## scientific reports



### **OPEN**

# Association between cardiometabolic index and abdominal aortic calcification in US adults from the NHANES

Minjiang Ren¹, Yifan Shen¹, Ye Yuan¹, Zhiyu Han¹, Yun Zhong¹,2™ & Shiming Liu¹,2™

Abdominal aortic calcification (AAC) and atherosclerosis are prevalent conditions among older adults, and recent research suggests that their association may extend beyond the effects of aging alone. An essential instrument for determining the possibility of cardiovascular disease (CVD) is the cardiometabolic index (CMI), a new lipid-based index sensitive to visceral obesity. However, little has been established about the relationship between CMI and AAC. We examined CMI and AAC data from the National Health and Nutrition Examination Survey (NHANES) conducted in 2013-2014 for this study. The relationship between AAC, severe abdominal aortic calcification (SAAC), and CMI was assessed using multiple linear and logistic regression models. The overall trend was visualized using smoothed curve modeling. Subgroup analyses were conducted to find possible moderating factors. Among the 2704 participants included, those with higher CMI levels exhibited much greater AAC scores and a higher prevalence of SAAC. In model 3, elevated CMI positively correlated with AAC (0.25 (0.09, 0.41)) and with the odds of SAAC (OR = 1.35 (1.09, 1.67)). Participants in the highest CMI quartile had an AAC score that was 0.65 units higher ( $\beta$  = 0.65 (0.26, 1.04)) and an 114% higher risk of SAAC (OR = 2.14 (1.29, 3.54)). Subgroup analyses indicated sex and smoking status significantly modified the relationship between CMI, AAC, and SAAC, while previously diagnosed with congestive heart failure (CHF) and heart attack significantly moderated the association between CMI and AAC. These results imply that greater AAC scores and a higher risk of SAAC are linked to heightened CMI, which represents visceral fat storage and disturbed lipid metabolism. Our findings indicate that CMI is correlated with AAC in certain demographic and cardiovascular subgroups, suggesting its potential as an exploratory indicator of elevated AAC risk in these populations.

Keywords Cardiometabolic index, Abdominal aortic calcification, Cross-sectional study, NHANES

#### Abbreviations

AAC Abdominal aortic calcification SAAC Severe abdominal aortic calcification

CMI Cardiometabolic index

NHANES National Health and Nutrition Examination Survey

CVD Cardiovascular disease
CAC Coronary artery calcification
CHD Coronary heart disease
WHtR Waist-to-height ratio

TG Triglyceride

HDL High-density lipoprotein TC Total cholesterol PIR Poverty-to-income ratio BMI Body mass index CHF Congestive heart failure

<sup>1</sup>Present address: Department of Cardiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China. <sup>2</sup>Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, Guangdong, China. <sup>⊠</sup>email: zhongyun@qzhmu.edu.cn; qzliushiming@126.com

An abnormal buildup of crystallization of calcium within the intima of the artery is a hallmark of vascular calcification<sup>1</sup>. This accumulation in the arterial wall might constrict the aorta's lumen and make it more stiff. Furthermore, lipid-rich deposits build up and solidify along the vessel walls to create atherosclerotic plaques, which are facilitated by calcium deposits. Plaque calcification over time may impede blood flow, increasing the risk of cardiovascular disease (CVD)<sup>2,3</sup>. AAC, a common manifestation of vascular calcification<sup>4</sup>, develops earlier than coronary artery calcification (CAC) and may serve as a sign of vascular morbidity and mortality. Research indicates that AAC can independently predict subclinical CVD and anticipated cardiovascular risks, unrelated to traditional risk factors<sup>5-7</sup>. The cardiovascular consequences of AAC and CAC were examined by the Multi-Ethnic Study of Atherosclerosis (MESA). Only AAC was found to be significantly linked to CVD mortality, despite the fact that both CAC and AAC were independent predictors of CVD and coronary heart disease (CHD). Additionally, AAC outperformed CAC as a predictor of all-cause death<sup>8</sup>. Consequently, reducing the incidence and prevalence of CVD requires effective handling and the avoidance of AAC<sup>9</sup>.

Globally, Obesity is now a significant public health challenge<sup>10</sup>. As reported by studies, 11.1% of mortality caused by non-infectious diseases is attributable to overweight or obesity<sup>11,12</sup>. Despite being widely used to evaluate the CVD risk linked to obesity, the amount and location of body fat are not properly described by body mass index (BMI), and BMI does not take into consideration changes in hydration status and fails to discern whether weight changes are due to preserved or increased lean mass or elevated fat mass<sup>13–15</sup>. In CHF, visceral fat deposits are acknowledged as a more robust indicator of death risk than BMI-defined obesity<sup>14,16</sup>. The CMI has been used to screen for both obesity and diabetes. It incorporates obesity indicators, such as the triglyceride-to-HDL cholesterol ratio and the waist-to-height ratio (WHtR), to evaluate visceral obesity<sup>17</sup>. Non-alcoholic fatty liver disease (NAFLD), hyperuricemia, chronic kidney disease (CKD), CVD, and stroke are all linked to CMI<sup>18–22</sup>.

No clinical research has been performed to evaluate the correlation between CMI and AAC. We tested the hypothesis that an elevated CMI is positively connected with the likelihood of having AAC by using 2013–2014 NHANES data in order to close this gap.

#### Methods

#### Survey description and study population

The Centers for Disease Control and Prevention (CDC) administers the National Health and Nutrition Examination Survey (NHANES), A comprehensive survey program designed to assess the health status of the American population. The research began with an enrollment of 10,175 individuals. Following the removal of individuals lacking AAC scores (n=7,035) and CMI components (total: n=179; waist circumference: n=39; standing height: n=22; HDL: n=104; TG: n=14), as well as participants with incomplete covariate information (n=257)—covering variables such as poverty-to-income ratio (PIR) (n=235), BMI (n=2), education level (n=2), marital condition (n=1), smoking (n=1), CHF (n=5), angina pectoris (n=5), heart attack (n=3), CHD (n=1), and stroke (n=2)—the final analytical sample comprised 2,704 participants. A flowchart was provided in Fig. 1.

#### **Definition of CMI and AAC**

The CMI is calculated using the WHtR and participants' lipid profiles. The formula is as follows:

$$\left( \frac{\mathrm{TG(mg/dL)}}{\mathrm{HDL} - \mathrm{C(mg/dL)}} \right) \times \mathrm{WHtR}$$
 
$$\mathrm{WHtR} = \frac{\mathrm{waist\ circumference\ (cm)}}{\mathrm{height\ (cm)}}$$

The AAC score, which was measured using the Kauppila scoring method, was used to evaluate the severity of AAC. Using the Densitometer Discovery A (Hologic, Marlborough, MA, USA), lateral lumbar spine images acquired by dual-energy X-ray absorptiometry (DXA) were analyzed. More severe calcification is indicated by higher total AAC scores, which range from 0 to 24. According to earlier research, an AAC score of more than 6 was considered SAAC, which is a widely accepted cutoff point for detecting substantial aortic calcification.

The research designated CMI as the primary exposure variable, whereas the AAC score and SAAC were analyzed as outcome variables.

#### Covariates

Demographics, economic position, metabolic markers, and comorbidities were deemed confounding factors based on their clinical importance. Among the covariates evaluated in this study are age, sex, race, BMI, PIR, educational background, smoking status, marital condition, standing height, waist circumference, estimated glomerular filtration rate (eGFR), serum phosphorus, serum calcium, Serum Creatinine (Scr), total cholesterol (TC), high-density lipoprotein (HDL), and triglycerides (TG) were significant factors. Additionally, we accounted for the presence of comorbid conditions, including hypertension, diabetes, Chronic kidney disease (CKD), CHF, angina pectoris, heart attack, CHD, and stroke. Supplementary Table 1 contains information on the covariates, while the measurement protocols are publicly accessible through www.cdc.gov/nchs/nhanes/.

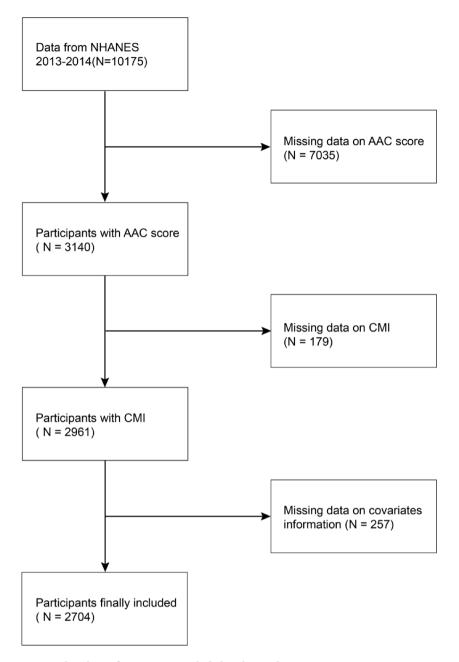



Fig. 1. Flowchart of participants included in this study.

#### Statistical analysis

This analysis utilized R software alongside EmpowerStats (http://www.empowerstats.com), with a two-sided P-v alue < 0.05 for statistical significance.

Mean ± standard deviation (SD) was employed to describe continuous variables, while proportions were used for categorical variables. The CMI data were normalized using a log2 transformation to guarantee an equitable distribution. Differences across quartiles of the CMI for continuous variables were assessed using Student's t-tests, and chi-square tests were employed for categorical variables. To investigate the relationship between CMI and AAC, multivariable linear regression models were used and logistic regression models were employed for the analysis of CMI and SAAC. The model 1 was unadjusted, the model 2 included adjustments for sex, age, and race, and the model 3 accounted for sex, age, race, educational background, marital condition, PIR, BMI, smoking status, total cholesterol, serum phosphorus, serum calcium, CKD, hypertension, diabetes, CHF, angina pectoris, CHD, heart attack, and stroke. Trend tests were conducted to evaluate associations across CMI quartiles. Subgroup analyses assessed the relationships between CMI, AAC, and SAAC by stratifying participants according to sex, diabetes status, smoking status, CKD, hypertension, angina, heart attack, CHD, stroke, or CHF. Interaction tests examined associations within these subgroups, with covariates from model 3 included in the analyses. Additionally, to visualize the trends, smoothed curve fitting was conducted.

#### Results

#### Baseline characteristics of participants

This analysis incorporated data from 2,704 participants, with a median age of  $58.52\pm11.99$  years. The sample comprised 48.56% male and 51.44% female participants. The racial and ethnic distribution included 45.71% non-Hispanic white. The mean  $\pm$  SD values for the CMI and AAC across all participants were  $0.97\pm1.35$  and  $1.63\pm3.51$ , respectively. Clinical characteristics by CMI quartiles are detailed in Table 1. Mexican American men were overrepresented in the highest CMI quartile. Additionally, individuals with elevated CMI tended to have lower education and income, higher smoking prevalence, increased BMI and waist circumference, and elevated levels of TC, and TG. This group also had a higher risk of diabetes, hypertension, CHD, and CHF, alongside lower HDL-C levels.

#### The association between CMI and AAC

Table 2 shows that higher CMI scores are linked to greater AAC scores and an increased likelihood of SAAC. CMI and AAC scores showed a positive correlation in model 3 ( $\beta$ =0.25 (0.09, 0.41)), indicating that each one-unit increase in CMI corresponds to a 0.25 unit increase in AAC scores. The study authors stratified CMI into quartiles, revealing a significant relationship between the highest quartile (Q4) and AAC ( $\beta$ =0.65 (0.26, 1.04), P for trend=0.001). For SAAC, after full adjustment, a one-unit increase in CMI resulted in a 35% elevated risk (OR=1.35 (1.09, 1.67)). The significant association was also evident in quartile-based analyses, where participants in the highest CMI quartile showed an 114% heightened risk of SAAC than those in the reference quartile (OR=2.14 (1.29, 3.54), P for trend=0.005).

In Fig. 2, further analysis utilizing smoothed curve fitting identified a positive correlation of CMI with both AAC and SAAC.

#### Subgroup analysis

To determine whether the connections between CMI, AAC, and SAAC differ across various population subcategories, Subgroup analyses were carried out with stratification by sex, smoking status, diabetes, hypertension, CHF, angina pectoris, heart attack, CHD, and stroke. The results indicated significant variations in these associations across subgroups. The findings highlight significant interaction effects between AAC and sex, smoking status, and CHD (*P* for interaction < 0.05). For SAAC, significant interactions were identified with sex and smoking status (*P* for interaction < 0.05). Specifically, in the female subgroup, CMI had a stronger positive association with AAC and SAAC. In never smokers, this association was also more pronounced relative to current smokers. Additionally, among patients without CHF and those without a history of heart attack, the positive relationship between CMI and AAC was more significant. The results indicate that the influence of CMI on AAC and varies across demographic factors, including sex, smoking status, and cardiovascular conditions, as illustrated in Fig. 3.

#### Discussion

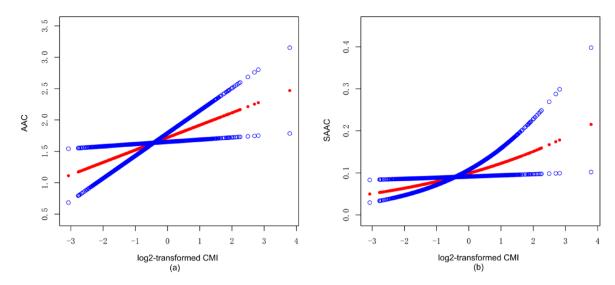
The purpose of this research was to examine, within a population-based sample, the association between CMI and AAC. Within the sample of 2704 participants, both a significant positive correlation between CMI and AAC and a significant trend across higher CMI strata were observed. Subgroup analyses indicated sex, smoking status, CHF, and history of heart attack modified this association. His study identifies a robust positive correlation between CMI and AAC, which warrants further investigation to determine if CMI management might have implications for AAC risk.

In 2015, Wakabayashi et al. initially introduced the CMI, as a predictive marker of diabetes and CVD risk<sup>17</sup>. According to Qiu et al., people with higher levels of CMI demonstrated a markedly higher propensity for early development of diabetes (HR = 1.78), while participants transitioning from lower to higher CMI ranges during the observation period exhibited a 75% increase in diabetes risk<sup>23</sup>. Luo et al. discovered that both CMI and CMI-age were independently linked to elevated CVD risk in a study involving 9,008 participants, highlighting the necessity of keeping an eye on people with high CMI<sup>16</sup>. Xu et al. performed a cohort study demonstrating a positive link between CMI and total mortality among older individuals, with inflammation playing a significant mediating role<sup>24</sup>. Among those suffering from concurrent obstructive sleep apnea and hypertension, Cai et al. conducted a positive correlation between CVD risk and CMI<sup>21</sup>. Similarly, Higashiyama et al. revealed that those without metabolic syndrome (MetS) but with greater CMI levels had an increased risk of ischemic CVD<sup>25</sup>. These findings underscore the strong association between CMI and various systemic diseases and its connection to poor prognosis. At present, no studies have evaluated the potential link between CMI and AAC, particularly in elderly persons who are more likely to have comorbidities.

Additional anthropometric and metabolic measures, including the triglyceride glucose (TyG) index, BRI, WWI, and VAI, have also been validated as associated with AAC or cardiovascular mortality. Chen et al. found that in a representative sample of American adults, the TyG index was meaningfully linked to extensive AAC (OR=1.41), regardless of additional variables<sup>26</sup>. Chen et al. further elucidated a positive relationship between BRI and AAC (OR=1.22)<sup>27</sup>. In their 20-year longitudinal study on BRI trends among American adults, Zhang et al. reported a U-shaped association with mortality risk, with increased risks observed at both ends of the BRI spectrum relative to median values<sup>28</sup>. According to Qin et al., WWI had a nonlinearly positive relationship with SAAC, and greater AAC scores were linked to higher WWI levels<sup>29</sup>. Greater VAI levels were linked to greater AAC ( $\beta$ =0.04) and a higher chance of SAAC (OR=1.04), according to Chen et al.<sup>30</sup>. Moreover, the research by Chen et al. found that elevated VAI levels were linked to a greater risk of composite cardiovascular events and overall death rates in a prospective research involving 464 common hemodialysis patients<sup>31</sup>. In line with earlier research on the cardiovascular implications of other obesity indicators, this study observed a positive

| Q1<br>N=676                             | Q2<br>N=676                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| N=676                                   | N-676                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37 (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N=676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N=676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P-value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 269 (39.79%)                            | 313 (46.30%)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 335 (49.56%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 396 (58.58%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 407 (60.21%)                            | 363 (53.70%)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 341 (50.44%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 280 (41.42%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 57.95 ± 12.38                           | 58.91 ± 12.02                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59.47 ± 11.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57.77 ± 11.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 41 (6.07%)                              | 81 (11.98%)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 95 (14.05%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 115 (17.01%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 47 (6.95%)                              | 56 (8.28%)                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 69 (10.21%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| · '                                     | 294 (43.49%)                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ` '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         | ` ′                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 7 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | 7 ( )                                                                                                                                                                                                                                                                                                                                                                                                                                            | (,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 127 (18 79%)                            | 136 (20 12%)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150 (22 19%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170 (25 15%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 12 (21.07/3)                            | (2.15570)                                                                                                                                                                                                                                                                                                                                                                                                                                        | (23.0070)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 416 (61.54%)                            | 428 (63.31%)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 443 (65.53%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 438 (64.79%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 30 (3.20/0)                             | 31 (3.02/0)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11 (0.01/0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2 (7.05/0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 168 (24 85%)                            | 181 (26 78%)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 213 (31 51%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 238 (35 21%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 23.34 ± 4.04                            | 27.07 ± 3.32                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.77 ± 3.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.72 ± 3.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 361 (53 40%)                            | 208 (30 77%)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 127 (18 70%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 69 (10 21%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 100 (13.0070)                           | 201 (25.7570)                                                                                                                                                                                                                                                                                                                                                                                                                                    | 300 (44.3070)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 331 (31.3270)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 396 (58 58%)                            | 371 (54 88%)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 341 (50 44%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 329 (48 67%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <0.001<br><0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 84.89±21.70                             | 84.44±21.81                                                                                                                                                                                                                                                                                                                                                                                                                                      | 82.21 ± 22.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84.46 ± 24.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 502 (07 720/)                           | (00 (00 7(0))                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5(0 (04 170/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 501 (05 050()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 83 (12.28%)                             | 76 (11.24%)                                                                                                                                                                                                                                                                                                                                                                                                                                      | 107 (15.83%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95 (14.05%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| =0 (44 500()                            | 121/12 222/                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.5= (2.4=224)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 240 (24 020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 59/ (88.31%)                            | 542 (80.18%)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 509 (75.30%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 427 (63.17%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 201 (57.040)                            | 407 (60 210)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 464 (60 640)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 460 (60 2001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 285 (42.16%)                            | 269 (39.79%)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 212 (31.36%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 207 (30.62%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 10 (0 === :                             | 00///::::                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00 (4 : ::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5 (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 12 (1.78%)                              | 28 (4.14%)                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28 (4.14%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26 (3.85%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 664 (98.22%)                            | 648 (95.86%)                                                                                                                                                                                                                                                                                                                                                                                                                                     | 648 (95.86%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 650 (96.15%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 24 (3.55%)                              | 35 (5.18%)                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34 (5.03%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47 (6.95%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                         | 57.95±12.38  41 (6.07%) 47 (6.95%) 300 (44.38%) 198 (29.29%) 90 (13.31%)  127 (18.79%) 415 (61.39%)  416 (61.54%) 204 (30.18%) 56 (8.28%)  168 (24.85%) 227 (33.58%) 281 (41.57%) 25.34±4.84  361 (53.40%) 209 (30.92%) 106 (15.68%)  396 (58.58%) 121 (17.90%) 90.38±12.06 166.46±9.37 1.85±0.45 4.90±0.97 0.76±0.22 1.23±0.17 2.36±0.09 80.82±42.27 84.89±21.70  593 (87.72%) 83 (12.28%)  79 (11.69%) 597 (88.31%)  391 (57.84%) 285 (42.16%) | 57.95±12.38         58.91±12.02           41 (6.07%)         81 (11.98%)           47 (6.95%)         56 (8.28%)           300 (44.38%)         294 (43.49%)           198 (29.29%)         149 (22.04%)           90 (13.31%)         96 (14.20%)           127 (18.79%)         136 (20.12%)           134 (19.82%)         148 (21.89%)           415 (61.39%)         392 (57.99%)           416 (61.54%)         428 (63.31%)           204 (30.18%)         187 (27.66%)           56 (8.28%)         61 (9.02%)           168 (24.85%)         181 (26.78%)           227 (33.58%)         242 (35.80%)           281 (41.57%)         253 (37.43%)           25.34±4.84         27.89±5.32           361 (53.40%)         208 (30.77%)           209 (30.92%)         267 (39.50%)           106 (15.68%)         201 (29.73%)           396 (58.58%)         371 (54.88%)           159 (23.52%)         192 (28.40%)           121 (17.90%)         113 (16.72%)           90.38±12.06         97.48±12.41           166.46±9.37         166.28±10.14           1.85±0.45         1.46±0.28           4.90±0.97         4.92±1.03           0.7 | 57.95±12.38         58.91±12.02         59.47±11.95           41 (6.07%)         81 (11.98%)         95 (14.05%)           47 (6.95%)         56 (8.28%)         77 (11.39%)           300 (44.38%)         294 (43.49%)         306 (45.27%)           198 (29.29%)         149 (22.04%)         116 (17.16%)           90 (13.31%)         96 (14.20%)         82 (12.13%)           127 (18.79%)         136 (20.12%)         150 (22.19%)           134 (19.82%)         148 (21.89%)         154 (22.78%)           415 (61.39%)         392 (57.99%)         372 (55.03%)           416 (61.54%)         428 (63.31%)         443 (65.53%)           204 (30.18%)         187 (27.66%)         189 (27.96%)           56 (8.28%)         61 (9.02%)         44 (6.51%)           168 (24.85%)         181 (26.78%)         213 (31.51%)           227 (33.58%)         242 (35.80%)         230 (34.02%)           281 (41.57%)         253 (37.43%)         233 (34.47%)           25.34±4.84         27.89±5.32         29.79±5.39           361 (53.40%)         208 (30.77%)         127 (18.79%)           209 (30.92%)         267 (39.50%)         249 (36.83%)           106 (15.68%)         201 (29.73%)         300 (44.38%) | 57.95±12.38         58.91±12.02         59.47±11.95         57.77±11.55           41 (6.07%)         81 (11.98%)         95 (14.05%)         115 (17.01%)           47 (6.95%)         56 (8.28%)         77 (11.39%)         69 (10.21%)           300 (44.38%)         294 (43.49%)         306 (45.27%)         336 (49.70%)           198 (29.29%)         149 (22.04%)         116 (17.16%)         55 (8.14%)           90 (13.31%)         96 (14.20%)         82 (12.13%)         101 (14.94%)           127 (18.79%)         136 (20.12%)         150 (22.19%)         170 (25.15%)           134 (19.82%)         148 (21.89%)         154 (22.78%)         177 (26.18%)           415 (61.39%)         392 (57.99%)         372 (55.03%)         329 (48.67%)           416 (61.54%)         428 (63.31%)         443 (65.53%)         438 (64.79%)           204 (30.18%)         187 (27.66%)         189 (27.96%)         186 (27.51%)           56 (8.28%)         61 (9.02%)         44 (6.51%)         52 (7.69%)           168 (24.85%)         181 (26.78%)         213 (31.51%)         238 (35.21%)           227 (33.58%)         242 (35.80%)         230 (34.02%)         241 (35.65%)           281 (41.57%)         253 (37.43%)         233 (34.47%)         197 (29.14%) </td |  |

| Characteristics     | log2-transformed CMI |              |              |              |         |  |
|---------------------|----------------------|--------------|--------------|--------------|---------|--|
|                     | Q1                   | Q2           | Q3           | Q4           |         |  |
|                     | N=676                | N=676        | N=676        | N=676        | P-value |  |
| No                  | 652 (96.45%)         | 641 (94.82%) | 642 (94.97%) | 629 (93.05%) |         |  |
| Angina, n (%)       |                      |              |              |              | 0.219   |  |
| Yes                 | 14 (2.07%)           | 27 (3.99%)   | 20 (2.96%)   | 23 (3.40%)   |         |  |
| No                  | 662 (97.93%)         | 649 (96.01%) | 656 (97.04%) | 653 (96.60%) |         |  |
| Heart attack, n (%) |                      |              |              |              | 0.217   |  |
| Yes                 | 26 (3.85%)           | 37 (5.47%)   | 37 (5.47%)   | 43 (6.36%)   |         |  |
| No                  | 650 (96.15%)         | 639 (94.53%) | 639 (94.53%) | 633 (93.64%) |         |  |
| Stroke, n (%)       |                      |              |              |              | 0.991   |  |
| Yes                 | 31 (4.59%)           | 29 (4.29%)   | 29 (4.29%)   | 29 (4.29%)   |         |  |
| No                  | 645 (95.41%)         | 647 (95.71%) | 647 (95.71%) | 647 (95.71%) |         |  |


**Table 1**. Baseline characteristics of the study participants. Data are presented as mean  $\pm$  SD or n (%). CMI, cardiometabolic index; PIR, poverty-to-income ratio; BMI, body mass index; TG, triglyceride; HDL, high-density lipoprotein; TC, total cholesterol; CHD, coronary heart disease; CHF, congestive heart failure.

|                               | AAC                |         | SAAC              |         |
|-------------------------------|--------------------|---------|-------------------|---------|
|                               | B (95% CI)         | P value | OR (95% CI)       | P value |
| Model 1                       |                    |         |                   |         |
| log2-transformed CMI          | 0.18 (0.03, 0.33)  | 0.022   | 1.15 (0.99, 1.34) | 0.060   |
| log2-transformed CMI quartile |                    |         |                   |         |
| Q1                            | 0 (Reference)      |         | 1 (Reference)     |         |
| Q2                            | 0.27 (-0.11, 0.64) | 0.163   | 1.22 (0.82, 1.82) | 0.316   |
| Q3                            | 0.40 (0.03, 0.77)  | 0.036   | 1.32 (0.89, 1.94) | 0.168   |
| Q4                            | 0.51 (0.13, 0.88)  | 0.008   | 1.55 (1.06, 2.26) | 0.024   |
| P for trend                   |                    | 0.006   |                   | 0.023   |
| Model 2                       |                    |         |                   |         |
| log2-transformed CMI          | 0.17 (0.03, 0.32)  | 0.018   | 1.25 (1.05, 1.49) | 0.014   |
| log2-transformed CMI quartile |                    |         |                   |         |
| Q1                            | 0(Reference)       |         | 1(Reference)      |         |
| Q2                            | 0.16 (-0.18, 0.51) | 0.348   | 1.17 (0.76, 1.80) | 0.465   |
| Q3                            | 0.23 (-0.12, 0.58) | 0.192   | 1.21 (0.79, 1.86) | 0.371   |
| Q4                            | 0.49 (0.14, 0.85)  | 0.006   | 1.81 (1.18, 2.76) | 0.006   |
| P for trend                   |                    | 0.007   |                   | 0.007   |
| Model 3                       |                    |         |                   |         |
| log2-transformed CMI          | 0.25 (0.09, 0.41)  | 0.003   | 1.35 (1.09, 1.67) | 0.006   |
| log2-transformed CMI quartile |                    |         |                   |         |
| Q1                            | 0(Reference)       |         | 1(Reference)      |         |
| Q2                            | 0.33 (-0.01, 0.67) | 0.057   | 1.47 (0.92, 2.34) | 0.109   |
| Q3                            | 0.42 (0.07, 0.78)  | 0.021   | 1.55 (0.96, 2.50) | 0.073   |
| Q4                            | 0.65 (0.26, 1.04)  | 0.001   | 2.14 (1.29, 3.54) | 0.003   |
| P for trend                   |                    | 0.001   |                   | 0.005   |

**Table 2.** Association between log2-transformed cardiometabolic index and abdominal aortic calcification. AAC, Abdominal aortic calcification; SAAC, severe abdominal aortic calcification; CI, confidence interval; CMI, cardiometabolic index. Model 1: no covariates were adjusted. Model 2: adjusted for gender, age, race. Model 3: adjusted for gender, age, race, education level, marital status, PIR, BMI, smoking status, total cholesterol, serum phosphorus, serum calcium, CKD, hypertension, diabetes, heart failure, angina pectoris, CHD, heart attack, and stroke.

 $relationship\ between\ CMI\ and\ AAC\ and\ found\ that\ CMI\ might\ be\ useful\ in\ cross-sectional\ assessments\ of\ AAC\ risk.$ 

Elevated CMI, which reflects visceral obesity and metabolic abnormalities, is linked to Elevated triglyceride levels accompanied by reduced HDL cholesterol concentrations. These metabolic disturbances are key risk factors for atherosclerosis and vascular calcification<sup>32,33</sup>. Lipid-loaded vascular wall lesions are a hallmark of



**Fig. 2.** Smooth Curve Fitting Detected the Linear relationship between log2-transformed CMI and AAC score by the Model 3 (a); the Linear relationship between log2-transformed CMI and SAAC by the Model 3 (b).

| Subgroup     | AAC                 |       | SAAC                          |                      |   |                  |                      |
|--------------|---------------------|-------|-------------------------------|----------------------|---|------------------|----------------------|
|              | β(95%CI)            |       | P for value P for interaction | OR(95%CI)            |   | P for value P fo | ue P for interaction |
| Gender       |                     | i     | 0. 0182                       |                      | i | 0. (             | 0136                 |
| Male         | 0.08 (-0.13, 0.29)  | -     | 0. 4475                       | 1.07 (0.81, 1.42)    | - | 0.6248           |                      |
| Female       | 0.44 (0.22, 0.66)   | HBH   | <0.0001                       | 1.7 (1.28, 2.25)     |   | 0.0002           |                      |
| Smoking stat | tus                 |       | 0. 0003                       |                      |   | 0.0              | 0002                 |
| Never        | 0.44(0.23, 0.65)    | 181   | <0.0001                       | 2.02 (1.49, 2.76)    | - | <0.0001          |                      |
| Former       | -0.17 (-0.45, 0.1)  | Help. | 0. 2159                       | 0.82 (0.59, 1.15)    |   | 0. 2507          |                      |
| Now          | 0.32 (0.01, 0.63)   |       | 0. 0494                       | 1.39 (0.94, 2.04)    | - | 0.0958           |                      |
| Hypertension | 1                   |       | 0. 5634                       |                      |   | 0.9              | 9566                 |
| Yes          | 0.22 (0.03, 0.41)   | 101   | 0. 0262                       | 1. 35 (1. 07, 1. 69) | - | 0.011            |                      |
| No           | 0.3 (0.06, 0.54)    |       | 0. 0136                       | 1.37 (0.87, 2.15)    | - | 0.179            |                      |
| Diabetes     |                     |       | 0. 1092                       |                      |   | 0. 8             | 5679                 |
| Yes          | 0.02 (-0.28, 0.32)  | -     | 0. 8989                       | 1. 25 (0. 89, 1. 75) | + | 0.9761           |                      |
| No           | 0.32 (0.14, 0.51)   | 181   | 0. 0004                       | 1.41 (1.09, 1.81)    |   | 0.0084           |                      |
| Heart failu  | re                  |       | 0. 0165                       |                      | i | 0.3              | 3475                 |
| Yes          | 0.27 (0.11, 0.44)   | HBH   | 0. 001                        | 1.38 (1.11, 1.71)    |   | 0.0038           |                      |
| No           | -0.65 (-1.46, 0.15) |       | 0. 1127                       | 0.98 (0.47, 2.01)    | - | 0.9503           |                      |
| CKD          |                     |       | 0. 1056                       |                      |   | 0.6              | 6035                 |
| Yes          | 0.66 (0.27, 1.05)   |       | 0. 0009                       | 1.45 (1.02, 2.07)    | - | 0.0369           |                      |
| No           | 0.19 (0.02, 0.36)   | le:   | 0. 0312                       | 1. 31 (1. 02, 1. 67) | - | 0.033            |                      |
| Heart attack | (                   | i     | 0. 1206                       |                      | i | 0. 1             | 1654                 |
| Yes          | 0.92 (0.53, 1.56)   |       | 0. 7582                       | 1.41 (1.13, 1.76)    |   | 0.0023           |                      |
| No           | -0.7 (-1.29, -0.12) |       | 0. 0185                       | 0.94 (0.54, 1.64)    | - | 0.837            |                      |

Fig. 3. Results of subgroup analysis and interaction analysis for log2-transformed CMI and AAC.

atherosclerosis. Chronic inflammation brought on by lipid buildup in the arterial wall activates the vascular endothelium and adhesion molecules are released in significant quantities, attracting circulating monocytes to the endothelium and promoting their maturation into macrophages. Macrophages that are laden with lipids then migrate into foam cells<sup>34</sup>. Foam cell apoptosis speeds up the establishment of a necrotic core and encourages the growth of lesions<sup>35</sup>. One of the main causes of atherosclerosis is the dysregulation of macrophage phenotypes. High-plasticity macrophages polarize to the pro-inflammatory M1 type and release a lot of inflammatory factors, including IL-6 and TNF- $\alpha$ , further activating immune cells within arterial walls, making plaques more prone to rupture and increasing the risk of cardiovascular events<sup>36–39</sup>. As atherosclerosis advances, the prolonged inflammatory environment and cell death within plaques promote vascular calcification<sup>40–43</sup>. Vascular calcification is fundamentally characterized by the transdifferentiation of vascular smooth muscle cells (VSMCs) from a mesenchymal lineage into osteoblast-like cells, constituting a central pathological mechanism<sup>44</sup>. The presence of arterial calcific plaques induces biomechanical stress through compromised vascular compliance, resulting in sustained mechanical strain that promotes both proliferative and osteogenic differentiation of VSMCs<sup>45</sup>. Transcriptomic analyses reveal partial activation of osteogenic transcriptional programs in phenotypically modulated VSMCs, though the magnitude of osteoblast-specific mRNA expression remains

markedly reduced compared to terminally differentiated osteoblasts  $^{46}$ . Pathological elevations in extracellular calcium-phosphate concentrations synergistically potentiate vascular mineralization through dual mechanisms: direct physicochemical precipitation and induction of VSMC phenotypic reprogramming via upregulation of osteogenic differentiation-associated proteins  $^{47,48}$ . This calcification cascade is primarily mediated by the canonical Wnt/ $\beta$ -catenin signaling cascade, with RUNX2 emerging as the principal transcriptional regulator orchestrating VSMC osteochondrogenic transformation, osteoblastic differentiation, and subsequent initiation of ectopic mineralization processes  $^{49,50}$ . These processes work together to drive calcification, inflammation, and stress from oxidation in the arterial intima.  $^{51,52}$ .

This research is affected by several limitations. The primary limitation is that the cross-sectional design employed in this analysis precludes causal inferences between CMI and AAC. Therefore, future prospective research is necessary to validate these results. Second, because of restrictions within the NHANES database, not all relevant covariates that may affect BRI and AAC were included. These excluded variables may have predictive value and merit further investigation. Third, AAC-related data are only available in the 2013–2014 NHANES cycle, which restricts the sample size and may limit the generalizability of our results. Lastly, NHANES data are representative of the U.S. population and include only individuals aged 40 and older (due to AAC measurement constraints). To confirm the broader applicability of these findings, additional research should focus on diverse countries and younger populations.

#### Conclusion

In this cross-sectional NHANES study, Our results indicate a significant positive relationship between CMI and AAC, highlighting the potential of CMI as a screening indicator to detect individuals with a higher risk for vascular calcification, particularly in populations with metabolic risk factors. Future research should focus on investigating the impact of CMI management on AAC and related cardiovascular risks, providing valuable insights for clinical and public health strategies.

#### Data availability

Publicly available datasets were analyzed in this study. This data can be found here: The National Health and Nutrition Examination Survey dataset at <a href="https://www.cdc.gov/nchs/nhanes/">www.cdc.gov/nchs/nhanes/</a>.

Received: 20 November 2024; Accepted: 8 May 2025

Published online: 22 May 2025

#### References

- 1. Bardeesi, A. S. et al. A novel role of cellular interactions in vascular calcification. *J. Transl. Med.* https://doi.org/10.1186/s12967-017-1190-z (2017).
- Sethi, A. et al. Calcification of the abdominal aorta is an under-appreciated cardiovascular disease risk factor in the general population. Front. Cardiovasc. Med. 9, 1003246. https://doi.org/10.3389/fcvm.2022.1003246 (2022).
- 3. Tesche, C. et al. Correlation and predictive value of aortic root calcification markers with coronary artery calcification and obstructive coronary artery disease. *Radiol. Med.* 122, 113–120. https://doi.org/10.1007/s11547-016-0707-5 (2017).
- 4. Reaven, P. D., Sacks, J., Investigators for the Veterans Affairs Cooperative Study of Glycemic Control and Complications in Diabetes Mellitus Type 2. Reduced coronary artery and abdominal aortic calcification in hispanics with type 2 diabetes. *Diabetes Care* 27, 1115–1120. https://doi.org/10.2337/diacare.27.5.1115 (2004).
- 5. Wilson, P. W. F. et al. Abdominal aortic calcific deposits are an important predictor of vascular morbidity and mortality. *Circulation* https://doi.org/10.1161/01.CIR.103.11.1529 (2001).
- Schousboe, J. T. et al. Abdominal aortic calcification (AAC) and ankle-brachial index (ABI) predict health care costs and utilization
  in older men, independent of prevalent clinical cardiovascular disease and each other. Atherosclerosis 295, 31–37. https://doi.org/ 10.1016/j.atherosclerosis.2020.01.012 (2020).
- 7. Gonçalves, F. B. et al. Calcification of the abdominal aorta as an independent predictor of cardiovascular events: A meta-analysis. *Heart* 98, 988–994. https://doi.org/10.1136/heartjnl-2011-301464 (2012).
- 8. Criqui, M. H. et al. Abdominal aortic calcium, coronary artery calcium, and cardiovascular morbidity and mortality in the multi-ethnic study of atherosclerosis. *Arterioscler. Thromb. Vasc. Biol.* **34**, 1574–1579. https://doi.org/10.1161/ATVBAHA.114.303268 (2014).
- Liu, Q. et al. Associations between life's essential 8 and abdominal aortic calcification among US adults: A cross-sectional study. BMC Public Health 24, 1090. https://doi.org/10.1186/s12889-024-18622-7 (2024).
- 10. González-Muniesa, P. et al. Obesity. Nat. Rev. Dis. Prim. 3, 1-18. https://doi.org/10.1038/nrdp.2017.34 (2017).
- 11. Tomiyama, A. J. Stress and obesity. Annu. Rev. Psychol. 70, 703-718. https://doi.org/10.1146/annurev-psych-010418-102936 (2019).
- 12. Vekic, J., Stefanovic, A. & Zeljkovic, A. Obesity and dyslipidemia: A review of current evidence. Curr. Obes. Rep. 12, 207–222. https://doi.org/10.1007/s13679-023-00518-z (2023).
- 13. Zhang, X. et al. Association between visceral adiposity index and heart failure: A cross-sectional study. Clin. Cardiol. 46, 310–319. https://doi.org/10.1002/clc.23976 (2023).
- Aryee, E. K., Ozkan, B. & Ndumele, C. E. Heart failure and obesity: The latest pandemic. Prog. Cardiovasc. Dis. 78, 43–48. https://doi.org/10.1016/j.pcad.2023.05.003 (2023).
- 15. Scicchitano, P. & Massari, F. The role of bioelectrical phase angle in patients with heart failure. Rev. Endocr. Metab. Disord. 24, 465-477. https://doi.org/10.1007/s11154-022-09757-2 (2023).
- Luo, X. & Cai, B. Association between cardiometabolic index and congestive heart failure among US adults: A cross-sectional study. Front. Cardiovasc. Med. 11, 1433950. https://doi.org/10.3389/fcvm.2024.1433950 (2024).
- 17. Wakabayashi, I. & Daimon, T. The, "cardiometabolic index" as a new marker determined by adiposity and blood lipids for discrimination of diabetes mellitus. Clin. Chim. Acta 438, 274–278. https://doi.org/10.1016/j.cca.2014.08.042 (2015).
- Guo, Q. et al. Association between the cardiometabolic index and chronic kidney disease: A cross-sectional study. Int. Urol. Nephrol. 56, 1733–1741. https://doi.org/10.1007/s11255-023-03888-4 (2024).
- 19. Li, F.-E. et al. Association between cardiometabolic index and stroke: A population-based cross-sectional study. *Curr. Neurovasc. Res.* 18, 324–332. https://doi.org/10.2174/1567202618666211013123557 (2021).

- Zuo, Y.-Q., Gao, Z.-H., Yin, Y.-L., Yang, X. & Feng, P.-Y. Association between the cardiometabolic index and hyperuricemia in an asymptomatic population with normal body mass index. *Int. J. Gen. Med.* 14, 8603–8610. https://doi.org/10.2147/IJGM.S340595 (2021).
- Cai, X. et al. Associations of the cardiometabolic index with the risk of cardiovascular disease in patients with hypertension and obstructive sleep apnea: Results of a longitudinal cohort study. Oxid. Med. Cell. Longev. 2022, 4914791. https://doi.org/10.1155/20 22/4914791 (2022).
- Liu, Y. & Wang, W. Sex-specific contribution of lipid accumulation product and cardiometabolic index in the identification of nonalcoholic fatty liver disease among Chinese adults. *Lipids Health Dis.* 21, 8. https://doi.org/10.1186/s12944-021-01617-3 (2022).
- 23. Qiu, Y. et al. Transition of cardiometabolic status and the risk of type 2 diabetes mellitus among middle-aged and older Chinese: A national cohort study. *J. Diabetes Investig.* https://doi.org/10.1111/jdi.13805 (2022).
- 24. Xu, B. et al. Is systemic inflammation a missing link between cardiometabolic index with mortality? Evidence from a large population-based study. *Cardiovasc. Diabetol.* 23, 212. https://doi.org/10.1186/s12933-024-02251-w (2024).
- 25. Higashiyama, A. et al. The risk of fasting triglycerides and its related indices for ischemic cardiovascular diseases in Japanese community dwellers: The Suita study. *J. Atheroscler. Thromb.* 28, 1275–1288. https://doi.org/10.5551/jat.62730 (2021).
- 26. Chen, Y. et al. Association between the triglyceride-glucose index and abdominal aortic calcification in adults: A cross-sectional study. *Nutr. Metab. Cardiovasc. Dis.* 31, 2068–2076. https://doi.org/10.1016/j.numecd.2021.04.010 (2021).
- 27. Wu, J., Lu, D. & Chen, X. Association of body roundness index with abdominal aortic calcification among middle aged and elderly population: Findings from NHANES. Front. Cardiovasc. Med. 11, 1475579. https://doi.org/10.3389/fcvm.2024.1475579 (2024).
- Zhang, X. et al. Body roundness index and all-cause mortality among US adults. JAMA Netw. Open 7, e2415051. https://doi.org/1 0.1001/jamanetworkopen.2024.15051 (2024).
- 29. Qin, Z. et al. The association between weight-adjusted-waist index and abdominal aortic calcification in adults aged ≥ 40 years: Results from NHANES 2013–2014. Sci. Rep. 12, 20354. https://doi.org/10.1038/s41598-022-24756-8 (2022).
- Qin, Z. et al. Higher visceral adiposity index is associated with increased likelihood of abdominal aortic calcification. Clinics https://doi.org/10.1016/j.clinsp.2022.100114 (2022).
- 31. Chen, H.-Y. et al. Visceral adiposity index and risks of cardiovascular events and mortality in prevalent hemodialysis patients. *Cardiovasc. Diabetol.* 13, 136. https://doi.org/10.1186/s12933-014-0136-5 (2014).
- 32. Krauss, R. M. Lipids and lipoproteins in patients with type 2 diabetes. *Diabetes Care* 27, 1496–1504. https://doi.org/10.2337/diacare.27.6.1496 (2004).
- 33. Ginsberg, H. N. & MacCallum, P. R. The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus. *J. Cardiometab. Syndr.* 4, 113–119. https://doi.org/10.1111/j.1559-4572.2008.00044.x (2009).
- 34. Diao, Y. & Clematichinenoside, A. R. Alleviates foam cell formation and the inflammatory response in Ox-LDL-induced RAW264.7 cells by activating autophagy. *Inflammation* 44, 758–768. https://doi.org/10.1007/s10753-020-01375-x (2021).
- 35. Wei, X. et al. Phoenixin-20 prevents ox-LDL-induced attachment of monocytes to human aortic endothelial cells (HAECs): A protective implication in atherosclerosis. ACS Chem. Neurosci. 12, 990–997. https://doi.org/10.1021/acschemneuro.0c00787 (2021).
- 36. Hutcheson, J. D., Blaser, M. C. & Aikawa, E. Giving calcification its due: Recognition of a diverse disease—A first attempt to standardize the field. *Circ. Res.* 120, 270–273. https://doi.org/10.1161/CIRCRESAHA.116.310060 (2017).
- 37. Kuznetsova, T., Prange, K. H. M., Glass, C. K. & De Winther, M. P. J. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. *Nat. Rev. Cardiol.* 17, 216–228. https://doi.org/10.1038/s41569-019-0265-3 (2020).
- 38. Guerrero, F. et al. TGF-β prevents phosphate-induced osteogenesis through inhibition of BMP and Wnt/β-catenin pathways. *PLoS ONE* **9**, e89179. https://doi.org/10.1371/journal.pone.0089179 (2014).
- Hao, N. et al. Interleukin-29 accelerates vascular calcification via JAK2/STAT3/BMP2 signaling. J. Am. Heart Assoc. 12, e027222. https://doi.org/10.1161/JAHA.122.027222 (2023).
- 40. Xie, R., Liu, X., Wu, H., Liu, M. & Zhang, Y. Associations between systemic immune-inflammation index and abdominal aortic calcification: Results of a nationwide survey. *Nutr. Metab. Cardiovasc. Dis.* 33, 1437–1443. https://doi.org/10.1016/j.numecd.2023.04.015 (2023).
- Bagyura, Z. et al. Neutrophil-to-lymphocyte ratio is an independent risk factor for coronary artery disease in central obesity. Int. J. Mol. Sci. https://doi.org/10.3390/ijms24087397 (2023).
- 42. Sánchez-Cabo, F. et al. Subclinical atherosclerosis and accelerated epigenetic age mediated by inflammation: A multi-omics study. Eur. Heart J. 44, 2698–2709. https://doi.org/10.1093/eurheartj/ehad361 (2023).
- 43. Li, M. et al. Programmed cell death in atherosclerosis and vascular calcification. *Cell Death Dis.* 13, 467. https://doi.org/10.1038/s 41419-022-04923-5 (2022).
- 44. Donoghue, P. S., Sun, T., Gadegaard, N., Riehle, M. O. & Barnett, S. C. Development of a novel 3D culture system for screening features of a complex implantable device for CNS repair. *Mol. Pharm.* 11, 2143–2150. https://doi.org/10.1021/mp400526n (2014).
- 45. Tang, X. et al. Pathological cyclic strain promotes proliferation of vascular smooth muscle cells via the ACTH/ERK/STAT3 pathway. J. Cell Biochem. 119, 8260–8270. https://doi.org/10.1002/jcb.26839 (2018).
- Patel, J. J. et al. Differing calcification processes in cultured vascular smooth muscle cells and osteoblasts. Exp. Cell Res. 380, 100–113. https://doi.org/10.1016/j.yexcr.2019.04.020 (2019).
- 47. Persy, V. & D'Haese, P. Vascular calcification and bone disease: the calcification paradox. *Trends Mol. Med.* 15, 405–416. https://doi.org/10.1016/j.molmed.2009.07.001 (2009).
- 48. Campbell, G. R. & Campbell, J. H. Smooth muscle phenotypic changes in arterial wall homeostasis: Implications for the pathogenesis of atherosclerosis. *Exp. Mol. Pathol.* 42, 139–162. https://doi.org/10.1016/0014-4800(85)90023-1 (1985).
- 49. Lin, M.-E., Chen, T., Leaf, E. M., Speer, M. Y. & Giachelli, C. M. Runx2 expression in smooth muscle cells is required for arterial medial calcification in mice. *Am. J. Pathol.* 185, 1958–1969. https://doi.org/10.1016/j.ajpath.2015.03.020 (2015).
- 50. Saidak, Z. et al. Wnt/β-catenin signaling mediates osteoblast differentiation triggered by peptide-induced α5β1 integrin priming in mesenchymal skeletal cells. *J. Biol. Chem.* **290**, 6903–6912. https://doi.org/10.1074/jbc.M114.621219 (2015).
- 51. Dini, C. S. et al. Contemporary approach to heavily calcified coronary lesions. *Interv. Cardiol.* https://doi.org/10.15420/icr.2019.19.R1 (2019).
- Sage, A. P., Tintut, Y. & Demer, L. L. Regulatory mechanisms in vascular calcification. Nat. Rev. Cardiol. 7, 528–536. https://doi.org/10.1038/nrcardio.2010.115 (2010).

#### Acknowledgements

We thank the National Health and Nutrition Examination Survey.

#### **Author contributions**

Minjiang Ren: Conceptualization, Formal analysis, Writing—Original draft preparation; Yifan Shen: Conceptualization, Writing—Original draft preparation; Ye Yuan: Conceptualization, Methodology; Zhiyu Han: Conceptualization, Data curation; Yun Zhong: Conceptualization, Validation, Writing—review & editing; Shiming Liu:

Conceptualization, Supervision; Writing—review & editing; All authors read and approved the final manuscript.

#### **Funding**

There is no funding in this article.

#### **Declarations**

#### Competing interests

The authors declare no competing interests.

#### Ethics approval and consent to participate

The NCHS ethics review board approved the NHANES protocol. And each participant authorized the informed consent.

#### Additional information

**Supplementary Information** The online version contains supplementary material available at https://doi.org/1 0.1038/s41598-025-01848-9.

Correspondence and requests for materials should be addressed to Y.Z. or S.L.

Reprints and permissions information is available at www.nature.com/reprints.

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

**Open Access** This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="https://creativecommons.org/licenses/by-nc-nd/4.0/">https://creativecommons.org/licenses/by-nc-nd/4.0/</a>.

© The Author(s) 2025