φ

� 1

nm

Z
O

mnþ1

rnþ1
� nm

� �
~ω�;nþ1 �rφ� 1

nm

Z
@Oo

mnþ1

rnþ1
� nm

� �
n� ~ω�;nþ1φ

þ
Z
@Oo

1

m0

P�;nþ1nþ Fð�nþ1ÞnþEðrnþ1;n; ~u�;nþ1Þ þ f nþ1
b

� ��

þ 1� mnþ1

m0

� �
n �Dð~u�;nþ1Þ � n�ðr~u�;nþ1ÞT

�
φ; 8φ 2 H1

u0ðOÞ:

ð28Þ

When deriving the above weak form we have used the Eqs (20c) and (20d), and the identity (K
denoting a scalar field function)Z

O

Kðr � ~oÞφ ¼
Z
@O

Kðn� ~oÞφ�
Z
O

ðrK � ~oÞφþ
Z
O

Kð~o �rφÞ:

Let W 2 H1
p0ðOÞ denote the test function, whereH1

p0ðOÞ is defined in Eq (15). Taking the L2

inner product between ϑ and Eq (21a), and integrating by part, we have

g0
nmDt

Z
O

xnþ1Wþ
Z
O

rxnþ1 � rW

¼ � 1

nm

Z
O

Gnþ1 þr mnþ1

rnþ1

� �
� ~onþ1

� �
� rW

þ 1

nm

Z
@Oi[@Ow

n � g0w
nþ1 � ŵ

Dt
Wþ 1

nm

Z
@Oi[@Ow

mnþ1

rnþ1
n � r � ~onþ1W

� 1

nm

Z
@O

r mnþ1

rnþ1

� �
� n� ~onþ1W; 8W 2 H1

p0ðOÞ;

ð29Þ

where we have used the fact that W 2 H1
p0ðOÞ, Eq (21b), the divergence theorem, and the iden-

tity (K denoting a scalar field function)

rK � r � ~ωW ¼ r � ð~ω �rKWÞ þ rK � ð~ω �rWÞ:

We note the relationZ
@Oi[@Ow

m
r
n � r � ~oW ¼

Z
@O

m
r
n � r � ~oW

¼
Z
@O

r m
r

� �
� n� ~oWþ

Z
@O

m
r
n � ~o �rW; 8W 2 H1

p0ðOÞ;
ð30Þ

where we have used the fact W 2 H1
p0ðOÞ, and have repeatedly used the divergence theorem.
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Then, Eq (29) can be transformed into the final weak form about ξn+1,

g0
nmDt

Z
O

xnþ1Wþ
Z
O

rxnþ1 � rW ¼ � 1

nm

Z
O

Gnþ1 þr mnþ1

rnþ1

� �
� ~onþ1

� �
� rW

þ 1

nm

Z
@Oi[@Ow

n � g0w
nþ1 � ŵ

Dt
Wþ 1

nm

Z
@Oi[@Ow[@Oo

mnþ1

rnþ1
n� ~onþ1 � rW;

8W 2 H1
p0ðOÞ:

ð31Þ

Let q 2 H1
p0ðOÞ denote the test function. Taking the L2 inner product betweenrq and Eq (22a)

and integrating by part, we obtain the weak form about Pn+1,Z
O

rPnþ1 � rq ¼
Z
O

g0rm

Dt
~unþ1 þr Pn � rmnmx

nþ1

 �h i

� rq

� g0rm

Dt

Z
@Oi[@Ow

n �wnþ1q; 8q 2 H1
p0ðOÞ;

ð32Þ

where we have used the divergence theorem, and the Eqs (22b) and (22c).
One can observe that the weak forms Eqs (28), (31) and (32) involve no derivatives of order

two or higher, and all the terms can be computed directly with C0 elements. These weak forms
can be discretized in space using C0 spectral elements in the standard way [31].

Given ð~un;un; Pn; �nþ1;r2�nþ1Þ, our final algorithm for solving the momentum equations
therefore consists of the following procedure. We refer to this procedure asAdvanceMomentum
hereafter. It produces ð~unþ1;unþ1; Pnþ1Þ as follows:

AdvanceMomentum procedure:

• Solve Eq (28), together with the velocity Dirichlet condition Eq (20b) on @Oi [ @Ow, for ~unþ1;

• Solve Eq (31), together with the Dirichlet condition Eq (21c) on @Oo, for ξ
n+1;

• Solve Eq (32), together with the pressure Dirichlet condition Eq (22d) on @Oo, for P
n+1;

• Evaluate un+1 based on Eq (22a) in the following form:

unþ1 ¼ ~unþ1 � Dt
g0rm

r Pnþ1 � Pn þ rmnmx
nþ1


 �
:

In the above algorithm, when imposing the Dirichlet condition Eq (21c) about ξn+1 on @Oo

and when imposing the pressure Dirichlet condition Eq (22d) on @Oo, it should be noted that
with C0 elements one needs to first project the Dirichlet data computed from these equations
into theH1(@Oo), and then impose the projected data as the Dirichlet condition. This is
because the expressions for the boundary conditions of Eqs (21c) and (22d) involve derivatives,
which may not be continuous across element boundaries on @Oo for C

0 elements.
One can observe that the AdvanceMomentum algorithm has the following characteristics:

(i) The computations for the velocity, the pressure, and the field variable ξn+1 are all de-cou-
pled; (ii) The computations for the different components of the velocity ~unþ1 are de-coupled in
Eq (28); (iii) All resultant linear algebraic systems from the algorithm involve only constant
and time-independent coefficient matrices, which can be pre-computed.

As discussed in [13], the density ρn+1 and the dynamic viscosity μn+1 computed according to
Eq (2) based on ϕn+1 may encounter numerical difficulties when the density ratio between the
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two fluids becomes very large or conversely very small. This is because the numerically-com-
puted ϕmay not exactly lie within the range [−1, 1] and may be slightly out of bound at certain
spatial points in the domain, because of the interaction between mass conservation and the
minimization of the free energy inherent in the Cahn-Hilliard dynamics. At large density
ratios, the slightly out-of-range values of ϕmay cause the density or the dynamic viscosity com-
puted from Eq (2) to become negative at certain points, thus causing numerical difficulties. Fol-
lowing [13], when the density ratio becomes large or conversely small (typically beyond 102 or
below 10−2), we will use the following modified function for computing the mixture density
and dynamic viscosity,

~� ¼
�; if j�j ⩽ 1;

signð�Þ; if j�j > 1;

( r ¼ 1

2
r1 þ r2ð Þ þ 1

2
r1 � r2ð Þ~�;

m ¼ 1

2
m1 þ m2ð Þ þ 1

2
m1 � m2ð Þ~�:

8>><
>>: ð33Þ

Overall Method for Two-Phase Flow Simulations
Let us now consider the numerical solution of the phase field Eq (1c), together with the bound-
ary conditions Eqs (9a) and (9b) for @Oi, Eqs (10a) and (10b) for @Ow, and Eqs (7a) and (7b)
for @Oo.

The fourth spatial order of the phase field Eq (1c) presents a special challenge to C0 spectral
element type spatial discretizations (which we employ in the current work) and the usual finite
element type methods, because derivatives of order two or higher cannot be directly computed
in the discrete function space of C0 spectral and finite elements. This is unlike some other dis-
cretizations such as finite difference or spectral methods (see e.g. [33, 36]). In a previous work
[13], we have developed an algorithm for the phase field Eq (1c). This algorithm computes the
phase field function ϕn+1 andr2 ϕn+1 (both in H1(O) space) by solving two Helmholtz type
equations in a successive but un-coupled fashion. It is particularly suitable for C0 spectral ele-
ment (and also usual finite element) type spatial discretizations, and it has a low computational
cost because the two Helmholtz equations are de-coupled. In contrast, with mixed formula-
tions one will need to solve a system of two coupled 2nd-order equations (see e.g. [23, 37]),
leading to increased computational costs.

We will employ the algorithm of [13] for the phase field equation in the current work. For
the sake of completeness, we provide a summary of this algorithm for solving the phase field
equation together with the boundary conditions in the Appendix of this paper, and it is referred
to as the AdvancePhase procedure (see the Appendix).

Our overall method for simulating incompressible two-phase flows is a combination of the
algorithm presented in the previous subsection for the momentum equations and the algo-
rithm in the Appendix for the phase field equation. Specifically, given ð~un;un; Pn; �nÞ, the over-
all discrete formulation of the method consists of Eqs (36a)–(36h) (in the Appendix), Eqs
(20a)–(20d), (21a)–(21c) and (22a)–(22d). With C0 spectral-element spatial discretizations, we
go through the developments discussed in the previous subsection and in the Appendix to
obtain the weak forms for the field variables. The final solution procedure is composed of the
following steps:

• Compute ϕn+1 andr2 ϕn+1 based on theAdvancePhase procedure discussed in the Appendix.

• Compute ρn+1 and μn+1 according to Eq (2) by using ϕn+1 computed above. When the density
ratio becomes large or conversely small (typically above 102 or below 10−2), use Eq (33) instead.
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• Compute ð~unþ1;unþ1;Pnþ1Þ based on the AdvanceMomentum procedure discussed in the
previous subsection, using ϕn+1,r2 ϕn+1, ρn+1, and μn+1 computed above.

It can be observed that this method has the following characteristics: (1) The computations
for all the flow variables and auxiliary variables are completely de-coupled; (2) All the resultant
linear algebraic systems after discretization involve only constant and time-independent coeffi-
cient matrices, which can be pre-computed; (3) Within each time step, the method involves
only the solution of individual Helmholtz-type (including Poisson) equations. We observe that
the method is effective for problems with large density ratios and large viscosity ratios at the
two-phase outflow/open boundary.

Representative Numerical Tests
In this section we demonstrate the accuracy of our method and its capability for coping with
two-phase open boundaries. The test problems are in two dimensions, and they involve two-
phase open boundaries, and large contrasts in densities and dynamic viscosities of the two flu-
ids. We compare simulation results with the experimental measurement and with the exact
physical solutions from theory to demonstrate that our method produces physically accurate
results.

We first briefly mention the normalization of the governing equations and physical parame-
ters, which has been discussed at length in previous works [6, 25]. Let L denote the characteristic
length scale andU0 denote the characteristic velocity scale. In Table 1 we list the normalization
constants for different physical variables and parameters. For instance, the non-dimensional
mixing energy density coefficient is given by l

r1U
2
0
L2
based on this table. When the flow variables

and parameters are normalized as given by the table, the forms of the governing equations and
the boundary conditions will remain unchanged upon normalization. In the following discus-
sions all the flow variables and physical parameters are given in non-dimensional forms unless
otherwise noted, with the understanding that they have all been properly normalized.

Convergence Rates
The goal here is to study the convergence behavior of the method developed herein and to
demonstrate its spatial and temporal convergence rates using a contrived analytic solution.

Here is the problem setup. Fig 1(a) shows the rectangular domain ABCD for this problem,
0 ⩽ x ⩽ 2 and −1 ⩽ y ⩽ 1. We consider the following analytic expressions for the flow variables

u ¼ A cospy sin ax sinWt;

v ¼ �Aa
p

sinpy cos ax sinWt;

8><
>:

P ¼ A sinpy sin ax cosWt;

� ¼ B cos a1x cos b1y sinW1t;

(
ð34Þ

where (u, v) are the x and y velocity components, and A, B, a,W, a1, b1 andW1 are prescribed
constants to be specified below. The u and v expressions evidently satisfy the Eq (1b). The
external force f(x, t) in Eq (12) and the source term g(x, t) in Eq (1c) are chosen such that the
expressions in Eq (34) satisfy the Eqs (12) and (1c).

For the boundary conditions, on the sides AD, AB and BC we impose the velocity Dirichlet
condition Eq (8) with the boundary velocity w chosen according to the analytic expressions of
Eq (34), and we impose the contact-angle conditions Eqs (10a) and (10b) for the phase field
function, in which θs = 90° and gc1 and gc2 are chosen such that the ϕ expression in Eq (34) sat-

isfies Eqs (10a) and (10b). On the side CD we impose the open boundary condition Eq (13), in
which fb is chosen such that the analytic expressions in Eq (34) satisfy Eq (13), and we impose
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Table 1. Normalization constants for the flow variables and parameters.

variables normalization constants variables normalization constants

x, η L σ r1U
2
0L

u, uin, w U0 D0 1/U0

t, Δt L/U0 γ1 L/(ρ1 U0)

gr (gravity) U2
0=L λ r1U

2
0L

2

p, P, fb r1U
2
0 νm U0 L

ϕ, �̂, ϕb, ϕin, θs 1 f r1U
2
0=L

ρ, ρ1, ρ2, ρm ρ1 ξn, g U0/L

μ, μ1, μ2, μ0 ρ1 U0 L ga1 1/L4

ga2, gc2 1/L gb 1/L2

gc1 1/L3

doi:10.1371/journal.pone.0154565.t001

Fig 1. Spatial/temporal convergence rates: (a) Mesh and boundary conditions; (b) Numerical errors versus element order showing
spatial exponential convergence (with fixed Δt = 0.001); (c) Numerical errors versusΔt showing temporal second-order convergence
rate (element order fixed at 18).On the face CD the open boundary condition Eq (3b) is used.

doi:10.1371/journal.pone.0154565.g001
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the conditions Eqs (7a) and (7b) for the phase field function, in which D0 = 0 and ga1 and ga2
are chosen such that the ϕ expression in Eq (34) satisfies Eqs (7a) and (7b). For the initial con-
ditions Eq (11) we choose uin and ϕin according to the analytic expressions in Eq (34) by setting
t = 0.

We partition the domain along the x direction using two quadrilateral spectral elements of
the same size as shown in Fig 1(a). The system of governing Eqs (12), (1b) and (1c) are inte-
grated over time with the algorithm developed herein from t = 0 to t = tf (tf to be specified
below). Then we compute and monitor the errors of the simulation results at t = tf against the
analytic solution given in Eq (34). The parameters for this problem are listed in Table 2.

In the first group of tests we fix the final time at tf = 0.1 and the time step size at Δt = 0.001.
Then we vary the element order systematically between 2 and 20. Fig 1(b) shows the L2 errors
of the flow variables at t = tf as a function of the element order. The results correspond to the
open boundary condition Eq (3b). The numerical errors decrease exponentially as the element
order increases (when below order 10). As the element order increases beyond 12, the error
curves level off due to the saturation by the temporal truncation error.

In the second group of tests we fix the final integration time at tf = 0.1 and the element order
at a large value 18, and then vary the time step size systematically between Δt = 1.953125 × 10−5

and Δt = 0.01. In Fig 1(c) we plot the L2 errors of the flow variables as a function of Δt in loga-
rithmic scales. A slope of 2 has been observed in the error curves when the time step size
becomes small.

The results of these tests demonstrate that the method developed in this work has a spatial
exponential convergence rate and a temporal second-order convergence rate.

Capillary Wave
The goal of this section is to demonstrate the physical accuracy of our method using a two-
phase capillary wave problem, whose exact physical solution is known [38]. This problem
involves two fluid phases, density contrast, viscosity contrast, gravity and the surface tension
effects. We have considered this problem in a previous work [13]. It should be noted that the
algorithm tested here is different from that of [13].

Here is the problem setting. We consider two immiscible incompressible fluids in an infinite
domain. The lighter fluid occupies the top half of the domain, and the heavier fluid occupies
the bottom half. The gravity is in the vertical direction and points downward. Without loss of
generality we assume that the first fluid is lighter than the second one (ρ1 ⩽ ρ2). At t = 0, the
interface formed between them is perturbed by a small-amplitude sinusoidal wave from its
equilibrium horizontal position, and starts to oscillate. The goal is to study the behavior of the
interface over time.

Prosperetti [38] reported an exact standing-wave (but time-dependent) solution to this
problem under the following condition: The two fluids may have different densities and
dynamic viscosities, but their kinematic viscosities must match. The capillary-wave amplitude
versus time has been provided in [38]. We will simulate this problem under the same condi-
tion, and compare with the exact solution from [38].

Specifically, we consider a computational domain as depicted in Fig 2 (non-dimensiona-
lized), 0 ⩽ x ⩽ 1 and −1 ⩽ y ⩽ 1. The un-perturbed equilibrium position of the fluid interface
coincides with the x-axis. We assume that the initial perturbation profile of the interface is
given by y =H0 cos kx, where k ¼ 2p

lw
¼ 2p and λw = 1 is the wave length of the perturbation

profile, and H0 = 0.01 is the initial amplitude. Note that the capillary wave-length λw is chosen
to be the same as the domain dimension in the x direction, and that the initial capillary ampli-
tudeH0 is small compared to the domain dimension in the y direction.
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We employ the algorithm developed here to solve the governing Eqs (12) and (1b)–(1c),
where the external body force in Eq (12) is set to f = ρ gr and gr is the gravitational acceleration.
For the boundary conditions, in the horizontal direction we assume that it is periodic at x = 0
and x = 1. At the bottom of the domain (y = −1), we assume a solid wall in the simulations, and
impose the velocity Dirichlet condition Eq (8) with w = 0, and impose the boundary conditions
Eqs (10a) and (10b) with gc1 = gc2 = 0 and θs = 90°. On the top side (y = 1) we assume that the
domain is open, and impose the open boundary condition Eq (13) with fb = 0 for the momen-
tum equation, and impose the open boundary conditions Eqs (7a) and (7b) with ga1 = ga2 = 0
and D0 = 0 for the phase field function. We employ the following initial velocity and phase

field function, uin(x) = 0 and �inðxÞ ¼ tanh y�H0 cos kxffiffi
2

p
Z

	 

:

We discretize the domain using 240 quadrilateral elements, with 10 elements in the x direc-
tion and 24 elements in the y direction. The elements are uniform along the x direction, and
are non-uniform along the y direction, clustering around the region −0.012 ⩽ y ⩽ 0.012. We
have used an element order 14 for all the elements.

We choose the physical parameters for this problem in accordance with those in [13]. A
summary of the physical/numerical parameter values is provided in Table 3. Note that while ρ2
and μ2 are varied in different cases, the relation m2

r2
¼ m1

r1
is maintained according to the condition

of the exact solution by [38].
Let us compare the simulation results with the exact physical solution given by [38]. Fig 3

shows the time histories of the capillary amplitude H(t) from the simulation and from the
exact solution [38] at several density ratios. Fig 3(a)–3(d) respectively corresponds to the den-
sity ratios r2

r1
¼ 2, 50, 200, and 1000. These results are obtained using the open boundary

condition Eq (3b) at the upper domain boundary. It can be observed that the fluid interface
fluctuates about its equilibrium position with the amplitude attenuated over time. The oscilla-
tion frequency decreases with increasing density ratios between the two fluids. One can further
observe that the time-history curves from the simulations almost exactly overlap with those
from the physical solution given by [38] for all density ratios. The insets of Fig 3(b) and 3(c)
are the blow-up views of the curves, which show that the difference between the simulation
and the exact physical solution is small. These results indicate that our method has produced
physically accurate results for the capillary wave problem.

Table 2. Parameter values for convergence tests.

parameters values parameters values

A 2.0 ρm min(ρ1, ρ2)

B 1.0 νm 1
2

m1
r1
þ m2

r2

	 

a, a1, b1 π μ0 max(μ1, μ2)

W, W1 1.0 δ 1
20

ρ1 1.0 η 0.1

ρ2 3.0 θs 90°

μ1 0.01 D0 0.0

μ2 0.05 J (integration order) 2

σ 9.428 × 10−2

γ1 0.01

doi:10.1371/journal.pone.0154565.t002
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BouncingWater Drop on Superhydrophobic Surface
The goal of this section is to further evaluate the accuracy of the method developed here by
comparing simulation results with the experimental measurement. The test problem consid-
ered in this section involves large density ratio, large viscosity ratio, and superhydrophobic
walls (i.e. contact angle ⩾150°). A similar problem but under a different condition has been
considered in a previous work [25].

We consider a rectangular domain (see Fig 4(a)),� L
2
⩽ x⩽ L

2
and 0⩽ y⩽ 3L

2
, where L is spec-

ified later. The domain is periodic in the horizontal direction at x ¼ 	 L
2
. The top and bottom

of the domain are two superhydrophobic solid walls. If the air-water interface intersects the
walls, the contact angle is assumed to be 170°. The domain is initially filled with air. A water

Fig 2. Configuration for the capillary wave problem.

doi:10.1371/journal.pone.0154565.g002

Table 3. Parameter values for the capillary wave problem.

parameters values parameters values

|gr| 1.0 ρm min(ρ1, ρ2)

σ 1.0 νm 1
2

m1
r1
þ m2

r2

	 

H0 0.01 μ0 μ1

λw 1.0 δ 1/100

ρ1 1.0 D0 0.0

μ1 0.01 θs 90°
m2
r2

m1
r1

J (integration order) 2

ρ2, μ2 (varied) Δt 2.5 × 10−5

η 0.002 λ 3
2
ffiffi
2

p sZ

γ1 2.5η2 Element order 14

Number of elements in mesh 240

doi:10.1371/journal.pone.0154565.t003
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drop, initially circular with a radius R0 ¼ L
4
, is suspended in the air. The center of the water

drop is initially located at a height H0 above the bottom wall, that is, (x0, y0) = (0, H0), where
(x0, y0) is the coordinate of the center of mass of the water drop. H0 is varied in the simulations.
The gravity is assumed to be in the −y direction. At t = 0, the water drop is released, and falls
through the air, impacting and bouncing off the bottom wall. The objective of this problem is
to simulate and study the behavior of the water drop.

The physical properties of the air, water and the air-water interface employed in this prob-
lem are listed in Table 4. The air and the water are respectively assigned as the first and the
second fluids in the simulations. We use L as the characteristic length scale, and choose the
characteristic velocity scale U0 ¼

ffiffiffiffiffiffiffiffi
gr0L

p
, where gr0 = 1m/s2. The problem is then non-dimensio-

nalized according to Table 1.
To simulate the problem we discretize the domain using 150 equal-sized quadrilateral ele-

ments, with 10 and 15 elements in the x and y directions respectively. We use an element order
14 for all elements in the simulations. The algorithm developed here is employed for marching
in time. In the horizontal direction we employ periodic boundary conditions for all flow vari-
ables. At the top and the bottom walls, we impose the velocity Dirichlet condition Eq (8) with

Fig 3. Comparison of time histories of the capillary-wave amplitudes between current simulation and the exact solution by
Prosperetti [38] for density ratios (a) r2

r1
¼ 2, (b) r2

r1
¼ 50, (c) r2

r1
¼ 200, and (d) r2

r1
¼ 1000.

doi:10.1371/journal.pone.0154565.g003
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w = 0, and impose the contact-angle boundary conditions Eqs (10a) and (10b) with gc1 = gc2 = 0
and θs = 10° for the phase field function. Note that θs in Eq (10b) is the angle measured on the
side of the first fluid, that is, the air for the current configuration. We employ the following

initial velocity and phase field function distributions, uin = 0 and �in ¼ tanh kx�X0k�R0ffiffi
2

p
Z

; where

X0 = (x0, y0) is the initial coordinate of the drop center of mass. Two different domain sizes with
L = 4mm and L = 2mm have been considered in the simulations, corresponding to two drop
radii R0 = 1mm and R0 = 0.5mm, respectively. The majority of simulations are performed with
the drop radius 1mm. The physical/numerical parameter values are summarized in Table 5.

Let us first look into the dynamics of this air-water two-phase system. Fig 4 shows a tempo-
ral sequence of snapshots of the air-water interface. This corresponds to the water drop radius
1mm, and an initial drop heightH0 = 3.2mm above the bottom wall. The air-water interface is
visualized by the contour levels ϕ = 0 at different time instants. Upon release, the water drop
falls through the air (Fig 4(a) and 4(b)), and impacts the bottom wall (Fig 4(c)). One can
observe a notable deformation of the water drop upon impact of the wall. Subsequently, the
water drop bounces off the bottom wall (Fig 4(d)) and rises through the air, reaching a maxi-
mum height (Fig 4(e)). Then the drop falls through the air again and impacts the bottom wall a

Fig 4. Bouncing water drop (drop radius 1mm, initial heightH0 = 3.2mm): temporal sequence of snapshots of
the air-water interface at non-dimensional time instants: (a) t = 0.05, (b) t = 0.25, (c) t = 0.4, (d) t = 0.55, (e)
t = 0.7, (f) t = 0.85, (g) t = 1.0, (h) t = 1.15.

doi:10.1371/journal.pone.0154565.g004

Table 4. Physical properties of air and water.

Density [kg/m3] air: 1.2041 water: 998.207

Dynamic viscosity [kg/(m � s)] air: 1.78 × 10−5 water: 1.002 × 10−3

Surface tension [kg/s2] air-water: 7.28 × 10−2

Gravity [m/s2] 9.8

doi:10.1371/journal.pone.0154565.t004
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second time (Fig 4(f)–4(h)). This process repeats several times, and the water drop eventually
settles down on the bottom wall.

Fig 5 is a temporal sequence of snapshots of the velocity fields of this system at the same
time instants as those of Fig 4. The interaction between the air and water, and the impact of the
water drop on the wall, induce complicated velocity patterns in the domain. It can be observed

Table 5. Physical/numerical parameters for the bouncing water drop problem.

parameters values parameters values

ρ2/ρ1 829.01 ρm min(ρ1, ρ2)

μ2/μ1 56.29 νm 1
2

m1
r1
þ m2

r2

	 

L 4mm or 2mm ΔtU0/L 2.5 × 10−5 (L = 4mm)

μ1/(ρ1 U0 L) 5.843 × 10−2 (L = 4mm) 1.0 × 10−5 (L = 2mm)

1.653 × 10−1 (L = 2mm) l=ðr1U
2
0L

2Þ 3
2
ffiffi
2

p s
r1U2

0
L
Z
L

η/L 0.01 grL=U
2
0 9.8

s=ðr1U
2
0LÞ 3778.76 (for L = 4mm) (γ1 ρ1 U0)/L Z

L


 �3 1
l=ðr1U2

0
L2Þ

15115 (for L = 2mm) θs 10°

Elements 150 Element order 14

H0 (varied) J 2

doi:10.1371/journal.pone.0154565.t005

Fig 5. Bouncing water drop (drop radius 1mm, initial heightH0 = 3.2mm): temporal sequence of snapshots of the velocity field
at non-dimensional time instants: (a) t = 0.05, (b) t = 0.25, (c) t = 0.4, (d) t = 0.55, (e) t = 0.7, (f) t = 0.85, (g) t = 1.0, (h) t = 1.15.
Velocity vectors are plotted on every fifth quadrature points in each direction within each element.

doi:10.1371/journal.pone.0154565.g005
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that the motion of the water drop has induced a velocity field in the air (see Fig 5(b), 5(e) and
5(f)). As the water drop impacts the wall, it can be discerned from the velocity patterns that the
air is expelled from the near-wall region; see Fig 5(g) and 5(c). As the water drop bounces off
or is about to bounce off, the velocity distribution indicates that the air rushes from aside to fill
in the near-wall region; see Fig 5(d) and 5(h).

We have monitored the motion of the drop center of mass in simulations. The drop center

of mass is defined byXw ¼ ðxw; ywÞ ¼
R
Ow

xdxR
Ow

dx
; where Ow(t) is the domain occupied by the

water drop at time t and demarcated by the contour level ϕ = 0. In Fig 6 we show the time his-
tories of the y coordinate of the drop center of mass for two cases with different drop radius. It
can be discerned that the water drop bounces off the bottom wall a number of times in both
cases. One can also discern an oscillation in the drop shape in later time with the larger water
drop, before it completely settles down on the wall.

We have computed the restitution coefficient based on the time histories of the center of mass.

We follow [39] and define the restitution coefficient by Cres ¼
ffiffiffiffi
H0
H

q
; whereH andH0 respectively

denote the drop maximum heights above the bottom wall before and after the bounce. We again

follow [39] and estimate the impact velocity of the water drop by Vimp ¼
ffiffiffiffiffiffiffiffiffiffi
2grH

p
; where gr is the

gravitational acceleration.
In Fig 7 we plot the restitution coefficient Cres versus the impact velocity Vimp from the cur-

rent simulations. For comparison, we also show the restitution coefficient data from the experi-
ment of [39]. The restitution coefficients corresponding to the two drop radii and different
initial drop heightsH0 from the simulations have been included in this figure. The bulk of the
restitution coefficients from the current simulations appear to agree quite well with the experi-
mentally determined values. On the other hand, some differences can also be observed, espe-
cially for the data points corresponding to the first couple of bounces with larger initial drop-
height values. We observe that for such cases the restitution coefficients from the simulation
tend to be a little smaller than the bulk of the experimental values. This is likely due to the

Fig 6. Time histories of the water-drop center of mass (y coordinate).

doi:10.1371/journal.pone.0154565.g006
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larger drop deformation upon impact, associated with a larger initial drop height and a larger
impact velocity. The elastic energy associated with the drop deformation may reduce the maxi-
mum height the drop can reach after the bounce, and thus results in a smaller restitution coeffi-
cient. We have also observed that in some occasional case the water drop with radius 1mm can
reach a maximum height after a bounce that is quite close to that before the bounce; see the
outlying data point with a large restitution coefficient (symbol “+”), which corresponds to an
initial drop heightH0 = 3.2mm. The larger bounce-off height is possibly due to the conversion
of the elastic energy associated with the drop-shape oscillation before the bounce into the
kinetic energy associated with the drop center of mass after the bounce and lift-off.

The above comparison indicates that the simulation results obtained using our method
overall agree reasonably well with the experimental measurement.

Air Jet in Water with Two-Phase Open Boundaries
The goal of this section is to demonstrate the effectiveness of the open boundary conditions
and our algorithm for two-phase outflow problems. The test problem considered here involves
open boundaries where the two fluids may leave or enter the domain, large density contrast,
and large viscosity contrast. The fluid interface passes through the open domain boundary in
this problem.

We consider the long-time behavior of an air-water two-phase flow, in which a train of air
bubbles continually forms at a wall inside the water and then moves out of the domain due to
buoyancy. This flow problem has been considered in a previous work [6]. It should be noted
that the open boundary conditions and the numerical algorithm being tested here are different.

Specifically, we consider the flow domain shown in Fig 8,� L
2
⩽ x⩽ L

2
and 0⩽ y⩽ 3L

2
, where

L = 3cm. The bottom of the domain is a solid wall, while the other three sides (top, left and
right) are all open, where the fluid can freely leave or enter the domain. The domain is initially
filled with water, and the gravity is along the vertical direction pointing downward. The bottom
wall has an orifice in its center, with a diameter d = 6mm. A stream of air is continuously

Fig 7. Comparison of restitution coefficient as a function of impact velocity between current
simulations and the experiment [39].

doi:10.1371/journal.pone.0154565.g007
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injected into the domain through the orifice. The air velocity has a parabolic profile at the ori-
fice, with a centerline value U0 = 17.3cm/s. The bottom wall has a neutral wettability, that is, if
the air-water interface intersects the wall the contact angle would be 90°. Our objective is to
simulate and study the long-time behavior of this system.

The physical parameters concerning the air, water and the air-water interface have been
provided in Table 4. We treat the air and the water as the first and the second fluids, respec-
tively. L and U0 are employed respectively as the characteristic length and velocity scales. Nor-
malization of the problem then proceeds according to Table 1.

The flow domain is discretized using 600 quadrilateral spectral elements, with 20 and 30 ele-
ments in the x and y directions respectively. An element order 12 has been used for all elements
in the simulations. At the bottom wall, we impose the velocity Dirichlet condition Eq (8) with
w = 0 and the boundary conditions Eqs (10a) and (10b) with gc1 = gc2 = 0 and θs = 90°. At the
air inlet we impose the velocity Dirichlet condition Eq (8), in which w has zero horizontal com-
ponent and its vertical component takes a parabolic profile with a centerline value U0; for the
phase field function, we impose the boundary conditions Eqs (9a) and (9b), in which gb = 0
and

�bðx; tÞ ¼ � tanh
x � Rffiffiffi

2
p

Z
Hðx; 0Þ � Hðx;RÞ½ � þ tanh

x þ Rffiffiffi
2

p
Z

Hðx;�RÞ � Hðx; 0Þ½ �

Fig 8. Configuration of the air jet in water problem.

doi:10.1371/journal.pone.0154565.g008

Two-Phase Outflows

PLOS ONE | DOI:10.1371/journal.pone.0154565 May 10, 2016 25 / 38



where R ¼ d
2
¼ 3mm is the radius of the orifice, andH(x, a) is the heaviside step function taking

unit value if x ⩾ a and vanishing otherwise. On the top, left and right sides of the domain, we
impose the open boundary condition Eq (13) with fb = 0 for the momentum equation; for the
phase field function we impose the boundary conditions Eqs (7a) and (7b) with ga1 = ga2 = 0.
For the initial conditions, we have used an instantaneous snapshot of the velocity field and the
phase field function from the simulation of [6]. Because long-time simulations have been per-
formed, the initial velocity and phase field distributions have no effect on the long-time behavior
of the system.

We apply an external pressure gradient in the y direction (� DP
L
) to balance the weight of

water in the simulations, i.e.� DP
L
¼ rwgr; where ρw is the water density and gr is the magnitude

of the gravitational acceleration.
Table 6 summarizes the physical/numerical parameter values for this problem. The D0 in

the open boundary condition Eq (7b) for the phase field function is determined based on a pre-
liminary simulation with D0 = 0. Preliminary simulations indicate that the air bubbles have
a non-dimensional convection velocity about 2.0* 3.0 at the upper domain boundary.
Because 1

D0
plays the role of a convection velocity, we therefore use an outflow dynamic mobility

1
D0U0

� 2:5 in the simulations.

Let us first demonstrate the long-term stability of the computation. We have performed long-
time simulations of this problem using different open boundary conditions. Fig 9 shows a win-

dow of the time histories of the average vertical velocity magnitude, VavgðtÞ ¼ 1
VO

R
Ojvj2dO

	 
1
2

;

where v is the y velocity component and VO =
R
O dO is the volume of the domain. Results in Fig

9(a)–9(d) are obtained using the open boundary conditions Eqs (3a)–(3d), respectively. One can
make two observations. First, the average velocity magnitude Vavg fluctuates over time about
some constant mean level and its time history signal exhibits a quasi-periodic nature. This indi-
cates that the flow is at a statistically stationary state, and that the computations using our algo-
rithm and the several outflow boundary conditions are stable over a long time. Second, the time-
history curves obtained with different open boundary conditions Eqs (3a) and (3b) are qualita-
tively similar, indicating that these boundary conditions lead to similar results about the flow.

The dynamics of this air-water flow is illustrated by Fig 10, in which we show a temporal
sequence of snapshots of the air-water interface in a time-window between t = 16.9397 and
t = 17.2022. The fluid interface is visualized using the contour level ϕ(x, t) = 0 in the plots.
These results are obtained with the open boundary condition Eq (3b), corresponding to the
time history in Fig 9(b). These plots demonstrate the process of free air bubbles generated at

Table 6. Physical and numerical parameter values for the air jet in water problem.

parameters values parameters values

ρ2/ρ1 829.01 ρm min(ρ1, ρ2)

μ1/(ρ1 U0 L) 2.845 × 10−2 νm 50max m1
r1
; m2r2

	 

μ2/μ1 56.29 ΔtU0/L 1.5 × 10−6

η/L 0.01 θs 90°

s=ðr1U
2
0LÞ 67.178 (γ1 ρ1 U0)/L 0:1 Z

L


 �3 1
l=ðr1U2

0
L2Þ

l=ðr1U
2
0L

2Þ 3
2
ffiffi
2

p s
r1U2

0
L
Z
L grL=U

2
0 (gravity) 9.8

D0 U0 0.4 μ0 20 max(μ1, μ2)

Number of elements 600 Element order 12

−ΔP/L ρw gr J 2

δ 0.01

doi:10.1371/journal.pone.0154565.t006
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the wall rising through water and crossing the upper domain boundary to migrate out of the
domain. Fig 10(a)–10(e) shows the leading air bubble passing through the upper open bound-
ary of the domain. They demonstrate that our method can effectively allow the fluid interface
to pass through the open/outflow boundary in a smooth fashion. Simultaneously, one can
observe that the trailing free bubble rises through the water, and that a new air bubble is form-
ing at the bottom wall (Fig 10(b)–10(h)). Subsequently, the air bubble at the wall breaks free,
and the above process will repeat itself.

We further illustrate the flow dynamics using instantaneous velocity distributions. Fig 11 is
a temporal sequence of snapshots of the velocity fields at identical time instants as those of the
interfacial plots of Fig 10. One can observe that a significant flow field is induced in the regions
occupied by the air bubbles, and that a particularly strong velocity field exists inside the free air
bubble as it initially breaks free from the wall; see the region of the trailing free bubble in Fig 11
(a) and 11(b). On the other hand, the velocity field in the water region is in general quite weak.
As the air bubble rises through the water, a pair of vortices forms in the water region trailing

Fig 9. Time histories of average vertical-velocity magnitude from different open boundary conditions:
(a) OBC Eq (3a), (b) OBC Eq (3b), (c) OBC Eq (3c), (d) OBC Eq (3d).

doi:10.1371/journal.pone.0154565.g009
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the air bubble; see the region behind the second air bubble in Fig 11(e)–11(h). These vortices
can induce a backflow on portions of the outflow/open boundary after the air bubble passes
through (Fig 11(h)).

One can notice that as the air bubble moves farther downstream of the inlet its shape loses
symmetry with respect to the centerline of the domain and its path seems to deviate from the
centerline (Fig 10(a)–10(d)), and that the velocity field also becomes non-symmetric away
from the inlet (Fig 11). The loss of symmetry and the path instability of air bubbles in water
depend on the bubble size and the Reynolds number, and have been well documented in the lit-
erature; see e.g. [40–43]

We observe that the open boundary conditions Eqs (3a)–(3d) proposed here produce flow
characteristics that are similar to those based on the boundary conditions Eqs (4) and (5) from
[6]. A comparison of the velocity distributions near the upper domain boundary obtained with
different open boundary conditions is shown in Fig 12. This corresponds to a configuration
where the pair of vortices trailing a free air bubble crosses the upper open boundary. Only the
upper portion of the domain has been shown here for clarity. One can clearly observe the back-
flows into the domain induced by the vortices on sections of the upper boundary. Flows are
also sucked into the domain through the side boundaries. The overall characteristics of the
velocity fields obtained with these open boundary conditions appear qualitatively quite similar.

The results presented so far illustrate one state of the flow. We observe that this air-water
flow can exhibit another state, in which the flow characteristics are somewhat different than
those seen above. In Fig 13 we show another window in the time history of the average vertical
velocity magnitude, obtained with the open boundary condition Eq (3b). The flow evidently is

Fig 10. Air jet in water: temporal sequence of snapshots of the air-water interface at time instants (a) t = 16.9397, (b)
t = 16.9772, (c) t = 17.0222, (d) t = 17.0522, (e) t = 17.0897, (f) t = 17.1272, (g) t = 17.1647, (h) t = 17.2022.Results are obtained
using the boundary condition Eq (3b) on the open boundaries.

doi:10.1371/journal.pone.0154565.g010
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at a statistically stationary state. Contrasting this figure with Fig 9(b), which is computed using
the same boundary conditions, we can observe that the velocity-history curves have qualita-
tively different characteristics.

This different flow state is further illustrated by the temporal sequence of snapshots of the
air-water interface shown in Fig 14, which covers a time window between t� 23 and t� 23.5
in the history plot of Fig 13. These results correspond to the open boundary condition Eq (3b).
The plots clearly show the breakaway of the air bubble from the wall (Fig 14(a)–14(c)) and the
bubble motion across the domain and the upper open boundary (Fig 14(d)–14(k)). The crucial
difference, when compared with Fig 10, lies in the following. When multiple free bubbles are
present in the domain, the interaction between the leading-bubble wake and the trailing bubble
appears to have caused the trailing bubble to accelerate and nearly cath up with the leading
one; see Fig 14(e)–14(j). This has also induced significant deformations in the trailing bubble
(Fig 14(j)–14(l)), and caused it to subsequently break up (Fig 14(m)–14(o)). As the free bubbles
(and their daughter bubbles) quickly move out of the domain, one can observe that another
bubble is forming, but still attached to the wall (Fig 14(o)). Consequently, the flow domain will
be depleted of free bubbles for a period of time beyond the time instant corresponding to Fig
14(o), until the air bubble attached to the wall breaks free. This scenario is more similar to the
one discussed in [6], but is quite different from that shown by Fig 10. From Fig 14(i)–14(k) we
can again observe that our method allows the air bubble and the air-water interface to cross the
open boundary in a smooth fashion.

Fig 11. Air jet in water: temporal sequence of snapshots of the velocity field at time instants (a) t = 16.9397, (b) t = 16.9772, (c)
t = 17.0222, (d) t = 17.0522, (e) t = 17.0897, (f) t = 17.1272, (g) t = 17.1647, (h) t = 17.2022. Velocity vectors are plotted on every ninth
quadrature points in each direction within each element. Results are obtained using the boundary condition Eq (3b) on the open
boundaries.

doi:10.1371/journal.pone.0154565.g011

Two-Phase Outflows

PLOS ONE | DOI:10.1371/journal.pone.0154565 May 10, 2016 29 / 38



Fig 15 shows the corresponding velocity distributions at the same time instants as those of
Fig 14. One can observe the intense velocity field inside the air bubble shortly before/after it
breaks free from the bottom wall (Fig 15(a)–15(d)). The pair of vortices formed behind the
leading free bubble is evident from Fig 15(a)–15(f). The flow induced by this vortex pair causes
the trailing free bubble to squeeze through the vortex pair. This can be discerned from
Fig 15(g)–15(j) and Fig 14(g)–14(j). Comparison between Figs 15(k) and 14(k) indicates that
the trailing bubble is situated above the vortex pair at that instant. Subsequently, the intense

Fig 12. Velocity distributions near the upper domain boundary obtained with various open boundary conditions: (a) OBC Eq
(3a), (b) OBC Eq (3b), (c) OBC Eq (3c), (d) OBC Eq (3d), (e) OBC Eq (4), (f) OBC Eq (5). Velocity vectors are plotted on every ninth
quadrature points in each direction within each element.

doi:10.1371/journal.pone.0154565.g012

Fig 13. Another window of time history of the average vertical-velocity magnitude, suggesting a
somewhat different flow state.Result is obtained using the open boundary condition Eq (3b).

doi:10.1371/journal.pone.0154565.g013
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upward flow induced by the vortex pair causes the bubble to deform severely and break up into
two smaller bubbles; see Fig 14(k)–14(n) and Fig 15(k)–15(n).

The air jet in water problem is a stringent test to the open boundary conditions. The pres-
ence of two-phase open boundary, combined with the large density ratio between air and
water, makes this problem extremely challenging to simulate. The results of this section show
that the two-phase open boundary conditions and the numerical algorithm developed in the
current work are effective for two-phase outflows with large density and viscosity contrasts at
the outflow boundaries. The E(ρ, n, u) term in the open boundary condition Eq (13) is critical
to the stability for this problem. We observe that the computation using an open boundary
condition without this term is unstable for this problem, that is,

�pnþ mn �DðuÞ � l
2
r� � r�þ Fð�Þ

� �
n ¼ 0; on @Oo; ð35Þ

due to the backflows induced by the vortices at the outflow boundary. It is observed that
increasing νm in the algorithm tends to improve the stability, and that a larger μ0 in Eq (20c)

Fig 14. Air jet in water: Temporal sequence of snapshots of the air-water interface at time: (a) t = 22.9997, (b) t = 23.0372, (c) t = 23.0747, (d)
t = 23.1122, (e) t = 23.1497, (f) t = 23.1872, (g) t = 23.2247, (h) t = 23.2622, (i) t = 23,2922, (j) t = 23.3222, (k) t = 23.3522, (l) t = 23.3822, (m)
t = 23.4197, (n) t = 23.4572, (o) t = 23.5172.Results are obtained using the open boundary condition Eq (3b).

doi:10.1371/journal.pone.0154565.g014
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for the numerical treatment of the open boundary condition also improves the stability for the
current pressure-correction based scheme. This observation concerning μ0 seems different
from the trend observed in [6], which is for a velocity-correction based algorithm.

Concluding Remarks
We have presented several new open boundary conditions for two-phase outflows, and a rota-
tional pressure-correction based algorithm for solving the two-phase momentum equations
together with these boundary conditions. These techniques are then combined with a solver
for the phase-field equation to form an efficient and effective method for incompressible two-
phase flows involving open/outflow boundaries.

The two-phase open boundary conditions developed herein are inspired by the the general
form of single-phase open boundary conditions from [5] and the two-phase energy balance dis-
cussed in [6]. The current work provides several new forms of two-phase open boundary con-
ditions beyond those developed in [6].

Fig 15. Air jet in water: Temporal sequence of snapshots of the velocity field at time: (a) t = 22.9997, (b) t = 23.0372, (c) t = 23.0747,
(d) t = 23.1122, (e) t = 23.1497, (f) t = 23.1872, (g) t = 23.2247, (h) t = 23.2622, (i) t = 23,2922, (j) t = 23.3222, (k) t = 23.3522, (l)
t = 23.3822, (m) t = 23.4197, (n) t = 23.4572, (o) t = 23.5172. Velocity vectors are plotted on every ninth quadrature point in each direction
within each element. Results are obtained using the open boundary condition Eq (3b).

doi:10.1371/journal.pone.0154565.g015
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The algorithm presented herein for the two-phase momentum equations is based on a rota-
tional pressure correction-type strategy for de-coupling the velocity/pressure computations.
More importantly, the current algorithm results in velocity and the pressure linear algebraic
systems with constant and time-independent coefficient matrices after discretization, despite
the variable nature of the mixture density and mixture viscosity. Therefore, these coefficient
matrices can be pre-computed during pre-processing. In a previous work [13] we have devel-
oped a velocity correction-based algorithm for the variable-density Navier-Stokes equations
that possesses similar properties (leading to constant coefficient matrices for pressure/velocity
linear systems); see also subsequent applications and further developments based on that algo-
rithm in [6, 25, 26, 28]. The algorithm developed herein in a sense is the pressure-correction
counterpart to the scheme of [13]. The implementation presented herein is suitable for C0 spec-
tral elements, and with no change also applies to conventional finite elements.

The numerical treatments for the open boundary conditions proposed herein involve
imposing a discrete Neumann type condition on the outflow boundary at the velocity substep,
and two discrete Dirichlet type conditions on the outflow boundary at the substeps for ξn+1 and
pressure respectively. The discrete velocity-Neumann and the pressure-Dirichlet conditions on
the outflow boundary stem largely from the continuous open boundary condition. But they
contain modifications and additional terms that are essential to the stability of the algorithm.

To demonstrate the physical accuracy of the method developed herein, we have considered
the capillary wave problem and compared quantitatively the numerical solution with the two-
phase exact physical solution by [38] for a range of density ratios (up to 1000). The compari-
sons show that our method produces physically accurate results. We have also considered the
bounce of a water droplet on a superhydrophobic surface, and compared the restitution coeffi-
cients from the simulations and the experimental measurement of [39]. The restitution coeffi-
cient values from both the experiment and the simulation exhibit a spread in a range. The bulk
of the values from the simulations appear to agree well with those from the experiment. Some
differences have also been observed, for those corresponding to the first couple of bounces with
larger initial drop heights. In such cases, the simulation tends to produce restitution coefficient
values that are close to but somewhat smaller than those from the experiment, likely due to the
larger drop deformation upon impact associated with a larger initial drop height. These results
lend confidence that the simulation has captured the flow characteristics reasonably well.

We have further simulated the air jet in water problem to test the effectiveness of the open
boundary conditions and algorithm for two-phase problems with outflow/open boundaries.
This problem involves large density ratio, large viscosity ratio, and backflows/vortices at the
two-phase open boundary. The results demonstrate the long-time stability of our method. The
method allows the fluid interface to pass through the open boundary in a smooth and seamless
fashion.

Two-phase outflow/open boundary condition is an important and challenging issue in two-
phase flow simulations, but it has been scarcely studied in the literature. Large contrasts in den-
sities and viscosities and strong backflows/vortices at the outflow/open boundary present
severe stability difficulties to two-phase simulations. Our contribution lies in that, the several
open boundary conditions proposed herein, together with the one we developed in [6], provide
a set of effective methods for simulating two-phase problems involving outflow/open bound-
aries. The advantage of these methods is that they can deal effectively with large viscosity con-
trast, large density contrast and strong vortices/backflows at the outflow/open boundaries.
These methods allow for the simulation of long-time behaviors of two-phase flows so that sta-
tistically stationary states can be examined. We anticipate that they will be instrumental in the
investigations of statistical characteristics of two-phase flows, where long-time sampling/aver-
aging of the statistically stationary states will be required.
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Appendix: Algorithm for the Phase-Field Equation
This Appendix provides a summary of the algorithm we developed in [13] for solving the
phase field Eq (1c). The notation here follows that of the main text.

Consider the system consisting of the phase field Eq (1c), inflow conditions Eqs (9a) and
(9b), wall boundary conditions Eqs (10a) and (10b), and the open boundary conditions Eqs
(7a) and (7b). Given ð~un; �nÞ, where ~un is the approximation velocity from the algorithm dis-
cussed in the main text, we discretize this system as follows:

g0�
nþ1 � �̂

Dt
þ ~u�;nþ1 � r��;nþ1

¼ �lg1r2 r2�nþ1 � S
Z2

ð�nþ1 � ��;nþ1Þ � hð��;nþ1Þ
� �

þ gnþ1

ð36aÞ

�nþ1 ¼ �nþ1
b ; on @Oi ð36bÞ

r2�nþ1 � hð�nþ1Þ ¼ gnþ1
b ; on @Oi ð36cÞ

n � r r2�nþ1 � S
Z2

ð�nþ1 � ��;nþ1Þ � hð��;nþ1Þ
� �

¼ gnþ1
c1 ; on @Ow ð36dÞ

n � r�nþ1 ¼ 3s
4l

cos ys 1� ��;nþ1

 �2h i

þ gnþ1
c2 ; on @Ow: ð36eÞ

n � r r2�nþ1 � S
Z2

ð�nþ1 � ��;nþ1Þ � hð��;nþ1Þ
� �

¼ gnþ1
a1 ; on @Oo ð36fÞ

n � r�nþ1 ¼ �D0

@�

@t
j�;nþ1

þ gnþ1
a2 ; on @Oo

ð36gÞ

n � r�nþ1 ¼ �D0

g0�
nþ1 � �̂

Dt
þ gnþ1

a2 ; on @Oo: ð36hÞ

In the above equations, �̂ is defined in Eq (24), ~u�;nþ1 and ϕ� , n+1 are defined in Eq (23), and S

is a chosen constant that must satisfy the condition S⩾n2
ffiffiffiffiffiffiffiffi
4g0

lg1Dt

q
. @φ
@t
j�;nþ1 is an explicit approxi-

mation of @�

@t
at time step (n + 1), given by

@�

@t

����
�;nþ1

¼

1

Dt
ð�n � �n�1Þ; if J ¼ 1

1

Dt
5

2
�n � 4�n�1 þ 3

2
�n�2

� �
; if J ¼ 2:

8>>><
>>>:

ð37Þ

Eqs (36g) and (36h) are two different discretizations of Eq (7b), and they will be used in differ-
ent stages of the implementation as discussed below.

Rewrite Eq (36a) into

r2 r2�nþ1 � S
Z2

�nþ1

� �
þ g0
lg1Dt

�nþ1 ¼ Q ¼ Q1 þr2Q2; ð38Þ
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where Q1 ¼ 1
lg1

gnþ1 � ~u�;nþ1 � r��;nþ1 þ �̂

Dt

h i
; and Q2 ¼ � S

Z2 �
�;nþ1 þ hð��;nþ1Þ: Eq (38) can be

reformulated into an equivalent form (see [13, 34])

r2cnþ1 � aþ S
Z2

� �
cnþ1 ¼ Q; ð39aÞ

r2�nþ1 þ a�nþ1 ¼ cnþ1; ð39bÞ

where ψn+1 is an auxiliary phase field function, and the constant α is given by

a ¼ � S
2Z2 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4g0

lg1Dt
Z2

S

	 
2
r" #

:

In light of Eq (39b), we can transform Eq (36c) into

cnþ1 ¼ a�nþ1
b þ hð�nþ1

b Þ � gnþ1
b ; on @Oi: ð40Þ

Similarly, Eq (36d) is transformed into

n � rcnþ1 ¼ n � rQ2 þ aþ S
Z2

� �
3s
4l

cos ys 1� ��;nþ1

 �2h i

þ gnþ1
c2

� �
þgnþ1

c1 ; on @Ow:

ð41Þ

Eq (36f) is transformed into

n � rcnþ1 ¼ n � rQ2 þ aþ S
Z2

� �
n � r�nþ1 þ gnþ1

a1 ; on @Oo: ð42Þ

We next derive the weak forms for the Eqs (39a) and (39b) in order to facilitate the imple-
mentation with C0 spectral elements. Let H1

�0ðOÞ ¼ f v 2 H1ðOÞ : vj@Oi
¼ 0 g; and$ 2

H1
�0ðOÞ denote the test function. Taking the L2 inner product between$ and Eq (39a) and inte-

grating by part, we get the weak form about ψn+1,

Z
O

rcnþ1 � r$þ aþ S
Z2

� �Z
O

cnþ1$ ¼ �
Z
O

Q1$þ
Z
O

rQ2 � r$

þ aþ S
Z2

� �Z
@Ow

3s
4l

cos ys 1� ð��;nþ1Þ2� �þ gnþ1
c2

� �
$þ

Z
@Ow

gnþ1
c1 $

þ aþ S
Z2

� �Z
@Oo

�D0

@�

@t
j�;nþ1

þ gnþ1
a2

 !
$þ

Z
@Oo

gnþ1
a1 $; 8$ 2 H1

�0ðOÞ;

ð43Þ

where we have used Eqs (41), (42) and (36g). Note that @φ

@t
j�;nþ1 is given by Eq (37).
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Again let$ 2 H1
�0ðOÞ denote the test function. Taking the L2 inner product between$ and

Eq (39b) and integrating by part, we obtain the weak form about ϕn+1,Z
O

r�nþ1 � r$� a
Z
O

�nþ1$þ g0D0

Dt

Z
@Oo

�nþ1$

¼ �
Z
O

cnþ1$þ
Z
@Oo

D0

Dt
�̂ þ gnþ1

a2

� �
$

þ
Z
@Ow

3s
4l

cos ys 1� ð��;nþ1Þ2� �þ gnþ1
c2

� �
$; 8$ 2 H1

�0ðOÞ;

ð44Þ

where we have used Eqs (36e) and (36h).
Eqs (43) and (44) are in weak forms, and all the terms involved therein can be computed

directly using C0 elements. These equations can be discretized in space using C0 spectral ele-
ments in the standard fashion. Note that these two equations are de-coupled.

In summary, given ð~un; �nÞ, our final algorithm consists of the following procedure, which
we refer to as AdvancePhase. It produces (ψn+1, ϕn+1,r2 ϕn+1) as follows

AdvancePhase procedure:

• Solve Eq (43), together with the Dirichlet condition Eq (40) on @Oi, for ψ
n+1;

• Solve Eq (44), together with the Dirichlet condition Eq (36b) on @Oi, for ϕ
n+1;

• Computer2 ϕn+1 according to Eq (39b) byr2 ϕn+1 = ψn+1−αϕn+1.
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