
PERSPECTIVE
published: 30 September 2020

doi: 10.3389/fneur.2020.566731

Frontiers in Neurology | www.frontiersin.org 1 September 2020 | Volume 11 | Article 566731

Edited by:

Marta Matamala-Gomez,

University of Milano-Bicocca, Italy

Reviewed by:

Klaudia Grechuta,

Pompeu Fabra University, Spain

Solène Neyret,

University of Barcelona, Spain

*Correspondence:

Valentina Mancuso

v.mancuso95@gmail.com

Specialty section:

This article was submitted to

Neurorehabilitation,

a section of the journal

Frontiers in Neurology

Received: 28 May 2020

Accepted: 24 August 2020

Published: 30 September 2020

Citation:

Mancuso V, Stramba-Badiale C,

Cavedoni S, Pedroli E, Cipresso P and

Riva G (2020) Virtual Reality Meets

Non-invasive Brain Stimulation:

Integrating Two Methods for Cognitive

Rehabilitation of Mild Cognitive

Impairment. Front. Neurol. 11:566731.

doi: 10.3389/fneur.2020.566731

Virtual Reality Meets Non-invasive
Brain Stimulation: Integrating Two
Methods for Cognitive Rehabilitation
of Mild Cognitive Impairment

Valentina Mancuso 1*, Chiara Stramba-Badiale 1, Silvia Cavedoni 1, Elisa Pedroli 1,2,

Pietro Cipresso 1,3 and Giuseppe Riva 1,3

1 Applied Technology for Neuro-Psychology Lab, Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere

Scientifico, Milan, Italy, 2Department of Psychology, E-Campus University, Novedrate, Italy, 3Department of Psychology,

Catholic University of the Sacred Heart, Milan, Italy

Mild cognitive impairment (MCI) refers to a subtle, general cognitive decline with

a detrimental impact on elderlies’ independent living and quality of life. Without a

timely diagnosis, this condition can evolve into dementia over time, hence the crucial

need for early detection, prevention, and rehabilitation. For this purpose, current

neuropsychological interventions have been integrated with (i) virtual reality, which

immerses the user in a controlled, ecological, and safe environment (so far, both

virtual reality-based cognitive and motor rehabilitation have revealed promising positive

outcomes); and (ii) non-invasive brain stimulation, i.e., transcranial magnetic or electric

brain stimulation, which has emerged as a promising cognitive treatment for MCI and

Alzheimer’s dementia. To date, these two methods have been employed separately;

only a few studies (limited to motor rehabilitation) have suggested their integration. The

present paper suggests to extend this integration to cognitive rehabilitation as well as

to provide a multimodal stimulation that could enhance cognitive training, resulting in a

more efficient rehabilitation.

Keywords: virtual reality, transcranial magnetic stimulation, mild cognitive impairment, cognitive rehabilitation,

cave, dorsolateral prefrontal cortex, non-invasive brain stimulation, executive functions

INTRODUCTION

To a certain degree, cognitive decline is a physiological change occurring during the aging process
that occasionally evolves into a subtle condition known as mild cognitive impairment (MCI) (1).
Despite being undiagnosable as proper dementia, at least following a categorical approach, this
condition can have a detrimental impact on elderlies’ cognitive functioning and worsen their
conditions over time, even up to a point where an elderly presents with a frank dementia. However,
MCI is also likely to either revert back to normal cognition or stabilize over time (2).

BothMCI patients and their caregivers frequently report concerns about worsening cognition in
areas such as everyday memory, language, visuospatial skills, planning, organization, and divided
attention (3). The decline in cognitive functioning negatively affects elderlies’ independent living
and their ability to safely and autonomously carry out instrumental activities of daily life (IADLs),
an assessment instrument that measures an individual’s ability to perform daily activities (4) such as
grocery shopping, managing medications and/or money, and housework. In fact, MCI individuals
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are less able to perform IADLs than their healthy counterparts
(5), with detrimental effects on their wellbeing (3, 6) and
an increased risk of developing dementia (7). Since activity
restriction underlies the expression of cognitive impairment in
daily life, IADLs might enable the detection of early deficits
experienced during daily activities beyond those captured by
neuropsychological tests (8).

MCI is most commonly referred to as a degenerative etiology
(i.e., Alzheimer’s disease [AD], frontotemporal dementia,
dementia with Lewy bodies), but vascular (i.e., vascular
cognitive impairment), psychiatric (e.g., depression), genetic
(APOE and TOMM40 genes) and other medical conditions (e.g.,
uncompensated heart failure, poorly controlled diabetes mellitus,
or chronic obstructive pulmonary disease) can also contribute
to the determination of cognitive impairment (9, 10). Clinicians
classify MCI into broadly differentiated subtypes—amnestic
(aMCI) and non-amnestic (naMCI)—based on whether the
condition impairs one or multiple cognitive domains (1). aMCI
refers to patients who exhibit episodic memory impairments as
confirmed by neuropsychological tests and is associated with
higher risk of further conversion to AD (11, 12). naMCI refers
to patients with neuropsychological deficits in non-memory
cognitive domains (12).

Neurobiological studies have revealed that cognitive
impairment affecting memory (e.g., episodic memory) and
other domains (e.g., executive control, language, or visuospatial
abilities) is associated with altered neural activity in prodromal
AD (i.e., aMCI): the entorhinal cortex and hippocampus are
first affected by histopathological changes, followed by the
parahippocampal gyrus, the temporal pole, and the inferior and
middle temporal gyri (9, 12–16). While primary cortices seem
to be less vulnerable to deterioration, associative areas are the
most compromised: among them, the prefrontal cortex (PFC)
shows a higher decline (17). Discriminating between normal and
pathological neural changes is crucial in order to formulate an
accurate diagnosis and a prompt treatment plan (18).

The conversion to dementia usually occurs within 3 years
after the diagnosis of MCI, and this rate critically drops in the
following years (19). Therefore, a delayed intervention could be
ineffective when the cognitive decline is close to the dementia
stage (20). Furthermore, the timing of the intervention also
affects cost-effectiveness: therefore intervening 2 years prior to
standard diagnosis would allow the maximum net benefit of the
disease-modifying intervention (19).

Thus, this long “intermediate” phase provides a critical
opportunity for therapeutic intervention. Cognitive
interventions forMCI usually encompass a variety of approaches,
heterogeneous in terms of methods and contents. Among them,
cognitive training could be considered as a secondary prevention
method, particularly for “at risk” groups. It generally consists
of theoretically driven skills and strategies which guide and
encourage patients to perform tasks engaging several cognitive
domains (21). Previous studies have showed that, on one
hand, MCI patients show impairments in everyday memory,
language, visuospatial skills, planning, organization, and divided
attention affecting daily activities, as also confirmed by worse
scores in IADL (7, 12); on the other hand, MCI patients

could exhibit different neural impairments, as previously
mentioned (12).

Considering that MCI is characterized by both cognitive-
behavioral and neural impairments, a successful rehabilitation
process should address both of them and could benefit from
the integration of technological advancements. A plausible
candidate could be virtual reality (VR) due to its psychological
and technological features: VR scenarios simulate daily life
situations in which the user can feel immersed and interact
with an environment updated in real-time, while also receiving
dynamic multisensory feedback (21–25). A recent systematic
meta-analysis showed that specific VR environments built
on principles of neurorehabilitation that potentially enhance
learning and recovery seem more efficacious than non-
specific VR-based treatments or conventional therapies (26).
Non-invasive brain stimulation (NIBS) including transcranial
magnetic stimulation (TMS) has been showed to be efficacious
for cognitive rehabilitation as well (27).

The widespread of neurodegenerative diseases have increased
the demand for the development of new techniques to support
the rehabilitation. Since the recovery is complex, there is
a growing interest in the development of new technologies
for improving outcomes of conventional clinical intervention
strategies. The aim of the present paper is two-fold: first, to
provide a brief review of current evidence regarding the benefits
of non-invasive technologies (VR and TMS) on MCI cognitive
rehabilitation. Second, to propose an integrated intervention
approach consisting of VR-based cognitive training and neural
stimulation by means of TMS. The integration of existing
technologies does not replace MCI’s standard rehabilitative
methods, but rather upgrades them in order to create a novel
approach that guarantees an ecological setting and takes action
on different aspects of this clinical entity, thereby fostering
cognitive improvements. Therefore, the present paper aims to
propose a new integrated, multimethod approach acting on both
a neural-cognitive and behavioral-cognitive level for MCI by
means of VR and TMS.

A NEW INTEGRATED APPROACH

This section will be structured as follows: (i) the features of
two existing interventions for MCI (i.e., VR and TMS) will
be summarized, as well as (ii) the recent literature about their
integration in motor rehabilitation of MCI and other clinical
applications; (iii) finally, a discussion of a novel approach
integrating these methods for MCI cognitive rehabilitation.

Virtual Reality in Rehabilitation
Available methods for MCI rehabilitation consist of cognitive
stimulation or cognitive training, usually in the paper-and-pencil
format and conducted in an isolated and non-ecological setting
(28), consisting, for example, of exercises of categorization,
semantic association, classification and mental imagery
according to specific goals (memory for proper names, object
location, etc.) (28). Recently, new technologies have been
increasingly implemented in clinical settings: VR is an immersive
technology using 3D computer generated environments. When
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a user is immersed in virtual reality, he/she experiences the sense
of “being there” inside the virtual environment while knowing
for sure that he/she is not (29, 30); this allows to recreate lifelike
contexts in an ecological, safe and controlled setting (31–34).
The sense of presence can be considered as a neuropsychological
phenomenon resulting from our biological inheritance and our
experience as active agents in our surrounding environment.
Fully immersive VR scenarios create a strong sense of Place
Illusion and Plausibility Illusion for the user, and result in
realistic emotional reactions to the situations encountered in
VR, perceptual accuracy, and a strong sense of agency and
control over the virtual environment (34–36). These crucial
features have fostered the widespread employment of VR in
clinical rehabilitation (22, 25, 37, 38). Depending on the degree
of immersiveness, VR devices can fall into three categories:
non-immersive (e.g., user interacts with the environment with
a keyboard and mouse); semi-immersive (e.g., user usually
stands in front of a large screen, and gesture and location can be
tracked); and fully-immersive [e.g., user wears a head-mounted
display (HMD) that involves the entire vision or is immersed
in the cave automatic virtual environment (CAVE), a four-
walled virtual environment that provides a stronger sense of
presence). VR also allows users to interact with virtual objects
and to receive multisensory feedback (e.g., visual, auditory,
kinesthetic) corresponding to that received in real life through
the sensory system (39, 40). Synchronization of the different
stimuli corresponding to different sensory streams allows the
user to experience the virtual environment as realistic and results
in realistic behaviors of users experiencing place illusion (41).
Indeed, place illusion is defined as “the illusion of being in a
place in spite of the sure knowledge that you are not there” and
it differs from the plausibility illusion which is defined as “the
illusion that what is apparently happening is really happening,
in spite of the sure knowledge that it is not” (42, 43). The
behavioral correlate of these illusions is that the user behaves
in the virtual environments as he would do in the real world
(44). This important feature of VR is what distinguishes it from
all other types of media. Moreover, VR allows personalized
therapies in a controlled way by modulating difficulty level,
environments (e.g., adding or removing cues) and modality
of interaction tailored to the patient’s needs. The possibility of
creating safe, ecological, and standardized settings has supported
the employment of VR in neurorehabilitation because it allows
cognitive trainings that are relevant for real contexts (22, 45, 46),
supported by its potential to promote neuroplasticity (47–50).
With respect to MCI, various studies have showed VR’s potential
to enhance cognitive functions [for reviews, see (36, 38)]. For
instance, Optale and colleagues (51) showed that 36 sessions of
VR-based memory training in a fully immersive environment
(provided by an HMD and enriched by visual and auditory
stimuli) improved patients’ post-treatment Mini Mental State
Examination (MMSE) scores compared to the control group—
receiving musical therapy intervention—whose MMSE scores
decreased instead. Moreover, memory showed improvements
as well, as assessed by digit span forward and verbal story recall
(51). Similar promising results were observed in an MCI sample
after non-immersive VR sessions consisting of performing

tasks and navigating a virtual home and supermarket (52).
Patients exhibited significant improvements on the Montreal
Cognitive Assessment (MoCA) and IADL after a 3-week VR-
based cognitive and physical training: interestingly, after the
VR intervention, functional near-infrared spectroscopy (NIRS)
revealed decreased brain activation of the prefrontal areas as
a result of increased neural efficiency during the training (53).
Overall, several studies have highlighted the potential of VR in
memory (54–57) and executive functions rehabilitation (58–61).
In particular, it has been shown that the multisensory stimulation
has a positive impact on both the sense of presence and memory
functioning (62). At the same time, by creating complex and
ecological environments, VR provides the possibility to train
different executive functions (e.g., visual attention, planning,
problem solving) along with motor demands, enhancing
cognitive functions in daily living (59).

In fact, according to the compensatory model, demented
brains show broader activation as a compensatory strategy to
preserve intact cognitive functions (63, 64). Therefore, this
study expands previous literature about VR efficacy to improve
neural efficiency in prefrontal areas (53). Besides cognitive
enhancement, VR treatments have beneficial psychological
effects: participants reported feeling more enthusiastic, relaxed,
energetic and, most importantly, less worried, stressed, and
anxious (65). Despite these promising results, however, the
heterogeneity of the studies, in terms of VR devices’ different
degrees of immersivity and the variety of protocols, makes it
difficult to clarify the mechanisms underlying VR’s effectiveness.
A recent meta-analysis (66) suggests three plausible mechanisms.
(i) Enjoyment: VR provides fun and engaging experiences
with different tasks (e.g., exploration, challenges) that motivate
patients to complete them. Conversely, patients perceive
conventional rehabilitation methods, consisting of repeated
behaviors without immediate feedback, as repetitive and boring.
(ii) Physical fidelity: VR offers realistic scenarios that allow users
to perform and practice behaviors resembling daily activities,
whereas traditional rehabilitation programs focus on non-
familiar behaviors. (iii) Cognitive fidelity: VR environments can
be built according to specific cognitive tasks and the cognitive
load required by the transfer environment. On the contrary,
conventional rehabilitation is set in a relatively stimulus-free
environment with limited cognitive fidelity.

Transcranial Magnetic Stimulation (TMS) in
Rehabilitation
TMS is a form of non-invasive brain stimulation that induces
an electrical field through a coil placed on the surface of the
scalp over a targeted stimulation site (67). Depending on selected
parameters (i.e., frequency, intensity, number of pulses delivered,
type of coil, and location of the stimulation), TMS pulses can
either excite or inhibit cortical activity and induce long- or
short-term neural and behavioral changes (68). Depending on
the number of pulses delivered, TMS can be single-pulse (i.e.,
when only one stimulus at a time is employed), paired-pulse (i.e.,
when pairs of stimuli separated by an interval are delivered) or
repetitive (rTMS) in case of trains of stimuli (69).
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TMS has increasingly been applied in several research and
clinical fields (70), including in cognitive rehabilitation of MCI
and dementia (27, 71–73). One study (27) reviewed the potential
of TMS in modulating cognitive functions both in MCI and
AD: the majority of the studies employed multiple sessions of
high-frequency (>5Hz) rTMS over the dorsolateral prefrontal
cortex (DLPFC). Overall, TMS appeared effective at significantly
improving memory and executive functions. Another study
(72) reported long-term memory and executive functioning
improvements after 10 high-frequency rTMS sessions over the
left DLPFC. One study (74) considered the effectiveness of rTMS
over the DLPCF at reducing apathy, a symptom frequently
reported in MCI patients: a significant improvement in apathy
scores resulted following 10 sessions of active TMS compared
to sham. Interestingly, authors observed positive outcomes in
executive functions as well, as assessed by the Trail Making Test
(75). Cognitive benefits resulting from TMS interventions can be
explained by the reorganization of the brain networks following
the induced changes in cortical excitability. In other words, high-
frequency rTMS sessions may determine an improvement in
terms of synaptic plasticity, with implications for reorganization
of cognitive domains (76, 77).

However, the mechanisms underlying TMS effects are still
unclear. One hypothesis is that high-frequency TMS induces
intracortical inhibition. In other words, discharging an electrical
field causes gamma-aminobutyric acid (GABA) levels to increase,
suppressing the activity (78). This temporary neuro-disruption,
called a “virtual lesion,” causes a disruption of perceptual, motor,
and cognitive processes in the human brain (79). Another
hypothesis is that TMS might determine a random neural
noise by amplifying the background activity (80). Other authors
suggested that TMS could disrupt the temporal relation between
neurons implicated in a more extended circuit activated by
the task (81). Overall, the effects of TMS are heterogeneous
and seemingly dose- and context-dependent. On one hand, the
effectiveness of TMS depends on the frequency and duration of
the stimulation: its effects are more pronounced as long as both
TMS trains and frequency increase. On the other hand, the effects
depend on the level of cortical excitability at the moment of the
stimulation: the pulse recruits as many neurons are close to the
firing threshold (76). Overall, the effectiveness of TMS remains
hindered by a number of methodological challenges, including a
lack of clear consensus about the optimal stimulation parameters,
with variability in the type, frequency, intensity, location, and
duration of stimulation.

Virtual Reality and Non-invasive Brain
Stimulation
The joint application of NIBS and VR has been previously
investigated in different clinical settings to improve the clinical
outcomes of conventional therapies. VR provides a controlled,
ecological, and appealing setting that could be personalized
according to the patient needs, whereas NIBS might alter the
neurophysiology underpinning cognitive functions. For this
purpose, different studies have suggested that the combination
of these technologies could be more synergic than stand-alone

treatments. For instance, it has been employed to induce
embodiment for an artificial hand (82), to treat spider phobia (83)
and in interventions in different populations, such as children
with cerebral palsy, post-stroke patients, and healthy people
(84). In rehabilitation settings, different studies have investigated
the potential of joining VR and transcranial direct current
stimulation (tDCS)/TMS for the rehabilitation of the upper limb,
one of the most common deficits following a stroke (84–89).
Kim and colleagues (90) found that VR wrist exercise after tDCS
had greater immediate and sustained corticospinal facilitation
effects than exercise without tDCS and tDCS without exercise.
Furthermore, this corticospinal facilitation lasted for 20min after
the exercise in the VR+tDCS condition compared to the control
groups. Recently, a meta-analysis (88) proved the effectiveness
and suitability of NIBS-VR integration for motor rehabilitation
of the upper limb.While different studies have proved the efficacy
of the joint application of NIBS and VR for motor rehabilitation,
to our best knowledge, no studies have investigated the same
approach for cognitive rehabilitation.

Virtual Reality and Transcranial Magnetic
Stimulation for Cognitive Rehabilitation
This section discusses an integrated intervention approach
that encompasses both TMS and a training VR for cognitive
rehabilitation of MCI.

VR interventions showed positive outcomes in cognitive
and motor functioning in patients with MCI or dementia,
as reported by a recent meta-analysis (46). Despite the
mechanisms underlying the application of TMS for cognitive
rehabilitation being uncertain, heterogeneous, and ambivalent,
studies targeting cognitive rehabilitation suggested that aMCI
and AD patients benefited from its employment (27). Therefore,
a plausible hypothesis is that high-frequency rTMS over the left
DLPFC might recruit more neural resources from the prefrontal
cortex by inducing an electrophysiologically excitatory effect.
This stimulation could also enhance the efficiency of resources to
deploy for conflict resolution during multiple stages of cognitive
control processing. In other words, rTMS could induce a greater
activation and efficacy of the prefrontal cortex (91), an area
that is involved in accomplishing the VR tasks. In fact, an
eclectic approach to cognitive rehabilitation achieves greater
improvements based on the assumption that cognitive deficits
are also determined and influenced by physical (e.g., illness,
blood pressure, pain, sleep), emotional (e.g., anxiety, annoyances,
arousal, mood), social (e.g., relationships, status, social pressure)
and motivational (e.g., distractibility, goals, incentives) aspects
(92). Specifically, a plausible integrated intervention could
include 10 training sessions of 40min, composed of rTMS
(active or sham) and the virtual-based training. Before the first
session and at the end of the tenth, aMCI patients will receive
a neuropsychological assessment. First, high-frequency rTMS
will be delivered over the left DLPCF, a region known to be
involved in executive functions and in long-term memory due
to its interaction with the medial-temporal network, including
the hippocampus (93–95). After each session of rTMS, patients
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FIGURE 1 | Virtual supermarket task map. Before starting the navigation into the virtual supermarket, this map is projected on one of the four walls of the CAVE. The

patient has to memorize the position of every category of products he/she has to buy.

wearing 3-D glasses will be immersed inside a CAVE1, a
virtual room-sized cube, at I.R.C.C.S. Istituto Auxologico Italiano
(Milan, Italy), in which they will be exposed to two different
environments (96). Patients will be first immersed in a virtual
supermarket (Figure 1) in which they would be able to move
around thanks to an Xbox controller. Tasks will consist of
selecting different products on shelves according to precise
rules, with increasing difficulty. Every task, according to rules
and goals, will require both executive (e.g., planning, problem
solving, and divided attention) and memory functioning (e.g.,
remembering rules). Patients will be then immersed in a virtual
city (Figure 2) in which they will be required to perform two
tasks. At the beginning, they will be placed in the center of a
square and asked to move around in the virtual city, looking
for a target object previously identified with the therapist.
Then, they will be placed in a random location in the city

1The CAVE is a virtual room-sized cube in which the 3-D visualization of

the virtual environments occurs thanks to the combination of four stereoscopic

projectors and four screens. Two graphics workstations, mounting Nvidia Quadro

K6000 GPU with dedicated Quadro Sync cards, are responsible for the projection

surfaces, user tracking and functional logic. A Vicon motion tracking system with

four infrared cameras allows the tracking of specific reflective markers positioned

on target objects and a correct reading of the simulated spaces and distances with

a 1:1 scale ratio, thus enhancing the feeling of being immersed in the virtual scene.

and asked to retrieve the position of that object. This city
task will aim to enhance spatial memory, navigation, and
planning strategies.

The neuropsychological assessment will target general
cognitive functioning through Addenbrooke’s Cognitive
Examination (ACE-R) (97) and MoCA (98). Executive
functioning (planning, initiating, and monitoring) will be
assessed with the Trail Making Test (TMT version A and B) (75)
and the Stroop test (99). Memory abilities will be evaluated by
Digit Span (100) and Babcock (101). Visuo-spatial abilities will
be evaluated by Tower of London (ToL) (102). Mood will be
assessed by the State-Trait Anxiety Inventory (STAI) (103) and
Geriatric Depression Scale (GDS) (104). Lastly, activities of daily
living (ADL) (105) and IADL (4) will be collected.

During the entire intervention, physiological measures (e.g.,
heart rate variability, skin conductance) will be collected.

DISCUSSION AND CONCLUSION

MCI is a transitional subclinical entity creating a fine
line between normal and pathological aging. Thus, early
interventions are essential to preserving cognitive functioning
and, as far as possible, to decelerating its evolution toward
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FIGURE 2 | Virtual city task. This figure shows the patient’s point of view when immersed in the 3-D CAVE. The projections on the four floors move synchronously with

the user’s navigation through the controller.

dementia. MCI may benefit from an efficacious intervention
deeming that the brain might still be able to compensate for
its deficiencies and to support the acquisition and retention
of the impaired cognitive functions. With the progression of
pathological conditions and the spreading of lesions instead,
the brain might no longer be able to compensate (106, 107).
Thus, a prompt rehabilitation might be helpful in delaying
the progression to dementia. Considering that both VR-based
training and neuromodulation capitalize on neuroplasticity, they
can enhance the therapeutic mechanisms in a complementary
way. On one hand, rTMS aims to increase excitability within
the lesioned hemisphere and to suppress stimulation to the
contralesional hemisphere, namely, reducing inter-hemispheric
inhibition from the contralesional side (108–111). Specifically
in aMCI patients, the DLPFC is characterized by abnormal
functional connectivity, determining several cognitive and
emotional impairments (112). Stimulation of the prefrontal
cortex is expected to enhance activation and efficiency in this area
responsible for both executive functions (e.g., working memory
and flexibility) and long-term memory due to its connection
with the medial-temporal network (e.g., the hippocampus) (93–
95). On the other hand, VR-based intervention will provide
patients with lifelike functional tasks (like doing groceries
and walking around the city) that involve cognitive domains,
physical activity, and emotional–behavioral aspects. Given the
potential of VR to provide an ecological and immersive setting,
along with immediate feedback, the repetitive practice of these
functional tasks would facilitate a complex cognitive processing
strengthened by enjoyment and attractiveness, which might

facilitate motivation and engagement. Patients would be required
to tap into their attentional, mnemonic, planning, flexibility, and
navigation abilities to accomplish the virtual tasks. It is plausible
to expect that this multi-session, multi-modal intervention would
facilitate the transfer of these abilities to real-life daily activities
as well. Furthermore, elderlies’ enjoyment could promote their
engagement and treatment adherence.

The integration of VR and TMS may allow a more sensitive
rehabilitation of cognitive symptoms while simultaneously
modulating the impaired neural circuits to provide a stronger
beneficial effect. It is plausible that the implementation of
neural modulation within an ecological virtual environment
may allow elderlies to benefit even more than stand-alone
intervention. Besides, available interventions for MCI are
frequently conducted in isolated and artificial situations, thus
allowing evaluation biases.

The sense of presence, i.e., the subjective sense of being
there in a virtual environment rather than in the actual
physical environment, is central in a VR experience. As
the other subjective feeling states, presence depends on
a set of predictions about the interoceptive state of the
body (113). In this regard, predictive coding theory can
be used to describe the relationship between top-down
prediction/expectation signals and bottom-up prediction error
signals. In immersive environments, the experience of being
there is based on the synchronization between expected and
actual sensorimotor signals, leveraging a prediction-based model
of behavior (114). In this way, immersive environments could
allow to foster cognitive modeling/change, by providing realistic
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life-like multisensory experiences. According to it, we expect
that neural and cognitive manipulation through rTMS and VR,
respectively, might yield more beneficial outcomes than standard
intervention both in paper-and-pencil and computer methods.
Similarly to previous results, we expect that this integrated
approach would determine improvements in general cognitive,
memory, visuospatial, and particularly executive functioning, as
well as in IADL and ADL scores for elderlies affected by MCI.
In fact, both memory and executive impairments are associated
with greater ADL/IADL worsening (115). VR intervention
might possibly enhance complex cognitive processing as
patients repetitively practiced IADL-based functional tasks. This
hypothesis is in accordance with recent literature supporting the
advantages of VR in improving global cognition and IADL (53).

Moreover, by collecting physiological indexes, it would be
possible to record implicit measures of internal states during the
whole experience, evaluating the impact of specific experiences
without interfering with them (116). Indeed, biosensors are
considered a reliable method for quantitative and objective
measurement of the psychophysiological signals the and behavior
of participants. The potential of these measures is that
they provide additional information that could deepen the
understanding of peculiar patterns (116).

Nevertheless, a study based on this approach is not exempt
from limitations: for instance, the different stages of aMCI
patients’ functional levels could provide heterogeneous results.
Also, some patients might not be able to complete the
intervention due to dizziness or cybersickness [i.e., motion
sickness including eye fatigue, nausea, headaches, and sweating
(91, 92)] when immersed in virtual environments, although

studies have revealed that VR is generally well-tolerated
by the elderly (101). TMS could provoke discomfort and

headache as well (69). Furthermore, the heterogeneity of neural
impairments of MCI and the unclear beneficial effects of TMS
might influence the effectiveness of this integrated approach.
However, previous studies have showed promising results in
the integration of neuromodulation and VR technologies for
motor rehabilitation in stroke patients (85, 90). On one hand,
TMS enabled shifts in cortical activity from contralesional
to ipsilesional motor areas; on the other hand, VR provided
repetitive, intensive, and motivating movement tasks with real-
time multimodal feedback, applying motor learning principles
for stroke neurorehabilitation (49, 117).

Consistent with both empirical evidence and scientific
background, we thus expect that the combination of
two approaches (TMS + VR) tapping into the same
mechanisms will yield deeper and longer clinical outcomes in
MCI patients.
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