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Abstract: Background: Ageing can be simply defined as the process of becoming older, which is 
genetically determined but also environmentally modulated. With the continuous increase of life 
expectancy, quality of life during ageing has become one of the biggest challenges of developed countries. 
The quest for a healthy ageing has led to the extensive study of plant polyphenols with the aim to prevent 
age-associated deterioration and diseases, including neurodegenerative diseases. The world of polyphenols 
has fascinated researchers over the past decades, and in vitro, cell-based, animal and human studies have 
attempted to unravel the mechanisms behind dietary polyphenols neuroprotection. 

Methods: In this review, we compiled some of the extensive and ever-growing research in the field, 
highlighting some of the most recent trends in the area.  

Results: The main findings regarding polypolyphenols neuroprotective potential performed using  
in vitro, cellular and animal studies, as well as human trials are covered in this review. Concepts like 
bioavailability, polyphenols biotransformation, transport of dietary polyphenols across barriers, including 
the blood-brain barrier, are here explored.  

Conclusion: The diversity and holistic properties of polypolyphenol present them as an attractive 
alternative for the treatment of multifactorial diseases, where a multitude of cellular pathways are 
disrupted. The underlying mechanisms of polypolyphenols for nutrition or therapeutic applications must be 
further consolidated, however there is strong evidence of their beneficial impact on brain function during 
ageing. Nevertheless, only the tip of the iceberg of nutritional and pharmacological potential of dietary 
polyphenols is hitherto understood and further research needs to be done to fill the gaps in pursuing a 
healthy ageing. 

Keywords: Bioavailability, blood-brain barrier, healthy ageing, neurodegenerative disorders, neuroprotection, polyphenols. 

INTRODUCTION 

 Neurodegenerative disorders (NDs) collectively refer to 
debilitating, life-threatening conditions that affect brain cells. 
As chronic and progressive neurological syndromes, they are 
caused by nervous system dysfunction resulting from neuronal 
cell failure [1], leading to impaired mental functioning 
(dementia) or movement complications (ataxia). These 
diseases can arise from hereditary or sporadic conditions, 
having a complex pathogenesis that triggers atrophy of 
central or peripheral structures of the nervous system [2]. 
Disease-modifying therapies to delay or reverse disease 
progression are not yet available, there is only a paucity of 
pharmacotherapy strategies focused on symptomatic relief. 

 More than 600 disorders have been described to afflict the 
nervous system such as Alzheimer's disease (AD), Parkinson's 
disease (PD), Huntington's disease (HD), amyotrophic lateral 
sclerosis (ALS), multiple sclerosis (MS), brain cancer, 
degenerative nerve diseases, encephalitis, epilepsy, genetic 
brain disorders, head and brain malformations, hydro- 
cephalus, stroke, and prion diseases. They are heterogeneous  
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and multifactorial pathologies, which affect different brain 
structures and have different etiologies. AD, PD and HD, as 
well as ALS, share the aggregation of misfolded proteins as 
common pathological processes, being collectively designated 
as protein conformational disorders [2, 3].

 AD is a clinical syndrome characterized by the progressive 
degeneration of hippocampus and neocortical brain neurons 
[4], which is responsible for the major disease symptoms – 
memory loss and cognitive decline. AD pathological hallmarks 
include the accumulation of extracellular amyloid plaques, 
majorly composed by amyloid-β peptides (Aβ40 and Aβ42) 
[5], and intracellular aggregates of hyperphosphorylated tau 
microtubule-binding protein, designated neurofibrillary 
tangles [6]. 

 PD is the most common motor neuron disease. Its clinical 
symptoms include muscle rigidity, bradykinesia, resting tremor 
and postural instability, caused by the loss of dopaminergic 
neurons in the substantia nigra pars compacta [7]. The 
cytoplasmic inclusions designated Lewy bodies (LBs), 
predominantly enclosing aggregated α-synuclein (αSyn) [8], 
are the major pathological hallmark of the disease. αSyn is 
highly expressed in the brain and its function is thought to be 
involved in the regulation of dopamine neurotransmission 
and synaptic function/plasticity [9-14]. 
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 HD displays a wide variety of symptoms including 
chorea, dementia, and emotional disturbance [15, 16]. It is 
characterized by neuronal demise especially in the striatal 
region of the basal ganglia. Genetic mutations causing HD 
are linked to the expression of N-terminal polyglutamine 
(polyQ)-expanded huntingtin (Htt) beyond a critical length 
of ~35 glutamine residues. The cleavage of these polyQ tails 
generates cytotoxic fragments with high propensity to cross-
link and form protein aggregates in both neuronal and glial 
cells [17, 18]. 
 ALS is a fatal motor neuron disease leading to death 
usually within 3-5 years after the disease onset, mostly due 
to respiratory failure. It is characterized by progressive 
muscle weakness, which frequently starts in the limbs, axial, 
bulbar, or respiratory muscles and afterwards generalizes 
relentlessly causing a gradual disability. The disease is 
caused by progressive loss of cortical, bulbar, and ventral 
cord motor neurons, with the major genetic risk factors being 
mutations in the genes encoding the superoxide dismutase 
SOD1 [19], the TAR-DNA-binding protein [20] and the 
fused in sarcoma or translocated in liposarcoma protein 
(FUS/TLS) [21, 22]. 

Epidemiology of Neurodegenerative Disorders 
 Dementia is responsible for the greatest burden of NDs, a 
recent estimation indicates that there is nearly 46.6 million 
people worldwide living with dementia [23]. The same study 
reveals that the number of new cases will almost double 
every 20 years, with 65.7 million by 2030 and 115-130 
million cases foreseen in 2050 [23, 24]. Given the huge 
social and economic impact of dementia in our society, it 
becomes imperative to develop strategies to prevent cognitive 
decline and to improve life quality of patients suffering the 
devastating effects of dementia-associated disorders. 
 AD represents the primary cause of dementia accounting 
for nearly 70% of known dementia cases and being one of 
the leading causes of mortality worldwide. Disease prevalence 
is estimated at 5.3 million Americans in 2015 [25], ranging 
between 3-7% in Europe and the US [26]. The incidence 
rates vary between 5-8 per thousand persons–years, which 
corresponds to half of new dementia cases each year [27, 
28]. Following AD, PD is the second most common ND. The 
Parkinson’s Disease Foundation predicts that PD affects 7-
10 million people worldwide. The prevalence rates vary 
from circa 50-300 per 100,000 individuals whereas the 
incidence rates are about 10-20 new cases per 100,000 
people annually [29, 30]. As a rare neurodegenerative condition, 
the global HD prevalence is 2.71 per 100,000 individuals, 
being higher in Europe, North America and Australia (5.70 
per 100,000) than in Asia (0.40 per 100,000), and the 
worldwide disease incidence rates are estimated at 0.38 per 
100,000 individuals-year [31]. Consistent with the very 
limited survival of patients suffering ALS, prevalence is 
quite low, ranging between 4-5 people out of 100,000 and 
accounting for 1/300 to 1/400 of all deaths in the US. The 
median annual incidence of the disease in Europe and the US 
is estimated at 0.7-2.5 per 100,000 individuals [29, 32]. 
 Altogether, these data reinforces the concomitant burden 
that NDs present in the develop world and the trend to 
increase over time. The need for novel therapies assisting to 

retard and prevent the development of NDs is imperative and 
must be the focus of research in this area, rather than finding 
new alternatives to treat symptoms in later stages of disease 
progression. 

Neurodegenerative Disorders and the Ageing of 
Population 
 Ageing is a central risk factor in the development of 
degenerative processes associated to NDs. According to the 
Organization for Economic Co-operation and Development 
[33], the likelihood of developing dementia increases from 
0.002-0.010% before the age of 65 [34] to 50% over the 95s 
in Europe [33]. Demographic ageing, incremented by the 
advances in medical care and living conditions, has therefore 
a profound impact on the increase of NDs prevalence [35]. 
Indeed, the expected increase in dementia prevalence to 
about 115 million by 2050 is largely correlated to population 
ageing as it is projected that the number of individuals aged 
above 60 years will reach 1.25 billion in the same period, 
accounting for 22% of the world’s population [24], with a 
particularly rapid increase in over-80s population. 
 Though ageing is considered a primary process in 
neurodegeneration, it differently influences the onset of the 
various NDs. Advancing age is the leading risk factor for 
AD, and disease onset usually occurs at the age of 65 [25]. 
Reports indicate that the risk of developing this disease 
almost doubles every five years after this age, as inferred by 
the incidence rates from 3 to as much as 69 per thousand 
individuals-year between the age of 65-69 and over the 90s, 
respectively [27, 28]. Likewise, PD majorly afflicts individuals 
over the 60s with higher median prevalence rates over 65s 
(9.5 per 1,000 persons) than in the overall population (max. 
3 per 1,000 persons) of US and European countries [29]. As 
a consequence, median PD incidence ratios are also much 
higher in individuals over the 65s (160 per 100,000 person-
years) than in the overall population (14 per 100,000 person-
years) [29]. On the other hand, HD is a midlife disease 
usually diagnosed in adults between 35-50 years of age. 
Age-specific prevalence and incidence studies considering 
the global population are scarce, being restricted to particular 
countries. For example, a study performed in Taiwan found 
that HD incidence peaked between 40-49 year-old age in 
men (0.23 per 100,000 per year) and 50-59 year-old age in 
women (0.24 per 100,000 per year) [36]. Epidemiologic 
reports on ALS indicate acceleration in the upward trend for 
prevalence and incidence rates in individuals over the 40s, 
with prevalence estimations around 5 per 100,000 population 
over 70s [29]. 

Socio-Economic Impact of Age-Related Disorders 
 The global cost of dementia, both in terms of financial 
costs and the burden of the disease, is huge and set to rise 
further as a consequence of demographic ageing, representing 
the fastest growing major cause of disability globally. Due  
to the close association of ageing and neurodegenerative 
disorders, ageing has been considered the greatest social and 
economic challenge of the 21st century and dementia has also 
become a key policy priority for countries worldwide. 
 According to Alzheimer’s Disease International, the 
burden of dementia affect society at the level of patient 
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itself, its family and caregivers, and at last the wider society, 
majorly impacting patient’s welfare as well as the quality of 
life of caregivers [23]. Dementia has significant social and 
economic implications in terms of direct medical, social care 
as well as informal care spending. Direct medical costs 
include hospital/nursing-home care, diagnostic and medication; 
direct nonmedical costs are associated to in-home day care; 
and indirect or intangible costs take into account the 
psychological pain of the patient and the loss of productivity 
of both patient and caregivers [37, 38]. For these reasons, 
dementia, especially AD, has been considered one of the 
costliest diseases for society at least in Europe and the 
United States [39, 40]. The current global costs associated to 
dementia are estimated at US$ 818 billion, 35.4% higher 
compared to the 2010 estimations (US$ 604 billion), 
representing 1.09% of global gross domestic product (GDP) 
[23]. It was estimated that in 2015 AD direct costs to 
American society would total circa US$ 226 billion and, 
unless measures are taken, in 2050 AD is projected to cost 
over US$ 1.1 trillion [25]. Regarding PD, the annual direct 
and indirect costs are estimated to be nearly US$ 25 billion 
in the US alone. Unlike AD, direct medical costs represent a 
substantial portion of the costs associated to PD, according 
to Parkinson’s disease Foundation. 

 In almost all the cases, as neurodegenerative diseases 
advance, there is an increase in dementia severity accompanied 
by increasingly deeper behavioural disturbances. The worsening 
of symptoms leads to the increase of caregiving time required 
for the provision of physical care. Therefore, measures to 
decrease cognitive decline, delay institutionalization or 
reduce caregiver needs will certainly provide economic 
benefits. Thus, the long-term goal of dementia policy is to 
develop effective preventive treatments and, if possible, to 
find a cure for these devastating diseases. In a short-term, a 
special attention has been given to the improvement of the 
quality of life of patients. In this frame, dementia is one of 
the priority conditions in the World Health Organization – 
WHO – Mental Health Gap Action Program (mhGAP), 
whose objective is to scale up care for dementia-associated 
neurological disorders [33]. Indeed, it is estimated that the 
development of treatments reducing severe cognitive 
impairment in older people by just 1% per year would cancel 
out the projected increases in the long-term care costs due to 
our ageing population (Alzheimer’s Research Trust). 

Healthy Ageing and Transition to Disease 

 Ageing is a complex, irreversible, progressive and  
natural process, which is characterized by morphological, 
psychological, functional and biochemical changes affecting 
the welfare and health of the individual. The WHO describes 
the quality of life associated with ageing as a “broad and 
subjective concept that integrates physical health, psychological 
state, level of independence, social relationships, personal 
beliefs and convictions and their relationship with important 
aspects of the environment”. The WHO also defines “Active 
Ageing” as the process of optimizing opportunities for 
health, participation and social security, to improve the 
quality of life with ageing. The maximization of the 
functional capacity and health of the elderly is conditioned 
by factors such as nutrition, physical and social activity,  

education, and genetic background (Fig. 1), which ultimately 
define healthy ageing. Some of these factors are not 
modifiable, such as genetic ones, while others (nutrition, 
physical and social activity, etc.) are subject to change (i.e. 
environmental, psychological, social and lifestyle). In this 
sense, nutrition and other environmental factors have a huge 
impact on health and wellbeing. The nutritional status of 
elderly people has been increasingly considered a key aspect 
for a healthy ageing and, therefore, nutrition emerges as a 
critical modifiable risk factor to be exploited in policy 
strategies to prevent or delay the onset of neurodegenerative 
disorders and dementia [41]. There are several evidences that 
a continuous and prolonged intake of fruit and vegetables, 
rich sources of compounds named polyphenols, may help in 
the prevention of several degenerative pathologies such as 
diabetes, cardiovascular diseases, neurodegenerative diseases 
and cancer, and to prevent symptoms associated to ageing 
and menopause [42, 43]. 

 If we consider the normal process of evolution of a 
healthy state to a disease state, we may resume that the 
evidences indicate an active role of dietary polyphenols to 
homeostasis maintenance, delaying or even reversing the 
transition from a healthy to a pathological state (Fig. 2). 
Then, nutrition and in particular bioactive polyphenols 
identified in the diet, are strong contributors to the 
maintenance of a healthy condition. Moreover, polyphenols 
can also constitute lead compounds as basis for developing 
new drugs and therefore contribute to a pharmacology 
intervention (Fig. 2). Thus, pharmacological and nutritional 
approaches can be considered for the study of polyphenols. 
The next sections will be dedicated to review the evidences 
for both approaches on a neuroprotection perspective. 

 

 

Fig. (1). Determinants of healthy ageing. The quality of life 
associated with ageing integrates different variables such as 
nutrition, physical and social activity, education, genetic background, 
and their relationship with the environment. Except for the genetic 
background, which is not modifiable, all the other aspects are 
subject to change. Nutrition has been increasingly considered a key 
aspect for a healthy ageing and emerges as a critical modifiable risk 
factor to be explored in research. 
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POLYPHENOLS AND NEUROPROTECTION 

 Phenolic compounds, commonly referred as polyphenols, 
constitute one of the most extensive and ubiquitous group of 
secondary metabolites in the plant kingdom. These 
compounds are characterized structurally by the presence of, 
at least, one hydroxyl functional group (-HO) linked to an 
aromatic ring [44]. Some compounds that do not present 
structural characteristics of polyphenols are commonly 
integrated in the group of polyphenols as “honorary”, such as 
phenolic acids or stilbenes. For this reason, recently the term 
“polyphenols” has been rewritten as “(poly)phenols” [45-47]. 

 Polyphenols represent an extremely differentiated group 
not only in terms of chemical structure but also in terms of 
their biological activity. They occur conjugated with sugars, 
carboxylic and organic acids, amines, lipids and other 
phenols. Different groups are classified in terms of the 
number of phenol rings that they encompass and according 
to the structural elements binding these rings [48, 49]. The 
main classes are represented in Fig. (3) and include phenolic 
acids, stilbenes, flavonoids, coumarins and lignans. 

 Hydroxybenzoic and hydroxycinnamic acids represent 
the two different groups of phenolic acids. The first ones can 
be found in plants, both free and esterified. Examples are 
gallic acid, present in fruits, herbs, tea and wine, or more 
complex compounds, the hydrolysable tannins such as ellagic 
acid, gallotannins and ellagitannins [50]. Hydroxycinnamic 
acids are generally represented by p-coumaric, caffeic, 
ferulic and sinapic acids, usually found glycosylated or 
conjugated with quinic, shikimic and tartaric acids [48, 50]. 
Chlorogenic acid, an ester of caffeic and quinic acids can be 
found in several fruits and vegetables and is highly abundant 
in coffee. Ferulic acid is present in large amounts in cereal 
grains [50, 51]. Stilbenes frequently present in roots, barks, 
rhizomes and leaves, are not routinely consumed. By 
opposition we have a highly valued stilbene, resveratrol, 
present in grapes and in red wine [52]. 

 The largest group of phenolic compounds in plants are 
flavonoids, with more than 10,000 different structures being 
identified [53]. The main classes of flavonoids are flavonols, 
flavones, isoflavones, flavanones, anthocyanins and flavanols. 
Monomers of flavanols (catechins), such as (+)-catechin and 
(-)-epicatechin, are relatively abundant in fruits, wine, 
chocolate and green tea [50, 54]. Proanthocyanidins, also 
known as condensed tannins, are constituted by dimers, 
oligomers and polymers of catechins. Proanthocyanidins can 
be found in fruits such as apples and grapes, in wine, cider, 
tea and beer, and also in cocoa [55]. Anthocyanins are 
glycosylated pigments, responsible for the colours of some 
flowers and fruits. 

Cognitive Health and Dietary Polyphenols: Epidemiological 
and Population Based Studies 

 The beneficial effects resulting from polyphenol intake 
have been extensively studied, as in the studies concerning 
the Mediterranean Diet (MeDi). MeDi is characterized by a 
high consumption of fruits, vegetables, and grains, as well as 
sea-fish on regular bases. It also includes a modest consume 
of wine and olive oil as the principal source of fat, both 
highly enriched in polyphenols. Additionally, the intake of 
meat, dairy products, sweets and convenience food is rather 
low in the MeDi [56, 57]. 

 A survey of studies reporting the effects of MeDi, carried 
out by WHO, revealed that it is a promising strategy to 
prevent diseases and to enhance quality of life (World Health 
Organization, 2009). Furthermore, epidemiologic studies 
over the last decades have supported the positive correlation 
between Mediterranean eating patterns and a large number of 
health benefits [58, 59], including (i) decreased risk of 
developing NDs; delayed AD and PD onset; (iii) lowered 
mortality in AD patients; and (iv) improved cognitive 
function [41, 60-62]. 

 

Fig. (2). Polyphenols in a nutritional or pharmacological approach: disease progression and transition from a healthy to a disease state. 
Through nutrition polyphenols can act in the prevention of disease, or in the restoration of a healthy state in earlier disease stages, even 
before detection of diagnostic markers or drug administration. Polyphenols can also be the basis for developing new therapeutic compounds 
and therefore contribute to pharmacological interventions. 
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 Polyphenols are abundant in MeDi and are believed to 
contribute to the beneficial effects of this diet when adopted 
in a regular basis, as revealed by studies showing that 
polyphenol-rich diets improve cognition, memory, learning, 
and vascular function in elderly people [63, 64]. The regular 
consumption of flavonoid rich-foods, representing the most 
common group of polyphenolic compounds in the human 
diet, has been associated to enhanced cognitive abilities and 
reduced risk of cognitive decline in aged individuals [65, 
66]. Indeed, a large-scale population study indicated that 
flavonoids intake decreased dementia as well as premature 
death due to dementia [66]. Remarkably, it was found a 
correlation between high polyphenol concentrations in urine 
samples of older adults and lower risk of cognitive decline in 
global cognitive function in a prospective population-based 
study over a 3-year period [67]. 

 Berries are a great source of polyphenols and wild 
blueberry diet supplementation was proved to improve 
cognitive function in older adults [68]. Increased consumption 
of berries and anthocyanins, as well as total flavonoids, was 
shown to be associated to a slower progression of cognitive 
decline in a large prospective cohort of older women [69]. 

Also, it was demonstrated that high anthocyanin consumption 
is associated with reduced risk of developing PD [70]. 

 Collectively, these epidemiological and population based 
studies support the hypothesis that polyphenol-rich foods or 
supplements have a positive impact towards NDs. How it is 
processed and by which mechanisms diet alterations may 
exert protective effects is still a field of intensive research 
that, in the future, may change our perspective of an effective 
treatment for NDs. 

Nutritional Relevance and Bioavailability of  
Polyphenols 

 Although polyphenols are not essential for humans, they 
have a positive impact on human nutrition. Polyphenols are 
widely spread in food, and the total polyphenols dietary 
intake could be as high as 100-150 mg per day, which is 
much higher than that of all other classes of phytochemicals 
[50]. Just for perspective, this is one order of magnitude 
higher than the intake of vitamin C and two orders of 
magnitude higher that the intake of vitamin E and 
carotenoids [71, 72]. Polyphenols main dietary sources are 
fruits and plant-derived beverages such as fruit juices, tea, 

 

Fig. (3). Main polyphenol classes with structure, name of representative compounds (in italic) and examples of food sources. 
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coffee, and red wine. Vegetables, cereals, chocolate, and dry 
legumes also contribute to the total polyphenol intake [50]. 
The amount of research that has emerged in the past years in 
order to better understand polyphenols health benefits 
discloses a glimpse of the huge potential they may present 
[73-75]. However for a deeper understanding of the effect of 
polyphenols in human health, their absorption, distribution, 
metabolism and excretion in the human digestive tract needs 
to be studied. 
 The most common polyphenols present in the human diet 
are not necessarily the most active inside the body, either 
due to a low inherent activity or due to their poor absorption, 
extensively metabolization and rapid excretion [50]. 
Throughout digestion, polyphenols suffer several chemical 
modifications and metabolism, and the bioavailable 
metabolites found in blood and tissues may diverge from the 
native compounds in terms of biological role. Many different 
models are used to obtain a deeper knowledge about these 
mechanisms, ranging from in vitro enzymatic activities, 
cellular models, animal models or even the man himself. 
Although many differences can be seen between human and 
other animals’ digestive process, animal studies have been 
essential for the current understanding gathered so far on 
polyphenols bioavailability and effects. 
 One of the major difficulties on studying the bioavailability 
of polyphenols relies on their structural differences, resulting 
in different metabolic fates among compounds. Although 
some reactions could be common, several differences in the 
polyphenols metabolism can occur among classes or even 
within the same class. 
 After ingestion, the availability of polyphenols,� often 
associated with fibre or complex carbohydrates in the food 
matrix, can be modified in the oral cavity by amylase digestion 
and, perhaps, by particle size reduction [76]. Afterwards, the 
effective release of the phenolic compounds in the stomach 
maximizes the potential for absorption in the small intestine 
[76]. Absorption occurs mainly at the duodenum and at  
the proximal half of jejunum, where enterocytes are the 
predominant cells, being responsible for the absorption (Fig. 4). 
Being lipophilic compounds, most flavonoid aglycones and 
phenolic acids permeate intestinal cells by passive diffusion 
[42, 77, 78]. Polyphenols in the form of esters, glycosides or 
polymers, usually present in plants, cannot be directly 
absorbed and they probably resist to acid hydrolysis in the 
stomach, being able to reach the duodenum [50]. 
 The absorption of glycosylated compounds is usually 
preceded by the hydrolysis of the glycoside and release of 
the aglycone (Fig. 4), by the enzyme lactase phloridzin 
hydrolase (LPH) in the brush-border of the small intestine 
epithelial cells. After hydrolysis, the free aglycone can enter 
the epithelial cells by passive diffusion [79]. Otherwise, 
glycosylated compounds are supposed to enter epithelial 
cells via the sodium-dependent glucose transporter, SGLT1, 
and be hydrolyzed by the cytosolic β-glucosidase (CBG), 
depending on the glycoside [80]. By opposition, the highly 
stable oligomeric and polymeric flavanols during digestion, 
are thought to have a very low absorption [81]. 
 Compounds that are not absorbed in the proximal 
gastrointestinal tract can reach the large intestine where 

absorption can also happen (Fig. 4). However, colonic 
microbiota can degrade complex polyphenols into low 
molecular weight phenolics, aromatic acids [82], and also 
into oxaloacetate and CO2 [83]. 
 As usually happens with xenobiotics, polyphenols can 
undergo enzymatic reactions known as ‘biotransformations’, 
phase I and phase II reactions [84] (Fig. 4). The resulting 
compounds are frequently less lipophilic so the body can 
more easily excrete them. 
 Phase III transporters are responsible for the final step in 
the elimination and/or detoxification of xenobiotics, resulting 
in the removal of the undesired compounds in faeces, urine 
and bile [85] (Fig. 4). These transporters are mainly constituted 
by the ABC protein family, including P-glycoprotein (P-gp), 
the multidrug resistance-associated proteins (MRP2, BCRP), 
and also by the solute carrier family (SLC) transporters [86, 87]. 
 Importantly, most of the conjugated-polyphenols are 
excreted in urine. However, the mechanisms by which these 
conjugated-polyphenols can return into the intestinal lumen 
or to bile, by the action of intestinal cells or liver parenchymal 
cells, respectively, should also be considered (Fig. 4). 
Several polyphenols were shown to be considerably better 
absorbed in the presence of additional polyphenols, interfering 
with efflux transporters (P-gp, MRPs, BCRP), which normally 
reduce the intracellular concentration of such “xenobiotics” 
and, in that case, lead to their excretion to the apical side [88, 
89]. On the other hand, transporters to the basolateral side 
are poorly understood. Compounds excreted into bile are 
eventually emptied in the duodenum. Usually, they are not 
absorbed in the small intestine, and reach the colon, where 
they can either be excreted into the faeces or be degraded by 
the colon microbiota, and be ultimately reabsorbed [90]. 
 Bioavailability of polyphenols is thus a multi-stage 
process comprising de-conjugation and possible catabolism, 
absorption, conjugation and excretion (Fig. 4). Moreover, the 
possible sequestration of some polyphenol metabolites inside 
tissues has been recurrently undetermined and may 
contribute to underestimation of the their bioavailability. The 
accessibility of polyphenol metabolites to the central nervous 
system is an example where the presence of an additional 
barrier, the blood-brain barrier (BBB), reduces even more 
polyphenols bioavailability, in addition to the described 
metabolism. This aspect will be further discussed below. 
Therefore, controlled target delivery to central nervous 
system (CNS) is desirable to optimize polyphenols in terms 
of efficiency, specificity and safety. 
 Formulations and methods for enhancing polyphenols 
bioavailability, solubility and stability in the human body 
have been patented, creating new derivatives with improved 
biological activity and stability [91]. Encapsulating 
polyphenols in nanoparticles can be a promising solution by 
enhancing their bio-distribution, solubility, and stability in the 
human body, while reducing their extensive metabolism. 
Nanoparticles-loaded polyphenols constitute an active area 
of research, with the goal to increase the oral bioavailability 
of poorly absorbed phenolic compounds. Sahni and co-
workers summarized the neurotherapeutic applications of 
nanoparticles loaded with curcumin, catechins or resveratrol 
for AD [92]. 
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NEUROPROTECTIVE POTENTIAL OF POLY 
PHENOLS 

 In addition to the epidemiological evidences already 
mentioned, neuroprotective evidences for polyphenols also 
result from in vitro, cellular, animal and clinical studies [63, 
93]. Another aspect to consider is that polyphenols can be 
studied either in a pharmacological or nutritional perspective 
as valid strategies to supply them to humans. Besides the 
form of delivery/route of administration we can consider 

studies focusing on pure compounds in contrast to the use of 
mixtures or whole extracts. Target and nontargeted meta- 
bolomic profiling have evolved and allowing identification 
of new potential bioactive metabolites and the definition of 
absorption kinetics [94-97]. 

 Neurodegeneration is a multifactorial process and 
polyphenols present pleiotropic effects (antioxidant, anti-
inflammatory, immunomodulatory properties) [98] due to 
their ability to modulate the activity of multiple targets 

 

Fig. (4). Schematic representation of absorption, biotransformation and excretion of polyphenols in the human body. Along the digestive 
process, polyphenol-rich food suffers transformations, starting in the mouth, stomach and throughout the entire gastrointestinal tract. The 
gastrointestinal tract is covered by the mucosa, which functions as a physical barrier, determining bioavailability of xenobiotics like 
polyphenols. This function is mediated by physical walls, metabolism and passive (solid arrows)/active (dashed arrows) transport 
mechanisms. Absorption occurs mainly at the duodenum and the proximal half of jejunum, in enterocytes. Enterocytes apical cell membranes 
contain microvilli, which increase the surface area of absorption. Passive intestinal permeability occurs mainly for aglycones and simple 
phenolic acids. Absorption of glycosylated compounds is usually preceded by release of aglycone through hydrolysis by lactase phloridzin 
hydrolase (LPH). Free aglycone can then enter the epithelial cells by passive diffusion. Alternatively, glycosylated compounds enter 
epithelial cells by the active sodium-dependent glucose transporter SGLT1 and are hydrolyzed by the cytosolic β-glucosidase (CBG). Once 
inside enterocytes, polyphenols can be extruded into the lumen by efflux transporters (P-gp, MRPs, BCRP). Compounds not absorbed reach 
the colon where they can be extensively metabolized by microbiota. Several transformations in polyphenols structure can occur. Most of the 
colonic metabolites are excreted in feces, although absorption can still take place. Then, polyphenols can undergo phase I and phase II 
reactions. Phase I reactions include oxidative and reductive reactions. Glucuronidation, sulfation and methylation are the most frequent phase 
II reactions. The conjugates, being more water soluble, are rapidly excreted through bile or urine [84]. Metabolites can then be transported 
into the bile (enterohepatic recirculation) and secreted back to the duodenum. Degradation of metabolites in the intestine generates 
catabolites available for reabsorption. 
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involved in pathogenesis, thereby halting the progression of 
these diseases. For many years, polyphenols were thought to 
protect cell constituents against oxidative damage through 
direct scavenging of free radicals. Such idea has become 
very popular leading to the appearance of several studies 
exploring extensively this property of polyphenols for NDs, 
since oxidative stress constitutes an important hallmark of 
these diseases. However, this concept now appears to be an 
oversimplified view of their mode of action. There is an 
emerging acceptance that polyphenols, as well as their 
metabolites, exert modulatory actions in proteins/enzymes 
through direct interaction with receptors or enzymes 
involved in signal transduction, such as protein kinase and 
lipid kinase signalling pathways [99]. Moreover, several 
neurochemical mechanisms underlying the protective action 
of plant polyphenols have been described: iron chelating 
properties [100]; modulation of signalling pathways related 
with neuronal survival and differentiation [99, 101]; 
inhibition of neuropathological processes [102, 103]; and 
regulation of mitochondrial function [104-106]. A recent 
review also addressed other positive effects of dietary 
polyphenols regarding brain health and cognition. Other 
mechanisms by which flavonoids can be neuroprotective 
include their positive role on peripheral and cerebrovascular 
blood flow, ultimately affecting synaptic plasticity processes 
and cognitive function [107].  

Mixtures vs. Pure Compounds 

 The study of pure compounds is limited to their 
molecular mechanisms in neurodegeneration cell models, 
and their specific biological effects in animal models. On the 
other hand, studies using pure polyphenols miss the 
synergies among different polyphenols. The presence of 
synergism and prodrugs in an extract can be misleading by 
using pure compounds [108]. Total extract from G. biloba, a 
well-known matrix used for treating peripheral vascular 
diseases and cerebrovascular insufficiency in the elderly, is 
more active than its isolated polyphenols [109, 110]. St 
John’s Wort extract is another example, since no single 
compound or even a group of compounds has been found to 
be responsible for its activity [108, 111]. Therefore, studies 
with polyphenol-enriched fractions can be not only useful to 
identify sources to isolate pure bioactive compounds  
but also for identifying mixtures of bioactive compounds. 
Since polyphenols are emerging key compounds for the 
development of novel therapeutic agents for NDs, the 
identification of the molecular targets of isolated polyphenols or 
identification of novel sources of neuroactive polyphenols has 
become an important area of research. 

 In the next sections, it will be summarized the evidences 
pointing out the neuroprotective activities of polyphenols 
regarding different types of studies: in vitro; cellular  
models and primary cell cultures; in vivo animal assays;  
and human trials. The approach used, either nutritional or 
pharmacological, will be highlighted. 

In Vitro Studies 

 The consensus fact that free radical-mediated reactions 
play an important role in both ageing and in the patho- 
physiology of most NDs lead to the extensive study of 

polyphenols chemical scavenging activity. One of the best 
studied source of plant polyphenols is G. biloba and its 
extract (EGb 761), which has been described to scavenge 
reactive nitrogen and oxygen species (RNOS) [112] and 
peroxyl radicals [113]. Direct scavenging of RNOS and 
peroxynitrite was also described for green tea [114] and for 
rosmarinic acid [115], respectively. 

 Substantial presynaptic cholinergic deficit is a feature 
registered in most NDs [116]. Malfunction of the cholinergic 
system may be tackled pharmacologically through inhibition 
of acetylcholinesterase [117], which catalyses the hydrolysis 
of the neurotransmitter acetylcholine (Ach) to choline. 
Therefore, AChE inhibition has been reported to ameliorate 
the symptoms of some NDs and has been used as a rationale 
to develop drugs to treat AD [118]. Green tea and white tea 
digested metabolites were described to inhibit AChE [119]. 
Additionally, a variety of plants with diverse phytochemistry 
features have been reported to exhibit AChE inhibitory 
activity [120] and, in some of these studies, polyphenols 
were the compounds associated with the plant extract 
activity [118, 121-126]. 

 Another common pathological hallmark of many NDs is 
the generation of aberrant misfolded proteins with formation 
of intra- or extra-cellular high-ordered insoluble fibrils deposits 
[127, 128]. Potent activities towards the several steps of 
fibrils formation are modulated either by plant extracts or by 
isolated compounds. For instance, inhibition of Aβ-peptide 
aggregation and fibril formation was described for: isolated 
catechins and procyanidins and fractions of EGb761 extract 
containing these flavonoids [129]; blueberry anthocyanins 
enriched extract [130]; grape seed extract [131]; epigallocatechin 
gallate (EGCG) [132, 133]; myricetin [134]; resveratrol 
derivatives [135-139]; gallotannins and some derivatives 
[140]. Moreover, the ability to destabilize preformed fibrils 
in vitro was also described for curcumin [141], catechins and 
procyanidins [129]. Similarly, the protein αSyn is an 
amyloidogenic polypeptide that forms cytotoxic oligomers 
and quercetin was described to reduce αSyn fibrillization 
[142]. It was also shown that EGCG redirect the aggregation 
of αSyn monomers and remodel αSyn amyloid fibrils into 
disordered oligomers [132, 143]. Recent studies also reported 
that Corema album polyphenolic extract acts as inhibitor of 
αSyn fibrillization by the stabilization of non-toxic αSyn 
oligomers [144]. Furthermore, quercetin has raised interest 
as therapeutic for cerebral ischemia/reperfusion (I/R) injury 
due its predicted inhibitory effects on MMPs activation and 
acid sensing ion channel 1a channels mediated downstream 
survival/damage mechanisms [145]. 

 In vitro studies are particularly relevant to determine the 
effect of polyphenols in specific pathological processes, 
without the interference of other cellular pathways. 
However, in vitro findings must be interpreted with caution, 
as some are not translated into cell and animal models. For 
instance, polyphenols present a very promising in vitro 
antioxidant capacity leading to the misconception that their 
cellular protection was mainly due to direct antioxidant 
scavenging. Studies with cellular and animal models were 
valuable to demystify this concept, and now we know that 
the mode of action of polyphenols go far beyond their 
antioxidant potential [146]. 
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Cellular Models and Primary Cell Cultures 

 Cellular models, although less physiological than animal 
studies, are very important to unravel the molecular 
mechanisms underlying the polyphenol protective effects 
observed in animals. Cellular assays allow to study the cross-
talk between pathways affected by polyphenols, giving a 
more integrated view of the metabolic pathways affected by 
these compounds. In contrast to in vitro studies, focused on a 
particular aspect or protein/enzyme function, in cellular 
models the whole cellular metabolism is evaluated. The 
complexity of these studies increases when analysing a 
mixture of compounds, as food extracts, in contrast to 
studies with pure compounds.  

 Several in vitro studies refer a general protection from 
oxidative stress effects either by direct scavenging activity or 
induction of antioxidant defences by plant polyphenolic 
extracts (see Table 1). Moreover, the effects of these extracts 
have also been explored for specific mechanisms hallmarks 
of NDs. 

 Protection from neurotoxicity induced by Aβ was 
observed for: G. biloba EGb 761 extract, in the neuro- 
blastoma cell line Neuro2a [147], PC12 cells [148] and in 
hippocampal primary neurons [149]; green tea extracts, in 
primary rat cortical neurons [150]; blueberry anthocyanin-
rich extract, in Neuro2a cells [130]; and Korean black 
soybeans anthocyanin-rich extract, in hippocampal HT22 
cell line [151]. Other mechanisms impaired by Aβ were also 
described to be ameliorated by some of these plant extracts. 
For example, EGb 761 improves oxidative phosphorylation 
performance and restores from Aβ-induced mitochondrial 
dysfunction [152]. Also, blueberry anthocyanin-rich extract 
increase microglial Aβ clearance, inhibit its fibrillation and 
suppress microglial activation in murine cell culture [153]. 
Similarly, the rescue of αSyn aggregation toxicity was 
described for C. album polyphenols extract in human 
neuroglioma cells [144]. 

 Neuroinflammation, another important hallmark of 
neurodegeneration, is also reduced by plant polyphenols 
extracts. Blueberry extracts attenuate inflammatory responses, 
inhibiting NO production and the release of the cytokines 
interleukin-1β and tumour necrosis factor-α in mouse brain 
BV-2 microglial cells [154]. Another anthocyanin-rich extract 
from açai reduce inflammatory stress signaling in BV-2 
microglial cells by the down-regulation of inducible nitric 
oxide synthase (iNOS), cyclooxygenase-2 (COX-2), p38 
mitogen-activated protein kinase (p38-MAPK), tumour necrosis 
factor-α (TNFα), and nuclear factor κB (NF-κB) [155]. 

 The studies described in this section have in common the 
use of complex mixture of compounds, most of them of 
dietary origin. However, these studies do not consider 
polyphenols metabolism and therefore they could only be 
considered in a pharmacological perspective with controlled 
target delivery to central nervous system (CNS). In fact, the 
described effects seen in these in vitro studies could be 
completely altered by metabolism. For example, blackberry 
extracts submitted to a simulated gastro-intestinal digestion 
reveal that neuronal protection to oxidative insult can be 
unrelated to the modulation of reactive oxygen species 

(ROS) and glutathione (GSH) levels, suggesting a pre-
conditioning effect by the induction of caspase activity [156, 
157]. On the other hand, Phellinus igniarius polyphenols 
also provided protection in a mouse stroke model [158]. 

 Studies with pure isolated compounds also revealed more 
specific and targeted potential neuroprotective applications. 
Catechins increased neuronal viability by modulation of 
signal transduction pathways, cell survival genes and 
mitochondria functions [reviewed in [159, 160], reduction of 
neurotoxins, and Aβ toxicity in several cell lines and primary 
cultures (Table 2). EGCG, in particular, prevented Aβ fibril 
formation [161] and inhibited caspase activation mediated by 
Aβ in hippocampal neurons, leading to increased viability 
[162]. 

 As a pure compound, the potential of resveratrol in NDs 
prevention have been extensively exploited. It was shown to 
reduce Aβ mediated accumulation of ROS and apoptosis in 
cell models [163], being its protection related with the 
modulation of NF-кB and SIRT1 pathways [163-165]. In 
yeast, resveratrol mimics caloric restriction, described to 
slow the pace of ageing, by stimulating Sir2 (the homologue 
of SIRT1), increasing DNA stability and extending life span 
by 70%, being therefore associated with a mitigation of age-
related diseases, including neurodegeneration [166].  

 Curcumin has also been pointed as a polyphenol with a 
plethora of protective activities. It exhibits intracellular 
antioxidant activities, anti-amyloid activities [167, 168] and 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) protective 
activity [169]. Moreover, studies reveal that curcumin also 
presented anti-inflammatory activity through inhibition of 
COX-2 in both rat primary microglial and murine BV2 
microglial cells [170], suppressed iNOS and inhibited NF-
κB and AP-1 activation [171]. 

 The flavonoid quercetin is also among the well-
characterized polyphenols in terms of biological activity. It 
increased cell survival upon treatment with H2O2, hydro- 
peroxide, tert-butyl hydroperoxide (TBHP), IL-1β and PD 
related toxins [reviewed in [172, 173]. Pre-treatment of 
primary hippocampal cultures with quercetin significantly 
attenuated Aβ-induced cytotoxicity, protein oxidation, lipid 
peroxidation and apoptosis [174]. 

 A limited number of studies have revealed the protective 
activity of other phenolics (see Table 2). Chlorogenic acid, a 
polyphenol present in coffee, was shown to protect cortical 
primary neurons against glutamate neurotoxicity, with potential 
for ischemic stroke treatment [175]. The 3-O-caffeoylquinic 
acid reduced neuroinflammation by reducing microglia 
mediated ROS production and neuronal excitotoxicity [176], 
whereas hesperetin, a flavanone glycoside abundant in citrus 
fruits, have also revealed neurprotective effects in mouse 
primary neurons [117] and in a rotenone-induced apoptosis 
human neuroblastoma SK-N-SH cells, considered a cellular 
model of PD [177]. Other study detected protective activity by 
less representative flavonoids (chrysin, puerarin, naringenin, 
genestein) in mesencephalic cultures from injury by MPP+ 
also a model of PD [173]. 

 Cellular models are indispensable to understand the 
molecular mechanisms of polyphenols and how they affect 
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Table 1. Neuroprotective evidences (in vitro, cellular models and animals) for the most representative plant polyphenolic extracts. 

Plant 
Extract 

In Vitro Cellular Models and Primary 
Cell Cultures 

Animal Model 

Ginkgo 
biloba/ 
EGb 761 

* Scavenged 
RNOS [112] 
and peroxyl 
radicals [113] 

* Inhibited of Aβ 
peptide 
aggregation 
and 
destabilized of 
preformed 
fibrils [129] 

* Protected from neurotoxicity 
induced by Aβ in N2a [147] 
and PC12 cells [148] and in 
hippocampal neurons [149]  

* ↓ Neuroinflammation [147] 
* Improved mitochondrial 

function [152] 
* Protection from oxidative 

stress [345] 

AD rodent models: 
* ↑ spatial learning and memory [178] 
* ↓decreased APP in the cortex [179] 

PD rodent models: 
* Potent neuropreventive/neurorecovery effects against 

neurotoxicity induced by MPTP/MPP+ [180, 181, 219] 
ALS rodent models: 

* Impart neuroprotective effects [182] 
Cerebral ischemia in rodents: 

* Protects neuronal destruction in the hippocampus [183] 
Hyperthermic brain injury: 

* ↓ Inducible nitric oxide synthase (iNOS) expression [346] 

Green tea * Scavenged 
RNOS [114] 

* Inhibited 
AChE [119] 

  

* Scavenging intracellular 
RNOS and induced 
endogenous antioxidant 
defences preventing DNA 
damage [114] 

* Protects primary rat cortical 
neurons against A -induced 
cytotoxicity [150] 

Ageing and neurodegeneration models: 
* ↓ Protein/lipid oxidation [184] 
* ↑ Spatial learning [184] 
* Modulation of glutathione levels and antioxidant enzyme 

activities [185] 
* ↑ CREB activation [185] 
* ↑ BDNF and Bcl-2 levels [185] 
* ↑ Cognitive and behavioural capacities [186] 
* Protects against deltamethrin-induced neurotoxicity in rat [187] 

AD rodent models: 
* ↓ Aluminium chloride toxicity [220] 

PD non-human primates model: 
* Alleviate motor impairments, dopaminergic neuronal injury, and 

aSyn aggregation [188] 

Grape seed 
extract and 
derivatives 

* Inhibited Aβ 
aggregation 
and 
cytotoxicity 
[131] 

*  IL-6 and respective mRNAs 
in primary culture of astrocytes, 
which functions as a 
neuroprotective paracrine, 
protected neuronal cells from 
death by oxidative stress [347] 

* Protects neuronal cells against 
low extracellular Mg2+ 
concentration and oxygen 
glucose deprivation-induced 
neurotoxicity, in cultured rat 
hippocampal neurons mediated 
by inhibition of glutamate-
induced calcium signaling and 
NO formation [348] 

AD rodent model: 
*  cognitive deterioration [103] 
*  cognitive function [189] 
*  oligomerization of A  peptides and amyloid plaques [103] 
*  microglial activation [190] 
*  extracellular-signal-regulated kinases (ERK) 1 and 2 in the 

brain, suppressing tau neuropathy [192] 
* Interferes with the assembly of A  peptides into neurotoxic 

aggregates [194] 
*  Spatial memory performance,  cognitive deterioration and 

A  neuropathy [195] 
HD rodent model: 

* Neuroprotective following oral administration [193] 

Berries and 
anthocyanin 
rich 
extracts 

* Inhibit the 
formation of 
Aβ peptide 
fibrils [130, 
137-139] 

* ↓ Toxicity of A  aggregates 
toward Neuro2a cells [130] 

*  A  aggregates clearance,  
↓ fibrillization and supressed 
microglia activation, in murine 
cell cultures [153, 154] 

* Protection of neuronal cultures 
from oxidative stress [349] 

* ↓ Neuroinflammation [155] 
* ↓ Neuronal death in cells 

expressing Aβ by improving 
cellular metabolism [151] 

Ageing and neurodegeneration rodent models: 
* Reverse age related deficits in spatial working memory (↑CREB 

activity, ↑ BDNF, phosphorylation of hippocampal Akt, activation 
of TOR and ↑ expression of Arc/Arg3.1 [196] 

* Delayed age-related motor and cognitive behavioural deficits 
[200, 201, 350, 351] 

AD rodent model: 
* ↓ cognitive degeneration [130] 
* Reverses Aβ-induced effects on protein expression: mitochondrial 

apoptotic pathway (Bax, cytochrome C, caspase-9 and caspase-3) 
and AD markers (Aβ, APP, P-tau and BACE-1) [151] 

* Pomegranate juice oral intake improved spatial learning, and 
reduced Aβ plaques [202] 
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Table 2. Neuroprotective evidences (in vitro, cellular models and animals) for the most representative pure polyphenols. 

Polyphenol In Vitro Cellular Models and Primary Cell 
Cultures 

Animal Model 

Cathecins 
(mainly 
EGCG) 

* Prevent Aβ fibril 
formation [132] 

* Redirect the 
aggregation of 
αSyn monomers 
and remodel 
αSyn amyloid 
fibrils into 
disordered 
oligomers [132, 
143] 

* ↑ neuronal viability, modulation 
of signal transduction pathways 
and mitochondria functions 16, 
[160] 

* ↓ neurotoxins and A  toxicity 
in cell lines and primary cultures 
[162, 173, 186, 352-354] 

* ↓ caspase activation mediated by 
A  in hippocampal neurons 
[162] 

Ageing and neurodegeneration rodent models: 

* Prevention of spatial learning and memory decline [203] 

* ↑ life span [204]; 

* Prevention brain inflammation [355] 

AD rodent model: 

* ↓ amyloidosis [102]; 

* Rescue memory impairment (↓ NF-кB pathway and ↓oxidative 
stress [161] 

* Restored mitochondria function in the brain hippocampus, 
cortex and striatum [206] 

MS rodent model: 

* Neuroprotective effects by modulating neuroinflammation and 
attenuating neural damage [205] 

Cerebral ischemia rodent model: 

* Ameliorated redox imbalance and limited inflammation [205] 

* EGCG improved age–related cognitive decline and protected 
against ischemia/reperfusion [221] 

Resveratrol * Inhibited the 
formation of Aβ 
peptide fibrils 
[130, 137-139] 

* ↓ Aβ toxicity [163] 

* Modulation of NF-кB and SIRT1 
pathways in cell models [163-
165]  

AD rodent model: 

* ↓ formation of amyloid plaques, without affecting APP levels 
[209] 

* Protection from Aβ neurotoxicity by inhibiting iNOS [222] 

* ↓ hippocampal neurodegeneration [164] 

PD rodent model: 

* ↓ neural inflammation (↓ mRNA levels of COX-2 and TNF-α 
in the substantia nigra) [210] 

* ↓ oxidative stress, lipid peroxidation, and protein carbonyl 
[225] 

HD rodent model: 

* SIRT1 activation [214] 

MS rodent model: 

* ↓ neural damage (↑ SIRT1) [212] 

* Prevention neural loss without immunosuppression [213] 

Cerebral ischemia rodent model: 

* Improve brain energy metabolism [223] 

* Modulation of the release of neurotransmitters and 
neuromodulators [224] 

Non-human primate study: supplementation increased spatial memory 
performance [211]  

Curcumin * Destabilized 
preformed 
fibrils [141] 

* Intracellular antioxidant 
activities and anti-amyloid 
activities [7, [168] and MPTP 
protective activity [169] 

* anti-inflammatory (↓COX-2) 
in both rat primary microglial 
and murine BV2 microglial 
cells [170] 

* ↓ iNOS and inhibition of NF-
κB and AP-1 activation [171] 

AD rodent model: 

* ↓ Aβ plaques, oxidized proteins and Interleukin-1 beta (IL-
1β) [141, 227] 

HD rodent model: 

* Counteract huntingtin aggregates formation and partial 
improvement of transcriptional deficits, as well as an 
amelioration of rearing deficits [215] 
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(Table 2) Contd…. 

Polyphenol In Vitro Cellular Models and Primary 
Cell Cultures 

Animal Model 

Quercetin * ↓ αSyn fibrillization 
[142] 

* ↓ Aβ induced cytotoxicity, 
protein oxidation, lipid 
peroxidation and apoptosis in 
cultured neurons [174] 

* Protected cells from oxidative 
insults, IL-1β and PD related 
toxins [172] 

* Control immune response via 
modulation of IL-1β and 
TNF-α and reduced the 
proliferation of peripheral 
blood mononuclear cells 
isolated from MS patients 
[356]. 

Neurodegeneration rodent models: 

* ↑ memory and synaptic plasticity upon chronic lead exposure 
[232] 

* Protection against colchicine-induced cognitive impairment 
[216] 

* Improved motor function in a model of acute spinal cord 
injury [228] 

AD rodent model: 

* ↑ Performance on learning and spatial memory tasks and 
greater risk assessment behaviour [233] 

* ↓ Extracellular β-amyloidosis, tauopathy, astrogliosis and 
microgliosis in the hippocampus and the amygdala [233] 

* ↓ Plaque burden and mitochondrial dysfunction (↑AMPK 
activity) and ↑ cognitive impairment [357] 

PD rodent model: 

* Neuroprotective by inducing antioxidant defences and 
ATPases [217] 

Cerebral ischemia rodent model: 

* ↓ Lesion [229] 

* ↓ Hippocampal neuronal death [230] 

* ↓ Apoptosis (activation of BDNF-TrkB-PI3K/Akt signalling 
pathway) [231] 

Rosmarinic 
acid 

* Scavenging 
peroxynitrite [115] 

* Protects neurons from 
oxidative stress [235, 358] 

AD and ALS rodent model: 

* Alleviated memory impairment, delayed disease onset and ↑ 
lifespan [201, 234] 

Hesperetin   * Cytoprotective effects in 
mouse primary neurons [117] 

* Cytoprotective in a cell model 
of PD induced by rotenone 
[177] 

AD rodent model: 

* Restore deficit in non-cognitive nesting ability and social 
interaction; attenuation on -amyloid deposition, plaque 
associated APP expression, microglial activation and TGF-  
immunoreactivity [218] 

 
 

cellular homeostasis. By studying pure polyphenols in 
cellular models specific mechanisms could be followed and 
attributed to the target compound. However, only by 
pharmacological approaches can be consider the scenario of 
the presence of these compounds in neuronal tissues. Studies 
are lacking to evaluate the effects of nutritional metabolites 
at the brain cells. Yet, in order to design nutritional  
or pharmaceutical approaches using polyphenols, it is 
mandatory to translate their benefits into animal models, and 
to study their effects at the level of the whole organism. 

In Vivo Animal Assays 

 Most of the evidences for neuroprotection in animal 
studies come from studies were foods or plant extracts are 
given orally to animals. Those are defined as nutritional 
(nutraceutical) interventions since polyphenols will cross  
the gastro-intestinal barrier and will be metabolized as 
dietary compounds. Only encapsulated compounds, intra- 
venous or other forms of delivery were considered in a 

pharmacological perspective. The reason for that is related 
with the significant impact that digestion and metabolism 
impose to the biological effects of polyphenols as described 
in the previous sections. 

Nutritional/Nutraceutical Interventions 

 EGb 761 has been shown to exert a protective effect in 
many models of neurodegenerative pathologies. In an AD 
transgenic mice, oral intake of G. biloba extract improved 
spatial learning and memory [178], and decreased APP in the 
cortex [179]. In PD animal models, EGb 761 exerted potent 
neuropreventive/neurorecovery effects against neurotoxic 
induced by MPTP/MPP+ [180, 181]. Oral administration of 
EGb 761 improved motor performance and survival, and 
protected against a loss of spinal-cord anterior motor horn 
neurons, in a mouse model of ALS carrying a mutation in 
SOD1 gene [182]. Protection was also observed in rodent 
models of cerebral ischemia and other neurodegenerative 
disorders [reviewed in [183]. 
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 Oral administration of green tea in animal models  
of ageing and of neurodegeneration prevented several 
dysfunctions, such as protein/lipid oxidation [184], improved 
spatial learning [184], modulated glutathione levels and 
antioxidant enzyme activities [185], increased cAMP 
response element-binding protein (CREB) activation [185], 
raised brain-derived neurotrophic factor (BDNF) and b-cell 
lymphoma 2 (Bcl-2) levels [185], as well as improved 
cognitive and behavioural capacities [186]. Oral ingestion of 
green tea extract also protected against deltamethrin-induced 
neurotoxicity in rat by improving the oxidative status and 
DNA fragmentation [187]. 

 Interestingly, a recent study provided the first evidence 
that tea polyphenols administered by oral gavage alleviate 
motor impairments, dopaminergic neuronal injury, and 
cerebral αSyn aggregation in MPTP-intoxicated parkinsonian 
monkeys [188].  

 Another source of polyphenols in the stardom is grape 
and its derivatives. Oral ingestion of grape seed polyphenol 
extract improved cognitive function [189] and reduced 
cognitive deterioration [103], Aβ oligomerisation [103], 
amyloid plaques and microglial activation in animal models 
of AD [190]. Moreover, its incorporation in diet attenuated 
extracellular-signal-regulated kinases [191] 1 and 2 signalling 
in the brain, suppressing AD tau neuropathy [192]. Oral 
administration of grape seed also exhibited potential for HD 
treatment by improving lifespan in a Drosophila model and 
attenuating motor skill decay in a rodent model of HD [193]. 
Recent studies reported that rat intestinal microbial meta- 
bolites from grape seed extract accumulated in brains and 
interfered with the assembly of Aβ peptides into neurotoxic 
Aβ-amyloid aggregates, with relevance to AD pathogenesis 
[194]. A derivative of grape, red wine, was shown to 
increase spatial memory performance, reducing cognitive 
deterioration and Aβ neuropathy in an AD transgenic mouse 
model [195]. 

 A blueberry-supplemented diet was also shown to reverse 
age-related deficits in spatial working memory through the 
increase of CREB activity, BDNF, the modulation of 
phosphorylation of hippocampal Akt, the activation of target 
of rapamycin (TOR), and the regulation of Arc/Arg3.1 [196]. 
To define the causal agents in the cognitive benefits of 
blueberry, the same authors tested diets with the pure 
flavanols, (−)-epicatechin and (+)-catechin and pure 
anthocyanins, and concluded that they were associated to the 
beneficial effects on memory in aged rats [197]. Furthermore, 
a diet containing blueberry anthocyanins prevented the 
cognitive degeneration in AD mice [130]. 

 Intake of berries such as pomegranate, strawberry, 
blueberry and blackberry ameliorated several aspects of 
memory and learning [198], delayed age-related motor and 
cognitive behavioural deficits in rodent models [199-201]. 
Pomegranate juice oral intake also improved spatial learning, 
and reduced Aβ plaques in transgenic mice expressing Aβ-
amyloid peptide [202]. In rats receiving anthocyanins orally, 
it was observed the reversion of Aβ-induced effects on the 
expression of proteins related with the mitochondrial apoptotic 
pathway (BCL2-associated X protein (Bax), cytochrome C, 
caspase-9 and caspase-3) and AD markers (Aβ, P-tau and 

Beta-secretase 1 (BACE-1) [151]. Administration of a cocoa 
polyphenolic extract orally to aged rats delayed the onset of 
age-related cognitive deficits and increased lifespan with 
improvements in cognitive performances [51]. 

 Several animal studies have been also performed for 
individual polyphenols present in the most neuroprotective 
extracts described earlier (catechins from tea, resveratrol 
from grapes and wine products, etc.) through dietary 
interventions. For instance, oral administration of catechin 
prevented spatial learning and memory decline in aged mice 
[203] and increased the lifespan in a senescence-accelerated 
mice model [204]. It also ameliorated redox imbalance and 
limited inflammation in rats with cerebral ischemia [205]. 
Catechin oral administration also rescued memory impairment 
induced by Aβ, through inhibition of the NF-кB pathway, 
and mitigated oxidative stress in the brain [161]. Further- 
more, EGCG oral intake restored mitochondria function in 
the brain hippocampus, cortex and striatum of a transgenic 
mouse model of AD [206]. An EGCG diet rescued 
transgenic mice of trisomy from morphogenesis defects, low 
BDNF levels and mnemonic deficits [207]. It also exhibited 
neuroprotective effects by modulating neuroinflammation 
and attenuating neural damage in an in vivo model of 
multiple sclerosis (MS) (gavage administration) [208]. 

 In an animal model overexpressing APP, a resveratrol 
rich diet reduced the formation of amyloid plaques, without 
affecting amyloid peptide levels [209]. Furthermore, oral 
administration of resveratrol exhibited a positive effect in PD 
animal models, as it reduced neural inflammation by 
lowering mRNA levels of COX-2 and tumour necrosis factor 
(TNF-α) mRNA in the substantia nigra [210]. In a non-
human primate, diet supplementation with resveratrol for 18 
months increased spatial memory performance compared to 
placebo [211]. In agreement with this, in animal models of 
MS, resveratrol oral intake was found to attenuate neural 
damage through SIRT1 activation [212] and prevented 
neural loss without immunosuppression [213]. Regarding 
HD, oral gavage of resveratrol also shown a beneficial effect 
via SIRT1 activation in a transgenic mouse model [214]. 

 Curcumin also reduced Aβ plaques, oxidized proteins 
and Interleukin-1 beta (IL-1β) in AD transgenic mice, by 
administrating curcumin to diet [141], whereas it 
counteracted HD aggregates formation [215]. 

 Quercetin protects against colchicine-induced memory 
impairment and oxidative damage in rats [216]. In PD  
in vivo models, quercetin oral administration showed to  
be neuroprotective by inducing antioxidant defences and 
ATPases [217]. 

 Hesperidin, a flavanone glycoside found abundantly in 
citrus fruits, was orally given to a transgenic mouse model  
of cerebral amyloidosis for AD [218]. Fascinatingly, after  
a relatively short-term treatment of 10 days, hesperidin 
significantly restored deficits in non-cognitive nesting ability 
and social interaction. A significant attenuation on β-amyloid 
deposition, plaque associated amyloid peptide expression, 
microglial activation and transforming growth factor beta 
(TGF-β) immunoreactivity was observed in the brains of 
mice [218]. 
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Pharmacological Interventions 

 Several attempts were done with a more pharmacological 
approach, by direct injection of bioactive polyphenols to the 
organism with the aim to circumvent its metabolism and 
improving their efficacy. Some examples are explored 
bellow in this section. 

 In a mice model of PD, EGb 761 administered by 
intraperitoneal injection before or after MPTP treatment 
protects against nigrostriatal dopaminergic neurotoxicity 
involving the inhibition of brain monoamine oxidase [219]. 

 Green tea extract injected into the hippocampus region of 
rat brain reduced aluminium chloride toxicity, associated 
with AD [220]. In animal models, EGCG administered by 
intraperitoneal injection improved age–related cognitive 
decline and protected against ischemia/reperfusion [221] as 
well from amyloidosis in AD mice models [102]. 

 In an AD mouse model injected with Aβ, intra- 
cerebroventricular injection of resveratrol protected from  
Aβ neurotoxicity by inhibiting iNOS [222]. Reduced 
hippocampal neurodegeneration has also been shown after 
intracerebroventricular injection of resveratrol in rodent 
models of AD/tauopathies [164]. In rat models of ischemic 
injury, intraperitoneal injection with resveratrol improved 
brain energy metabolism [223], along with modulation of the 
release of neurotransmitters and neuromodulators [224]. 
Resveratrol was also tested by intraperitoneal injection on a 
6-hydroxydopamine (6-OHDA)-induced Parkinson's disease 
(PD) in rats and revealed attenuation of oxidative stress, lipid 
peroxidation, and protein carbonyl content [225]. Recently, 
resveratrol was shown to reduce cell death in ovariectomized 
female rats subjected to chronic cerebral hypoperfusion 
[226]. 

 Notably, curcumin when injected in the tail vein of an 
AD rodent model was able to cross the BBB, target and 
disrupt existing plaques in [227] and also reduced Aβ plaques, 
oxidized proteins and IL-1β in AD transgenic mice [141]. 

 Intraperitoneal administration of quercetin improved 
motor function in a model of acute spinal cord injury [228], 
reduced ischemic lesion [229], as well as hippocampal neuronal 
death [230], and cell apoptosis in a rat model of cerebral 
ischemia [231]. By the same route, quercetin improved 
memory and synaptic plasticity upon chronic lead exposure 
in rats [232]. In a triple transgenic AD model, quercetin was 
able to reverse the histopathological hallmarks of AD and to 
ameliorate cognitive and emotional impairments [233]. 

 A rosemary phytochemical, rosemarinic acid, alleviated 
memory impairment mediated by Aβ, delayed disease onset 
and increased lifespan in AD mouse models [234]. Rosemary 
extract and rosmarinic acid also prevented ALS degeneration 
in mouse models of the disease after intraperitoneal injection 
[201]. Carnosic acid, also present in rosemary, crossed BBB 
and preserved GSH levels in mouse models of ischemia/ 
reperfusion after intraperitoneal injection [235]. 

 An integrated view of in vitro, cellular and animal model 
studies either with food or plant extracts (Table 1) or pure 
compounds (Table 2) reveals the whole panorama of 
knowledge gathered for polyphenols, and clearly reinforces 

their neuroprotective potential. Although human trials are 
more reliable and the closest approach to human physiology, 
they are time and cost consuming. The animal in vivo and 
cellular assays have constituted an unparalleled tool to 
dissect mechanisms of action, and for genetic and compound 
screening assays. On the other hand, the in vitro assays are 
crucial to understand the interaction of polyphenols with 
proteins, metals or other small molecules, by excluding cell 
components interference and serving as a fundamental tool 
to tune the overall picture revealed by cell studies. 

Human Trials 

 Human clinical trials to ascertain the impact of 
polyphenols in neurodegenerative diseases and ageing are 
still very scarce. Although allusive of a protective role in 
neurodegeneration, there is still too many fragmented 
evidences to build an integrated picture with the mechanistic 
studies. 

 Most of the human trials with G. biloba were inconclusive 
[236] and its long-term oral intake did not affect the 
prevalence of cerebral Aβ deposition [237]. Nevertheless, 
recently, positive results were obtained with G. biloba extract 
in ischemic stroke [238] and in children with attention deficit 
hyperactivity disorder [239]. A recent systematic review and 
meta-analysis about the efficacy and adverse effects of G. 
biloba for cognitive impairment and dementia concluded that 
it stabilizes or decelerates the decline in cognition, function 
and behaviour, at 22-26 weeks administration, especially for 
patients with neuropsychiatric symptoms [240]. 

 Concerning green tea extracts, human studies revealed 
the increase of brain activity in the dorsolateral prefrontal 
cortex, an area involved in memory processing [241]. Recently, 
consumption of green and black tea by healthy volunteers 
increased the brain theta waves as measured by a simplified 
electroencephalogram, suggesting a role in cognitive 
function, specifically alertness and attention [242]. Moreover, 
EGCG reduced cognitive deficits in a pilot study with Down 
syndrome individuals, with effects on memory recognition, 
working memory and quality of life [243]. 

 Recently, Brickman and co-workers [65] reported that a 
high cocoa flavanol-containing diet over 3 months enhanced 
memory function and improved related activation in the 
dentate gyrus, the hippocampus region characterized by life-
long neurogenesis, in comparison to a cocoa diet low in 
flavanol, in a randomized study with healthy old subjects 
using functional magnetic resonance imaging (MRI). In the 
Cocoa Cognition and Ageing (CoCoA) study, consumption of 
cocoa flavonols for 8 weeks improved cognitive performance 
in a group of cognitively intact older adults [244]. 

 In an intervention study, blueberry juice supplementation 
improved memory in older adults [68]. Also, supplementation 
with Concord grape juice enhanced neurocognitive function 
in older adults with pre-described mild cognitive impairments, 
which was supported by studies on brain activity using 
functional magnetic resonance imaging [245]. 

 There are several studies examining flavanols and 
anthocyanins neuroprotective properties in humans but little 
investigation into the flavonoid subclass known as flavanones. 
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This is an incredible gap because orange juice, a rich source 
of flavanones, is one of the most-commonly consumed  
juices throughout the world. A recent study evaluated the 
consumption of flavanone-rich orange juice over 8 weeks 
and concluded that there was an association with benefits for 
global cognitive function in healthy older adults, in 
comparison to the consumption of a low-flavanone control 
juice [246]. Moreover, the same authors observed that 
ingestion of a flavonoid-rich orange juice promoted acute 
cognitive benefits over 6 h in healthy middle-aged adults 
[247]. 

 Only a few placebo-controlled interventional studies  
are available to date concerning resveratrol cognitive 
improvements. Kennedy et al. (2010) [248] assessed the 
effects of oral administration of resveratrol on cognitive 
performance, in a randomized control trial crossover study in 
22 healthy adults, with the result that even single doses of 
orally administered resveratrol could modulate cerebral 
blood flow variables, measured using MRI [248]. 

 A recent study examined the effects of curcumin on 
cognition and mood in a healthy older population. Working 
memory and mood were significantly improved following 4 
weeks treatment, confirming the potential psychological and 
cognitive benefits of curcumin in an older population [249]. 

 On the other hand, a contradictory study in a large 
community sample, with a 12-week supplementation of 
quercetin, provided evidence that quercetin may not have an 
ergogenic effect on neurocognitive functioning [250], 
consistent with a growing body of literature raising concerns 
about the generalization of findings from in vitro and animal 
quercetin research to human populations. 

 Some human studies have been performed for dietary 
formulations that include mixtures of polyphenols or 
polyphenols with other compounds, highlighting possible 
synergies between constituents. For instance, in a double-
blind, clinical trial with older adults by Small and colleagues 
[251], the intake of a pill-based nutraceutical that contained a 
proprietary formulation of blueberry, green tea, carnosine, 
vitamin D3 and biotin, resulted in significantly increased 
processing speed. Also, in healthy overweight older 
individuals, a daily intake of a formulation containing 
resveratrol and quercetin significantly improved memory 
performance [252]. 

 However, for polyphenols to reach the brain they have to 
be able to cross BBB. An increasing body of evidence 
regarding this subject has been collected and discussed in the 
next chapter. 

POLYPHENOLS AND RESTRAINS: INTERACTION 
WITH BARRIERS AND BEYOND 

 The extensive metabolism to which dietary polyphenols 
are submitted once ingested, either in the intestine, liver and 
or in cells, leads to the arise of a broad range of polyphenol 
derivatives. Despite accumulating evidence concerning 
polyphenols neuroprotection (see Tables 1 and 2), and 
assuming the effective transport/distribution/delivery of 
dietary polyphenol metabolites to target tissues, we also need 
consider the existence of other barriers that must be crossed 

by these polyphenols metabolites or, at least, be able to alter 
the surrounding environment in order to induce responses in 
the target organs. 

Blood-Brain Barrier 

 The existence of three layers of barrier at the CNS limits 
and regulates molecular exchanges between the blood and 
the neuronal tissue, or its fluidic spaces: i) the BBB, majorly 
constituted by cerebrovascular endothelial cells, located 
between the blood and the brain interstitial fluid; ii) the 
choroid plexus epithelium, located between the blood and 
ventricular cerebrospinal fluid; iii) and the arachnoid 
epithelium, located between the blood and subarachnoid 
cerebrospinal fluid [3]. In particular, the choroid plexus is 
responsible for the transport of vitamins, small peptides, 
amino acids, inorganic ions and hormones to the 
cerebrospinal fluid [253]. Among the different barriers of the 
CNS, the BBB exerts the highest control over the close 
microenvironment of brain cells, since its surface area is 
5000 times larger than the blood-cerebrospinal fluid barrier, 
having a dominant role in providing nutrients for the brain, 
as well as controlling metabolites, like polyphenols, 
accessibility to neuronal cells [254]. 

 The BBB is a dynamically selective and complex 
interface, protecting the CNS from toxic compounds and 
pathogens, acting as a border between the periphery and the 
brain [255]. Besides the microvascular endothelial cells that 
comprise the anatomical basis of the BBB, it is surrounded 
and interacts with perycites, astrocytic endfeet, microglia and 
neurons, which constitute the neurovascular unit (Fig. 5) 
[254, 256, 257]. The neurovascular unit complexity, together 
with the tight control exerted by the brain endothelium due 
to the presence of intracellular tight junctions, lack of 
fenestrations, low pinocytic activity and efflux pumps, 
controls the passage of the smallest polar molecules and 
macromolecules [254, 258, 259] (Fig. 5). Polyphenols are no 
exception, in order for them or their metabolites to access the 
brain, they must cross a tightly regulated, selectively 
permeable endothelial layer. As a growing number of 
biological effects have been attributed to these molecules in 
the past few years, attention to their role as modulators of the 
transport capacity of epithelial barriers has also received 
great attention.  

 Youdim and co-workers have elucidated the  
polyphenols permeation through the BBB [260, 261]. They 
suggested that polyphenols transmembrane diffusion  
in vitro is related with its lipophilicity, where less polar 
derivatives (e.g. methylated derivatives) are capable of 
higher brain uptake than more polar metabolites (e.g. 
sulphated and glucuronides). Accumulating evidence of 
polyphenols uptake by the BBB reinforces their putative 
potential in a neurological context. Nevertheless, it is  
not yet totally clear whether the primary route by which 
polyphenols cross the BBB is simple diffusion or carrier-
mediated transport [262]. To date, only a few compounds 
from each flavonoid subclasses have been studied, and there 
is limited knowledge on the effects of flavonoid structure on 
their bioavailability at the brain level. Therefore, the true 
mechanisms by which flavonoids and their circulating 
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metabolites interact with the BBB remain a hot topic in 
neuroscience research. 

 Considering polyphenol and their metabolites permeability 
across the BBB, the existence of different specialized 
transporters in the plasma membranes of luminal (blood) and 
abluminal (brain) sides of the endothelial cells should be 
taken into account. The endothelial cells permeability to 
polyphenols is particularly influenced by the expression 
profile, functionality and precise location/orientation of efflux 

transporters, solute carriers and organic-anionic transporters 
[263]. Nevertheless, there are strong evidences of the effective 
capacity of polyphenols to reach the brain and exert 
neuroprotection, and it is an ever-growing field of 
investigation (Table 3). 

 In terms of uptake, there is evidence suggesting that 
transport mediated by glucose transporter 1 (GLUT1), organic 
anion transporters (OATs) and organic anion-transporting 
polypeptide (OATP1A2) may affect the distribution of 

 

Fig. (5). The neurovascular unit. The BBB is composed by endothelial cells, astrocytes and perycites, where endothelial cells form a 
boundary between the blood and the CNS. The flux of nutrients and metabolites from the blood to the CNS is regulated by the BBB, which 
controls their availability by transport systems. Transport across the BBB occurs via several pathways: lipid-mediated diffusion (transcellular 
transport), paracellular diffusion, carrier-mediated transport through proteins, receptor-mediated transcytosis and absorptive-mediated 
transcytosis. Besides these pathways, active efflux transport through ABC transporters such as P-gp, BCRP and MRPs family also takes 
place, in order to prevent the entry and accumulation of harmful substances to the brain. 
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flavonoid glucoronides into the brain, in a similar fashion to 
other glucoronidated metabolites [264, 265]. In fact, the 
presence of these glucoronidated metabolites can be partially 
derived, due to the high expression of both GLUT1 and 
OAT1A2 on both luminal and abluminal membrane of  
 

endothelial cells. In a recent study, the authors successfully 
localized quercetin-3-O-glucuronide, a major phase-II 
metabolite of quercetin, in human brain tissue, namely at 
epithelial cells of the choroid plexus and also in 
macrophages [266]. 
 

Table 3. Evidences of polyphenol transport at the BBB and neuroprotective potential, concerning interaction studies with ABC 
efflux transporters expressed in endothelial cells at the BBB. P-gp - P-glycoprotein, MRP - multidrug resistant protein, 
BCRP - breast cancer resistant protein, BMEC - brain microvascular endothelial cells, TR-rats - transport deficient rats. 

Polyphenol 
Evidence of BBB 

Penetration 
Evidence of 

Neuroprotection 
Efflux Transporter 

Interaction 
Experimental Setup Refs. 

P-gp inhibitor Rat BMEC [307] 

P-gp inhibitor CCRF-CEM, CEM/ADR5000 leukemia cells [308] Apigenin  Yes [307] Yes [307] 

BCRP inhibitor MDA-MB-231-BCRP cells [308] 

P-gp activator NIH-3T3-G185 cells [189] 

MRP2 substrate Caco-2 cells [311] 
Catechin / 

epicatechin 
Yes [278] Yes [309, 310] 

MRP1/MRP2 substrate MDCKII/MRP1 cells & MDCKII/MRP2 cells [312] 

P-gp inhibitor Mouse BMEC [315] 

MRP2 substrate Caco-2 cells [316] Chrysin N. D.  Yes [313, 314] 

BCRP inhibitor MCF-7 MX100 cells [317] 

P-gp inhibitor MCF-7 cells [319] 
Curcumin Yes [227] Yes [318] 

BCRP inhibitor Rat brain capillaries [320] 

Fisetin Yes [321] Yes [321] MRPs inhibitor Caco-2 cells [322] 

P-gp inhibitor MCF7/BC19-3, rats [326, 327] 

MRP2 inhibitor TR-rats [328] Genistein Yes [323] Yes [324, 325] 

BCRP inhibitor K562/BCRP cells [329] 

P-gp inhibitor Mouse BMEC [315] 
Hesperitin Yes [260] Yes [330] 

BCRP inhibitor ABCG2 over-expressing cells [331] 

P-gp inhibitor Mouse BMEC [315] 

MRPs inhibitor Human glioblastoma cell line T98G [333] Kaempferol Yes [307] Yes [332] 

BCRP inhibitor MDCK/Bcrp1 cells [334] 

P-gp inhibitor MCF-7/ADR cells [336] 
Myricetin Yes [335] Yes [335] 

BCRP inhibitor HEK293/ABCG2 cells [280] 

P-gp inhibitor Mouse BMEC [315] 
Naringenin Yes [287, 337] Yes [338] 

MRPs inhibitor HEK293/ABCG2 cells [280] 

P-gp inhibitor Mouse BMEC [315] 

MRPs inhibitor HEK293/MRP1, HEK/MRP4, HEK/MRP5 cells [340] Quercetin Yes [261] Yes [339] 

BCRP inhibitor ABCG2 over-expressing cells [331] 

P-gp inhibitor MCF-7/ADR cells [343] 
Resveratrol Yes [341] Yes [342] 

BCRP inhibitor ABCG2 over-expressing cells [331] 

Rutin Yes [307] Yes [344] P-gp inhibitor Rat BMEC [307] 
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 Microdialysis sampling in rats also showed that (+)-
catechin and (-)-epicatechin could pass through the BBB 
[267]. In fact, several polyphenols have been identified in 
different brain regions of the rat [268, 269] and pig [270, 
271], usually accumulating in a nonregion-specific manner 
[272]. Several animal studies also indicate that polyphenols 
are able to cross the BBB and co-localize within the  
brain tissues independently of their route of administration: 
epigallocatechin gallate [273], epicatechin [274], and 
anthocyanins [269, 275] were detected in the brain after oral 
administration; naringenin and its glucuronide were identified 
in the cerebral cortex, after intravenous administration [276], 
and intravenously administered hesperetin was also detected 
in the brain, especially in the striatum [277]. 

 Another study has examined the permeability of 
flavonoids and their known circulating metabolites across an 
in vitro model of the BBB [260]. Hesperetin, naringenin, and 
their respective in vivo glucuronides, as well as the 
anthocyanins cyanidin-3-rutinoside and pelargonidin-3-
glucoside, all showed measurable permeability. In another 
study, both catechin and epicatechin could cross a cellular 
model of BBB in a time-dependent and stereo-selective 
manner, with epicatechin presenting a substantially higher 
transport than catechin [278]. In vitro transmembrane transport 
of different flavonoids (flavonols, flavan-3-ols and anthocyanins) 
and some of their methylated and glucoronidated metabolites 
was also observed, where in most cases the metabolites 
exhibited higher transport efficiency than their parent 
compounds [279]. All these collected data strongly suggests 
the effective uptake of dietary polyphenols and their 
metabolites through the BBB endothelium, reinforcing their 
ultimate neuroprotective potential. 

Polyphenols as Modulators of Membrane Transport 

 Importantly, polyphenols have also shown to be able to 
modulate the activity of some ATP-binding cassette 
transporters (ABC transporters). The ABC transporters are 
efflux pumps responsible for controlling the bioavailability 
of many xenobiotics, being vastly present in the epithelia of 
the gut, placenta and BBB, as well as in cancer cells. Cancer 
cells tend to overexpress these ABC transporters, which 
confers them bigger resistance to chemotherapy [280]. 

 Several studies have demonstrated inhibition of ABC 
transporters by flavonoids (Table 3). The interaction between 
flavonoids and ABC-transporters could be advantageous for 
poorly absorbed drugs; otherwise, this interaction could also 
lead to drug intoxication, particularly in the context of drugs 
with a narrow therapeutic window. Additionally, some 
flavonoids are themselves substrates of the most phar- 
macologically relevant ABC transporters: P-gp, multidrug 
resistant protein type 2 (MRP2) and breast cancer resistant 
protein (BCRP) [281]. 

 For example, it was shown that extracts from St John’s 
Wort upregulate the expression of P-gp at intestinal level, 
which could ultimately reduce the bioavailability of substrate 
pharmaceuticals [282]. On the other hand, diterpenes, 
triterpenes and carotenoids, naturally occurring lipophilic 
phytochemicals, were able to inhibit human P-gp in vitro at a 
low range, while other combinations had a synergistic 

activity [146, 283]. Quercetin, hypericin and kaempferol 
were shown to promote the cellular uptake of ritonavir on P-
gp overexpressing cells [284]. Besides, both in vitro and in 
vivo assays (only with short-term exposure) with these 
polyphenols inhibited the action of efflux pumps and 
increased substrate bioavailability; in vivo assays of chronic 
exposure boosted the expression of P-gp and lead to a 
reducing bioavailability of substrate drugs [285, 286]. 

 Besides their modulation of ABC transporter function, 
polyphenols can also be substrates of these transporters, a 
property that can dramatically limit their bioavailability. 
Youdim and co-workers have showed the limitations that 
quercetin has to BBB transposition: when co-administrated 
with a P-gp or BCRP inhibitor, this polyphenol was able to 
enter epithelial cells of the BBB, possibly by passive 
diffusion due to its hydrophobicity, but was then specifically 
exported by the BCRP [260]. Such phenomenon explains, at 
least in some extent, why quercetin and resveratrol presented 
very limited bioavailability, despite the amount ingested 
[287, 288]. 

 Taking all this information into account, it could be 
interesting to explore the combination of an inhibitor of the 
ABC transporters and a beneficial polyphenol, in order to 
increase the accumulation of such polyphenol in the target 
region and potentiate its efficiency. The co-administration of 
a quercetin-rich product and an inhibitor of BCRP may 
increase quercetin’s access into the brain and then unleash 
novel bioactivities from this polyphenol [289]. In addition, if 
the inhibitors of ABC transporters themselves are orally 
bioavailable, they may assist polyphenols transport through 
the BBB [261]. 

Blood-Testis Barrier & Placenta 

 Besides brain integrity, mainly protected by the presence 
of the BBB, the insurance of life perpetuation and preservation 
must not be disrupted by foreign molecules in the human 
body. The presence of barriers protect germ cells and foetus, 
saving from harm the new life-to-be inside pharmacological 
sanctuaries. These pharmacological sanctuaries have highly 
restricted access to exogenous compounds, and where 
polyphenols, contrarily to other metabolites, may have an 
open door. 

 The blood-testis barrier (BTB) is one of the tightest 
blood-tissue barriers in the mammalian body and it separates 
the seminiferous epithelium into the basal and the apical 
compartments [290]. A specialized and unique micro- 
environment is safeguarded by the BTB, where meiosis, 
spermiogenisis and spermiation occur. BTB controls the 
entry of nutritional compounds, vital molecules (such as 
hormones and electrolytes) and also harmful toxicants, into 
the compartment in which post-meiotic germ cell development 
takes place [290]. 

 On the other hand, the placenta constitutes the link 
between the mother and the developing foetus, performing 
several strict functions that are essential for the maintenance 
of pregnancy and normal foetal development. The placenta 
mediates the uptake of nutrients between the mother and the 
foetus, eliminating metabolic waste fetal products. This 
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capacity is mediated due to the presence of transporters at 
the maternal-facing brush-border membrane and at the 
foetal-facing epithelial basal membrane. It is the activity of 
these specialized transporters that will largely determine the 
extent at which organic compounds will cross the placenta 
and enter the foetal blood circulation [291]. 

 Recently, it was demonstrated that prenatal stress can 
reduce mitochondrial content and antioxidative capacity, 
while increasing oxidative stress in the hippocampus of 
offspring, contributes to decreased neurogenesis and 
cognitive function. Impressively, maternal hydroxytyrosol 
administration successfully promoted cognitive function, 
through modulation of mitochondrial content and phase II 
enzymes in the progeny [292]. Such observations evidence 
that the drastic alterations that polyphenol supplementation 
induce are more dramatic than what was initially thought: 
the effects of polyphenols are transversal, affecting not only 
the animal itself but also its offspring, leading to benefits 
that can only be explained by its capacity to cross the 
placenta. 

 Neuroprotective effects of resveratrol on prenatal stress 
were also investigated in the brain of neonatal rats. 
Administration of resveratrol during pregnancy inverted the 
memory impairment caused by prenatal stress, as well as the 
oxidative damage and loss of neurons at the dentate gyrus 
[293]. 

 Already in 2005 such kind of neuroprotective potential in 
neonatal brains was assessed. It was seen that maternal 
dietary supplementation with pomegranate juice was 
neuroprotective in an animal model of neonatal hypoxic-
ischemic brain injury [294]. This dietary supplementation 
resulted in markedly decreased brain tissue loss, with the 
highest pomegranate juice dose having substantial statistical 
significance (p ≤ 0.001). Pomegranate juice also diminished 
caspase-3 activation in the hippocampus and in the cortex. 
Ellagic acid, a polyphenolic component in pomegranate 
juice, was detected in plasma from treated pups but not in 
control pups [294]. 

 Contrarily, other authors showed that flavanol metabolites 
were abundant in maternal placenta but were detected at low 
levels in foetuses and amniotic fluid. This study was 
performed in pregnant rats subjected to acute intake of a 
grape seed proanthocyanidin extract [295]. Additionally, 
flavanol metabolism appears to be less active in the liver 
during pregnancy, and altogether the data suggests that 
transport across the placenta is not efficient for flavanols and 
their metabolites, where the placenta seems to act as a 
barrier. However, these compounds target the foetus and are 
excreted in the amniotic fluid [295]. 

 Beyond the putative neuroprotective effects of 
polyphenols to the offspring, in a study of Keating and co-
workers [296] it was evidenced the benefits on folic acid 
absorption, once folic acid is critically important for normal 
foetal development. The authors suggested a detrimental effect 
of short-term exposure to epicatechin and isoxanthohumol 
on placental folic acid absorption and, on the other hand, a 
beneficial effect of a long-term exposure to xanthohumol, 
isoxanthohumol and quercetin on folic acid absorption at the 

placental level [296]. The effect of isolated polyphenols on 
placental transport of glucose was studied as well: several 
polyphenolics compounds were found to affect the apical 
uptake of deoxy-D-glucose in a trophoblast cell model. 
Rutin, catechin and epicatechin increased deoxy-D-glucose 
uptake and, when tested in a long-term exposure (48 h) rutin 
and myricetin increased apical uptake of deoxy-D-glucose. 
This observation was true for the isolated compounds or the 
combination of both. Chrysin and quercetin decreased 
deoxy-D-glucose uptake in a concentration dependent 
manner [297]. 

 Moreover, several studies highlighted the protective 
potential of polyphenols in ensuring the integrity of germ 
cells. It was found that, in irradiated tests, EGCG ameliorates 
several parameters related to spermatogenesis in mice [298]. 
This study determined the effects before and after radiation 
treatment on spermatogenesis in the testicles: pre-treatment 
seems to be crucial to protect spermatogenesis against 
radiation, while post-treatment appears to be able to support 
spermatogenic rescue from radiation [298]. Altogether, 
EGCG seems to prevent germ cells from radiation-induced 
cell death by multiple mechanisms, and the use of this 
bioactive polyphenol can present an attractive strategy to 
preserve fertility in males exposed to conventional radiation 
therapy [298]. 

 In another study, the administration of 10 μmol [3H] 
epicatechin to rats resulted in major amounts of radioactivity 
in the large intestine and caecum at 24 h, and little 
radioactivity was observed in the stomach, plasma, small 
intestine, blood and testes [299]. The relatively high 
concentration of epicatechin metabolites found in the testes 
of rats subjected to a cocoa-enriched diet (mainly epicatechin 
glucuronide), highlighted the BTB putative permeability to 
this polyphenol metabolite, and shows that its accumulation 
could occur [300]. 

Beyond Barriers 

 In the light of today’s knowledge, novel mechanisms of 
action for polyphenols are proposed far beyond the classical 
direct antioxidant radical scavenging power. In fact, 
polyphenol concentration at cerebrospinal fluid rarely 
exceeds 1-5 μmol. Therefore, it is highly improbable that 
polyphenol intracellular concentrations in neurons and glial 
cells would exceed the micromolar-nanomolar range, which 
is not enough to exert significant direct antioxidant effects. 
Nevertheless, such concentrations are in fact beneficial, 
pointing out that polyphenols and their metabolites modulate 
other cellular parameters and pathways at the CNS level, 
even at low concentrations [262]. 

 The noteworthy effect of polyphenols and their meta- 
bolites in cellular signalling pathways at concentrations as 
low as 1 μmol has been reported already [301], reinforcing 
the idea of indirect mechanisms that could be involved in 
polyphenols neuroprotection. The activation of hormetic 
responses and effects on peripheral systems of the body, that 
culminate in changes in the CNS function are the proposed 
indirect mechanisms of action of polyphenols and degradation 
metabolites. Hormesis describes a process in which exposure 
to a low dose of an agent, that is toxic at higher doses, 
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induces a beneficial effect on the cell or organism [301]. 
Direct evidence for hormesis induction in vivo has already 
been reported in mammals: pre-treatment of mice with 
epicatechin significantly reduced the negative impact of 
stroke induction in wild-type but not nuclear factor erythroid 
2 (Nrf2) knock-out animals, as the transcription factor Nrf2 
is one of the key regulators responsible for the induction of 
antioxidant and cell protective genes [302]. Additionally, the 
regulation of brain integrity and function must not be seen as 
an isolated process, but instead as strongly dependent on 
feedback information (in the form of hormones, nutrients, 
metabolites and, of course, sensory neuron signalling of the 
body periphery). 

 Furthermore, evidences of the metabolism of polyphenols at 
the BBB level has already been reported with the detection 
of the compounds conjugated with glucuronic acid [278]. 
The hypothesis that polyphenol metabolites resulting from 
biotransformation in endothelial cells, are the key actors in 
neuroprotection, arises as a novel creed in a nutritional/ 
nutraceutical perspective. The physiological role of conjugated-
flavonoids is discussible, but there is the possibility of their 
presence in the extracellular fluid in the CNS, and exerting 
biological effects. In fact, some reports have suggested that 
flavonoid metabolites possess more biological activity than the 
intact form [303, 304]. Noteworthy, biotransformation processes 
may constitute an essential step to convert polyphenols into 
more water-soluble metabolites, and subsequently facilitate its 
elimination from the body or, oppositely, allow an easier 
xenobiotic transport and delivery around the body. 

 In a pioneer pharmacokinetics study, 23 polyphenols 
microbial metabolites were administered intravenously to 
rats, to reliably reproduce a physiological post absorption 
situation [305]. Remarkably, the brain was found to be a 
specific target organ for 10 of the 23 polyphenol metabolites 
injected, which significantly increased in the treated animals 
and most compounds were excreted into the urine [305]. 

 In that sense, it is imperative to adjust the study of 
polyphenols beyond the reductionist dogma of polyphenol-
effect: research should focus not only in the study of 
polyphenols but also the metabolites arising from digestion 
and metabolism. Dietary and colonic metabolites derived 
from polyphenols present in foods and drinks can reach 
considerable concentrations in circulation, usually higher 
than their parent compounds, and such physiologically-
relevant concentrations must be studied, taking into account 
the multiplicity of interactions inside the human body as an 
overall beneficial outcome to the CNS. 

CONCLUSION 

 The diversity and holistic properties of polyphenol 
present them as an attractive alternative for the treatment of 
multifactorial diseases, where a multitude of cellular pathways 
are disrupted. The main findings regarding polyphenols 
neuroprotective potential performed using in vitro, cellular 
and animal studies, as well as human trials are covered in 
this review. The underlying mechanisms of polyphenols for 
nutrition or therapeutic applications must be further consolidated, 
however there is strong evidence of their beneficial impact 
on brain function during ageing. Nevertheless, there is an 

unmet need for clinical trials regarding polyphenols in the 
context of neurodegenerative diseases [63, 306]. Pandora’s 
box is ajar and new evidence are revealing polyphenols 
impact in the brain beyond barriers. Offspring cognitive 
improvements after maternal ingestion of polyphenols is a 
new amazing unexplored route of effects. Understanding 
how the presence of polyphenols during embryonic 
development impacts in infancy, adult and advanced life is 
still an enigma to solve. 

LIST OF ABBREVIATIONS 

ABC = ATP-binding cassette 

Ach = Acetylcholine 

AChE = Acetylcholinesterase 

AD = Alzheimer’s disease 

ALS = Amyotrophic lateral sclerosis 

ASIC1A = Acid sensing ion channel 1A 

BACE-1 = Beta-secretase 1 

Bax = BCL2-associated X protein 

BBB = Blood-brain barrier 

Bcl-2 = B-cell lymphoma 2 (Bcl-2) 

BCRP = Breast cancer resistant protein 

BDNF = Brain-derived neurotrophic factor 

BTB = Blood-testis barrier 

CBG = Cytosolic β-glucosidase 

CNS = Central nervous system 

CoCoA = Cocoa, cognition, and ageing 

COX-2 = Cyclooxygenase-2 

CREB = cAMP response element-binding protein 

EGCG = Epigallocatechin gallate 

ERK = Extracellular-signal-regulated kinases 

FUS/TLS = Fused in sarcoma/translocated in 
Liposarcoma 

GDP = Gross domestic product 

GLUT1 = Glucose transporter 1 

GSH = Glutathione 

HD = Huntington’s disease 

Htt = Huntingtin 

IL-1β = Interleukin-1 beta 

iNOS = Inducible nitric oxide synthase 

LPH = Lactase phloridzin hydrolase 

MeDi = Mediterranean diet 

mhGAP = Mental health gap action program 

MMPs = Metalloproteinases 
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MPTP = 1-methyl-4-phenyl-1,2,3,6-tetrahydro- 
pyridine 

MRI = Magnetic resonance imaging 

MRP2 = Multidrug resistant protein type 2 

MS = Multiple sclerosis 

NDs = Neurodegenerative disorders 

NF-kB = Nuclear factor kappa B 

Nrf2 = Nuclear factor erythroid 2 

OATP = Organic anion-transporting polypeptide 

OATs = Organic anion transporters 

P-gp = P-glycoprotein 

PD = Parkinson’s disease 

PolyQ = Polyglutamine 

RNOS = Reactive nitrogen and oxygen species 

ROS = Reactive oxygen species 

SIRT1 = Silent mating type information regulation 2 
homolog 1 

SLC = Solute carrier 

TBHP = Tert-butyl hydroperoxide 

TGF-β = Transforming growth factor beta 

TNF-α = Tumor necrosis factor 

TOR = Target of rapamycin 

WHO = World health organization 

αSyn = α-Synuclein 
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