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The purpose of this study is to explore the impact of constraining class-specific residual
variances to be equal by examining and comparing the parameter estimation of a free
model and a constrained model under various conditions. A Monte Carlo simulation
study was conducted under several conditions, including the number of predictors,
class-specific intercepts, sample size, class-specific regression weights, and class
proportion to evaluate the results for parameter estimation of the free model and the
restricted model. The free model yielded a more accurate estimation than the restricted
model for most of the conditions, but the accuracy of the free model estimation was
impacted by the number of predictors, sample size, the disparity in the magnitude of
class-specific slopes and intercepts, and class proportion. When equality constraints
were imposed in residual variance discrepant conditions, the parameter estimates
showed substantial inaccuracy for slopes, intercepts, and residual variances, especially
for those in Class 2 (with a lower class-specific slope). When the residual variances
were equal between the classes, the restricted model showed better performance under
some conditions.

Keywords: regression mixture model, residual variance, equality constraint, parameter estimation, Monte Carlo
simulation study

INTRODUCTION

Regression mixture modeling (RMM), which is a specific type of finite mixture modeling
that detects latent classes within a population based on the difference in the relationship
between a predictor and an outcome, is increasingly used in educational and behavioral
research fields. Individuals that share the same regression function are clustered into the
same latent class which shares a common regression function that is distinct to other latent
classes. RMMs can be a flexible approach for detecting the heterogeneity of effects in situations
when moderating variables are hard to identify or specify before designing potential research
(Van Horn et al., 2012, 2015). However, RMMs have not been actively utilized until recently.
One of the reasons for this dearth of research is that only a few simulation studies on
RMMs have been conducted, so the characteristics of RMMs have not been thoroughly
investigated. Furthermore, existing simulation studies on RMMs report its sensitivity to
violating model assumptions and model misspecification that often result in unstable parameter
estimates or non-convergence (Kim et al., 2016; Lamont et al., 2016; Wadsworth et al., 2018;
Sherlock et al., 2021). However, issues in the performance of RMMs in parameter estimation,
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which is mainly of interest in mixture models, have not been
thoroughly examined under various conditions yet. To be
specific, as study designs, such as class proportion and class
separation, are known to impact performance significantly (Jaki
et al., 2019; Sherlock et al., 2021), this issue has not been addressed
thoroughly, thus requiring more examination. Therefore, further
simulation studies under more practical conditions and model
specifications are necessary to uncover the performance of RMMs
and provide guidelines for researchers.

In addition to simulation studies on the estimation of
RMMs in general, the common practice in mixture modeling to
constrain class-specific residual variances equally across classes
for model parsimony also has not yet been thoroughly examined
in the context of RMMs. Although mixture models suppose that
residual variances can be different for each class, it is common
to constrain them in empirical studies (Rights and Sterba, 2016)
when researchers face problems in estimation. As such, the main
reason that researchers impose the equality constraint on residual
variances is for the estimation stability that can be described as
follows (Enders and Tofighi, 2008). When those using mixture
modeling encounter problems of model convergence, they often
go through an exploratory process that constrains or equalizes
some parameters that are not the main area of concern. If
the constraints impact the performance of model estimation
to a slight degree, it will be more parsimonious to constrain
the parameters and focus on the other parameters that are
the focus of the analysis. Accordingly, because class-specific
residual variances are typically not interpreted or of interest
in mixture models, they are often selected as the parameter
to be constrained.

However, recommendations on constraining residual
variances to be equal across classes in mixture modeling are
inconsistent and inadequate. While some studies recommend
constraining residual variances for model parsimony (Muthén
and Asparouhov, 2009), some simulation studies report the high
risk of these constraints when imposed without consideration
(Enders and Tofighi, 2008; Kim et al., 2016). This issue should
be discussed in detail particularly in RMM contexts because
the impact has not been thoroughly understood yet, but
the constraint strategy would be of interest to researchers
using RMMs when facing problems in model convergence or
estimation. As RMMs are known to require large sample sizes
for stable estimation because there are many parameters to be
estimated, these problems are common (Van Horn et al., 2015).
Thus, this issue can be relevant to researchers using RMMs with
a small sample as a critical solution for model estimation.

Although an existing study on this issue in RMMs implied that
equally constraining residual variances across classes may result
in unreliable parameter estimation (Kim et al., 2016), this issue
has not been explored under various research settings that applied
researchers may often encounter. Considering that conducting
RMMs with a small sample size could yield problematic results
even when correctly specified, the impact of the constraint that
leads to misspecification would lead to different results from cases
with large sample sizes. Therefore, it is necessary to expand on the
previous work of Kim et al. (2016) to provide guidelines for the
application of RMMs in realistic conditions.

As such, the purpose of this study is to compare a freely
estimating model and a restricted model, which differ in model
specification regarding residual variances under somewhat harsh
conditions that are often found in applied study settings. With
this simulation study, not only the performance in general of
RMMs but also the issue of these constraints on residual variances
can be addressed in detail. The research questions are as follows.
First, under which conditions does the free model estimate
the parameters accurately? Second, under which conditions
does the restricted model estimate the parameters accurately?
Third, under which conditions does the restricted model more
accurately estimate the parameters than the free model?

THEORETICAL BACKGROUND

Regression mixture model is a specific type of finite mixture
modeling that captures unobserved heterogeneity in the
relationship between predictor(s) and an outcome that is
present in a population. Based on the concept of regression
modeling, which attempts to reveal the relationship between an
independent variable and a dependent variable, RMM is used
to explore unobserved subgroups in a population based on the
difference in the effects of a predictor on an outcome in the
framework of mixture modeling. Unlike other mixture models
such as latent class models or growth mixture models that
distinguish distinct latent classes with the differences in means or
variances of outcomes of each class, RMMs capture heterogeneity
that exists in data based on the relationship between x and y,
which is quantified as a class-specific regression weight and
intercept. A categorical latent class variable is incorporated in
a typical regression model to capture the heterogeneity in the
regression relationship between a predictor and an outcome
within a population, where the latent class variable is measured
by the conditional distribution of an outcome variable regressed
on a predictor variable (Masyn, 2013). A model diagram of RMM
is described in Figure 1, where, x denotes the predictor, y the
outcome, e the residual, and C the latent class variable.

The assumptions on which RMMs rely can be described as
follows (Wadsworth et al., 2018). First, for all X, Var

(
X, k

)
= σ2

k,
variance within a class is homogenous among the individuals.
Second, εik ∼ N(0, σ2

k), class-specific residual variances differ
across classes but are homogenous within a class. Third,

FIGURE 1 | Diagram of an regression mixture modeling (RMM).
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E
(
Y
∣∣ X, k

)
= β0k +

∑P
p=1 βpkXip, individuals within the same

class share a common linear relationship between a predictor
and an outcome. Previous studies showed that a violation of
the assumptions in RMMs could disturb the precise estimation
of parameters (Van Horn et al., 2012; George et al., 2013a;
Kim et al., 2016).

Moreover, previous simulation studies on RMMs report
sensitivity to model assumptions and specifications that quite
rigorous conditions of data are required for stable estimation.
These traits of RMMs require more exploration of the model
performance under various circumstances to understand what
the acceptable conditions are for reliable estimations and
problematic results obtained with poor-quality estimation, which
is crucial for an appropriate examination in any given study.
Jaki et al. (2019) investigated the performance of RMMs under
various conditions focusing on the impact of sample size. In most
cases, a large sample and high class separation are required for
satisfactory estimation results, and the results are better when
an additional predictor is included in the model. A sample size
under 1,000 can lead to problematic estimation results when class
separation is not high enough. Meanwhile, there have been a
few issues regarding the estimation of parameters in bias and
coverage. To begin with, the biasedness of the parameters differed
between two classes. That is, for some harsh conditions, while
parameters for a class with a larger regression slope were well
estimated, another class with a smaller regression slope resulted
in a severe upward bias in intercepts and a downward bias in
regression weights and residual variances. Next, coverages were
slightly less than the desirable value even under good conditions
with large samples or with substantial class separation. Even when
the parameters were fairly estimated to be close to the true value
under some small sample size conditions, the 95% coverage rates
were poor. George et al. (2013a) showed that the violation of
the normality assumption could lead to unreliable parameter
estimates. Lamont et al. (2016) examined parameter estimation
results when the path from a latent class variable to a predictor
(i.e., C on x path) was excluded in two-class RMMs, which
constrained class-specific predictor means to be equal. Inaccurate
parameter estimates are obtained inaccurately when the mean of
the predictors of each class was constrained to be equal although
the sizes were different. Under the different-mean conditions,
although the bias in parameter estimates was negligible in some
conditions, it always resulted in biased class proportion and poor
coverage rates. Specifically, the residual variance in a class with a
smaller regression weight was inaccurately obtained in terms of
the bias, RMSE (Root Mean Square Error), and coverage.

A typical strategy in mixture modeling in solving convergence
problems is to decrease the number of parameters so that
class-specific residual variances can be accordingly constrained
to be equal. Related to this issue, whether constraining class-
specific residual variances is appropriate or not has remained a
controversy in finite mixture models. Although some literature
on mixture modeling suggests that researchers constrain residual
variances to be equal for model parsimony (Muthén and
Asparouhov, 2009), the impact of this constraint has not
been examined thoroughly in various situations although it

can be expected to produce serious problems due to model
misspecification. Enders and Tofighi (2008) studied the impact of
constraining class-specific residual variances in growth mixture
models, and the results showed that the large difference in class-
specific residual variances, unequal class proportion, and more
class-specific residual variance in the population produce serious
bias in the estimates of within-class growth trajectories and
variance components. Kim et al. (2016) attempted to figure out
the consequences of constraining class-specific residual variances
equally across classes in a relatively simple context. To summarize
the results, the selection rate for the correct number of classes
decreased significantly when equality constraints were imposed
in residual variances while the disparity in the magnitude of
residual variances was large. For parameter estimation, there
was a severe bias in regression weights and class proportion
when residual variances were inappropriately constrained.
When constraints on residual variances were imposed even
the difference in residual variances was large, the regression
coefficients showed substantial bias that were downward biased
or showed different signs in slopes with smaller effects because
parameters, especially for Class 1, had large variation and extreme
solutions. The bias and the RMSE were low, and coverage
rates were mostly over 90% when the class-specific residual
variances were the same.

Although the study of Kim et al. (2016) attempted to examine
the issue of RMMs, still, there were some limitations that require
further study. First, this study was conducted under very ideal
conditions where the sample size was set to be considerably
large and only balanced class proportion was considered in
the study and did not reflect realistic conditions that are often
encountered in applied research settings. Second, the impact
of the disparity in the magnitude of class-specific intercepts
between the classes, which is a crucial factor in manipulating
class separation (George et al., 2013b), was not examined in a
single-predictor model. Third, the model specifications regarding
the residual variances were different between the univariate and
the multivariate models; thus, more studies are needed for an
intuitive comparison.

METHODS

In order to explore the impact of imposing equality constraints
on class-specific residual variances in RMMs, Monte Carlo
simulation studies were conducted. Two-class models were
employed for the analysis in order to keep the context simple
to clearly examine the consequence of constraining residual
variances to be equal.

Four kinds of models were used for analysis: (1) a single-
predictor model with no intercept difference, (2) a single-
predictor model with an intercept difference of 1, (3) a two-
predictor model with no intercept difference, and (4) a two-
predictor model with an intercept difference of 1. These models
followed the general model specification described by Kim et al.
(2016) to effectively compare the models’ performances with
the results from cases with larger sample sizes (i.e., sample size
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of 3,000). We additionally used single-predictor models with
differences in class-specific intercepts to closely examine the
impact of class separation size on the accuracy of parameter
estimates, given the observation from Kim et al. (2016) that
the models will perform better in conditions with greater class
separation as obtained with greater differences in class-specific
intercepts. As we aimed to examine the performances of the
models with smaller sample sizes (which would require harsher
conditions for the models to perform accurately), examining
class separation was necessary for coming to a more instructive
conclusion. One hundred replications were generated for each
condition and the generated data were fit twice to the models;
one was a model with freely estimated class-specific residual
variances, and the other was a model estimated with equal
constraints on the residual variances. Throughout the study,
the simulated data were generated and analyzed using Mplus
8.3 (Muthén and Muthén, 1998–2017), and MplusAutomation
package in R (Hallquist and Wiley, 2018) was used to run the
models repeatedly.

For the single-predictor models, class-specific intercepts were
manipulated to differ. One was set to be 0 in class-specific
intercepts, and the other was set to have values in intercept
1 in Class 1 and 0 in Class 2. The former model was named
“a single-predictor model with no intercept difference,” and
the latter model was called “a single-predictor model with
intercept difference 1.” A predictor X was drawn from normal
distribution with mean 0 and variance 1, that is X ∼ N (0, 1).
Second, the class-specific regression weights a1 and a2 were set
to accommodate both the magnitude of class separation and
difference in class-specific residual variances as the value of class-
specific residual variance can be obtained using the formula
Var (Y) = Var (X)+ Var (e) and the total variance of Y to be 1
in each class. Three sets of slope values were considered in the
current study: 0.7 and 0.2, 0.7 and 0.4, and 0.5 and −0.5 for a1
and a2, respectively. These values were set based on previous
simulation studies on regression mixtures to enable intuitive
examination and comparison with previous studies. The first set
included conditions for high class separation, but considered
minimum values required for RMMs to effectively identify
differential effects in previous studies (Lamont et al., 2016; Jaki
et al., 2019; Kim et al., 2019) and the values in the second set are
often set in RMMs to seek the consequences of conditions with
low class separation (Jaki et al., 2019; Kim et al., 2019). The third
condition, set to only differ in its sign, was considered to reflect
situations where class-specific residual variances are equal and
to examine the consequences of constraining residual variances
when they have equal value (Kim et al., 2016).

Class-specific residual variances for each set of slopes were
calculated using the formula given before, and the disparity in
the magnitude of residual variances between classes was drawn.
The three conditions are named “large-difference,” “moderate-
difference,” and “non-difference” conditions by the magnitude
of the residual variance difference between the two classes. In
addition to the single-predictor models, multivariate models with
two predictors are considered. Similar to the single-predictor
models, class-specific intercepts are manipulated: two-predictor
models with intercept zero in both classes can be named

TABLE 1 | Model specifications.

Slope Intercept Residual
variance

Single-predictor
model with no
intercept difference

Large 0.7/0.2 0/0 0.51/0.96

Moderate 0.7/0.4 0.51/0.84

No 0.5/−0.5 0.75/0.75

Single-predictor
model with intercept
difference 1

Large 0.7/0.2 1/0 0.51/0.96

Moderate 0.7/0.4 0.51/0.84

No 0.5/−0.5 0.75/0.75

Two-predictor model
with no intercept
difference

Large 0.6261/0.17889 0/0 0.02/0.92

Moderate 0.6261/0.35777 0.02/0.68

No 0.44721/−0.44721 0.5/0.5

Two-predictor model
with intercept
difference 1

Large 0.6261/0.17889 1/0 0.02/0.92

Moderate 0.6261/0.35777 0.02/0.68

No 0.44721/−0.44721 0.5/0.5

“two-predictor model with no intercept difference,” and “two-
predictor models with difference in class-specific intercepts.”
Class 1 having intercept 1 and Class 2 having 2 can be named
“two-predictor model with intercept difference 1.” As can be
seen in the equations above, the coefficients of each predictor
within a class were set to be the same following the previous
simulation design in multivariate RMMs (Kim et al., 2016; Jaki
et al., 2019). Predictors X1 and X2 were drawn from normal
distributions with mean 0 and variance 1, and the correlation
between X1 and X2 was set to be 0.5. The residuals e were
set to be normally distributed with mean 0, and variance was
calculated using the formula given beforehand. Although the
values for the coefficients of predictors were taken from the
single-predictor models, the values were adjusted by taking the
correlation between the predictors into consideration. The details
of the model specifications are given in Table 1.

For the models described above, sample size and the
proportion of individuals in each class were also manipulated.
First, for sample size, four levels were set: 300, 500, 1,000, and
2,000. Although some previous simulation studies on RMMs
considered 3,000 or 6,000 as a sufficient sample size for a stable
estimation (George et al., 2013a; Kim et al., 2016), as this study
attempts to explore its performance of models under realistic
conditions, smaller sample sizes that can be commonly found
in empirical research were considered to address the limitations
of previous studies. Second, two different class proportions were
considered in the present study: 50% in each class for a balanced
class proportion, 75% in Class 1, and 25% in Class 2 for an
unbalanced class proportion, following the studies of Jaki et al.
(2019) and Sherlock et al. (2021).

To summarize, for the four models given above, three slope
conditions, four sample size conditions, and two class proportion
conditions were manipulated. Thus, for 4 × 3 × 4 × 2 = 96
conditions, 96 × 100 = 9,600 datasets are generated. The
replications generated for each condition were fitted twice to
two models. One was a model that freely estimates class-
specific residual variances, and the other was a model that
constrains class-specific residual variances to be equal across
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classes. Maximum likelihood estimation with robust standard
errors (MLR) was used for estimation.

To evaluate the accuracy in the estimation of models
with freely-estimated residual variance in each class and the
constrained models where the residual variances are estimated to
be the same within a class, each simulation condition is evaluated
using three criteria: parameter bias, mean squared error (MSE),
and coverage of a 95% confidence interval. Before the evaluation,
convergence rates and parameter estimates were first examined
to provide a basis for evaluating parameter accuracy.

RESULTS

Convergence Rates
For single-predictor models and two-predictor models with
sample sizes of 1,000 and 2,000, all replications for the freely
estimated model and constrained model successfully converged.
Although the single-predictor model converged under most
conditions when residual variances are constrained, some of
the replications in freely estimating models failed to converge,
especially for moderate-difference conditions in a sample size
of 300. These conditions can be considered low class separation

because the slope difference between the two classes is the
smallest. Similarly, for some conditions with unbalanced class
proportion with a sample size of 500, some replications did not
converge. Full results are given in Table 2.

Parameter Estimates
The parameter estimates of slope(s), intercept, and residual
variance for each latent class are reported in Tables 3–6. The
results for single and two-predictor models are similar in general,
but the estimates of two-predictor models are more accurately
obtained. When the intercepts are different between two classes,
the estimates are closer to the true values.

The detailed results can be described as follows. When the
residual variances are freely estimated, the parameter estimates
are close to the true value when the sample size was 1,000 or
2,000. When the sample size is smaller than 1,000, the estimates
are generally more deviated from the true value. It is remarkable
that the estimates are closer to the true value even under
conditions with lower class separation and smaller sample sizes
when intercepts are set to be different between the models.

On the other hand, when the residual variances are
constrained, the estimates for the intercepts are not that severe,
but those for the slopes are too extreme to represent the true

TABLE 2 | Convergence rates.

SS = 300 SS = 500 SS = 1,000 SS = 2,000

CP D_RV FREE CONS FREE CONS FREE CONS FREE CONS

Single-predictor models

With no intercept difference 0.5:0.5 Large 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Moderate 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

No 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.75:0.25 Large 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

Moderate 0.97 1.00 0.99 1.00 1.00 1.00 1.00 1.00

No 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

With intercept difference 1 0.5:0.5 Large 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96

Moderate 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

No 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.75:0.25 Large 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Moderate 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

No 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Two-predictor models

With no intercept difference 0.5:0.5 Large 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Moderate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

No 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.75:0.25 Large 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Moderate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

No 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

With intercept difference 1 0.5:0.5 Large 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Moderate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

No 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.75:0.25 Large 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Moderate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

No 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FREE, residual variances freely estimated, CONS, residual variances equally constrained, SS, sample size, CP, class proportion, D_RV, the disparity in the magnitude of
class-specific residual variances.
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TABLE 3 | Parameter estimates of single-predictor models with no intercept difference.

CP = 0.5:0.5 (balanced) CP = 0.75:0.25 (unbalanced)

SS = 300 SS = 500 SS = 1,000 SS = 2,000 SS = 300 SS = 500 SS = 1,000 SS = 2,000

D_RV C PAR TRUE FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS

Large 1 S 0.7 0.6106 0.4420 0.6617 0.5181 0.6395 0.4728 0.6133 0.3802 0.6395 0.4728 0.6028 0.3802 0.6016 0.3821 0.5815 0.5330

I 0 −0.1793 −0.6145 −0.1151 0.0193 −0.0018 0.0608 0.0011 −0.0041 −0.0018 0.0608 0.0207 −0.0041 −0.0227 0.0585 −0.0238 −0.0413

RV 0.51 0.4352 0.6760 0.4889 0.6931 0.4961 0.7102 0.5625 0.7180 0.4961 0.7102 0.4920 0.7180 0.5412 0.6016 0.5990 0.6056

2 S 0.2 0.0955 0.1999 0.1438 0.0943 0.1848 0.6414 0.2783 0.0474 0.1848 0.6414 0.1035 0.0474 0.1651 0.3418 0.2604 −0.0902

I 0 −0.1480 0.1206 0.3512 0.0603 0.0632 0.0156 0.0337 −0.0086 0.0632 0.0156 0.0738 −0.0086 0.0902 0.1196 0.0025 0.1536

RV 0.96 0.6067 0.6760 0.6410 0.6931 0.8319 0.7102 0.8558 0.7180 0.8319 0.7102 0.5276 0.7180 0.6871 0.6016 0.8297 0.6056

Moderate 1 S 0.7 0.5983 0.4105 0.5453 0.4857 0.7035 0.4706 0.6121 0.4480 0.7035 0.4706 0.6121 0.4480 0.6739 0.6899 0.6199 0.3826

I 0 −0.0307 −0.0683 −0.1252 −0.0765 −0.0061 0.7694 −0.0474 −0.0883 −0.0061 0.7694 −0.0470 −0.0883 0.0503 −0.0591 −0.0256 −0.0217

RV 0.51 0.4152 0.6107 0.4155 0.6283 0.4626 0.6452 0.5222 0.6673 0.4626 0.6452 0.5222 0.6673 0.3913 0.5651 0.4986 0.5763

2 S 0.4 0.3121 0.6260 0.4188 0.6542 0.3318 0.5548 0.3842 0.2198 0.3318 0.5548 0.3842 0.2198 0.4300 0.3511 0.3917 0.4908

I 0 −0.2165 −0.0522 0.3577 −0.2024 −0.0206 0.1004 0.0284 0.0498 −0.0206 0.1004 0.0284 0.0498 0.1976 0.2680 0.2191 0.0162

RV 0.84 0.4637 0.6107 0.4926 0.6283 0.7907 0.6452 0.7619 0.6673 0.7907 0.6452 0.7619 0.6673 0.4802 0.5651 0.4974 0.5763

No 1 S 0.5 0.4638 0.3032 0.4461 0.4700 0.4230 0.4500 0.3745 0.4630 0.4230 0.4500 0.3745 0.4630 0.4611 0.3870 0.4218 0.3670

I 0 −0.0476 0.3611 0.0012 0.0146 −0.0163 0.0055 −0.0057 0.0063 −0.0163 0.0055 −0.0060 0.0063 −0.0022 −0.0070 0.0031 −0.0090

RV 0.75 0.6939 0.7364 0.7204 0.7359 0.7223 0.7408 0.7396 0.7470 0.7223 0.7408 0.7396 0.7470 0.7252 0.7386 0.7431 0.7467

2 S −0.5 −0.5364 −0.4521 −0.4899 −0.4714 −0.4363 −0.4326 −0.3933 −0.4603 −0.4363 −0.4326 −0.3930 −0.4603 −0.4928 −−0.3658 −0.4552 −0.3568

I 0 0.0823 −0.0796 0.0453 −0.0023 0.0040 −0.0008 0.0042 −0.0028 0.0040 −0.0008 0.0042 −0.0028 0.0024 0.0065 −0.0012 0.0037

RV 0.75 0.6327 0.7364 0.6791 0.7359 0.7400 0.7408 0.7432 0.7470 0.7400 0.7408 0.7432 0.7470 0.7054 0.7386 0.7254 0.7467

FREE, residual variances freely estimated; CONS, residual variances equally constrained; SS, sample size; CP, class proportion; D_RV, the disparity in the magnitude of
class-specific residual variances; C, latent class; TRUE, population values for each parameter; PAR, parameters; S, class-specific slope; I, class-specific intercept; RV,
class-specific residual variance.

TABLE 4 | Parameter estimates of single-predictor models with intercept difference 1.

CP = 0.5:0.5 (balanced) CP = 0.75:0.25 (unbalanced)

SS = 300 SS = 500 SS = 1,000 SS = 2,000 SS = 300 SS = 500 SS = 1,000 SS = 2,000

D_RV C PAR TRUE FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS

Large 1 S 0.7 0.6833 0.6833 0.6803 0.4269 0.6691 0.4445 0.6641 0.4466 0.6428 0.4654 0.6881 0.4421 0.6346 0.4707 0.6276 0.4374

I 1 0.8677 0.8677 0.9650 0.6564 0.9669 0.6471 0.9564 0.6249 0.9705 0.6999 0.9213 0.6387 0.8649 0.7223 0.8450 0.6173

RV 0.51 0.5086 0.5086 0.5126 0.6187 0.5132 0.6249 0.5245 0.6262 0.5241 0.5435 0.5188 0.5465 0.5580 0.5537 0.5547 0.5579

2 S 0.2 0.2300 0.2300 0.2305 0.6004 0.2178 0.5900 0.2236 0.5849 0.3274 0.6320 0.2784 0.6339 0.2703 0.6386 0.2688 0.6435

I 0 −0.2777 −0.2777 −0.2148 −0.5532 −0.0945 −0.5302 −0.0245 −0.4998 −0.5080 −0.6320 −0.3376 −0.5601 −0.0958 −0.5752 0.0350 −0.5272

RV 0.96 0.6963 0.6963 0.8079 0.6187 0.8760 0.6249 0.8983 0.6262 0.5816 0.5435 0.7109 0.5465 0.7845 0.5537 0.8467 0.5579

Moderate 1 S 0.7 0.6784 0.6784 0.6983 0.5687 0.6873 0.5989 0.6942 0.5905 0.7120 0.6202 0.6877 0.6024 0.6879 0.6186 0.6751 0.6022

I 1 0.9762 0.9762 0.9438 0.6083 0.9652 0.6208 0.9747 0.6153 0.9889 0.6942 0.9205 0.6521 0.9391 0.6950 0.9117 0.6248

RV 0.51 0.4412 0.4412 0.5039 0.5614 0.5008 0.5729 0.5002 0.5755 0.4763 0.5164 0.5087 0.5225 0.5173 0.5326 0.5171 0.5370

2 S 0.4 0.5239 0.5239 0.4437 0.6073 0.4263 0.6296 0.4143 0.6278 0.5527 0.6363 0.5168 0.6158 0.4427 0.6583 0.4332 0.6643

I 0 −0.3741 −0.3741 −0.2848 −0.5794 −0.1939 −0.5637 −0.1297 −0.5616 −0.4103 −0.7020 −0.4224 −0.6499 −0.2153 −0.6298 −0.0647 −0.6007

RV 0.84 0.6604 0.6604 0.6469 0.5614 0.7218 0.5729 0.7687 0.5755 0.5119 0.5164 0.5662 0.5225 0.7028 0.5326 0.7538 0.5370

No 1 S 0.5 0.4276 0.4276 0.4586 0.2461 0.4455 0.3835 0.4283 0.3875 0.4233 0.0956 0.4505 0.0021 0.4468 −0.0648 0.4381 −0.2758

I 1 1.0555 1.0555 0.9999 −0.3600 0.9616 −0.4414 0.9437 −0.4433 0.9974 −0.2012 0.9444 −0.2406 0.9380 −0.2296 0.9348 −0.1362

RV 0.75 0.6874 0.6874 0.7065 0.7472 0.7399 0.7482 0.7441 0.7517 0.7374 0.7357 0.7297 0.7371 0.7420 0.7336 0.7460 0.7506

2 S −0.5 −0.4320 −0.4320 −0.4484 −0.2522 −0.4575 −0.3913 −0.4398 −0.3906 −0.4699 −0.0596 −0.4119 0.0106 −0.4557 0.0465 −0.4491 0.2708

I 0 −0.0435 −0.0435 0.0175 −0.1237 0.0219 −0.0556 0.0531 −0.0584 −0.0722 −0.1844 −0.0793 −0.2595 0.0121 −0.2851 0.0429 −0.3781

RV 0.75 0.6842 0.6842 0.7357 0.7472 0.7401 0.7482 0.7467 0.7517 0.5537 0.7357 0.6689 0.7371 0.7167 0.7436 0.7358 0.7506

FREE, residual variances freely estimated; CONS, residual variances equally constrained; SS, sample size; CP, class proportion; D_RV, the disparity in the magnitude of
class-specific residual variances; C, latent class; TRUE, population values for each parameter; PAR, parameters; S, class-specific slope; I, class-specific intercept; RV,
class-specific residual variance.

value; the class with a larger slope for the population value is
found to have a smaller estimate than the other class in some
conditions. Especially for the large-difference conditions, the
estimations are poor. For non-difference conditions, although
some estimates are slightly lower than the absolute value of the
true value in some conditions, the estimates are fairly close to
the true values.

Bias
The results of the parameter bias for one and two predictor
models with sample size 500 and intercept 0 are summarized
in Figures 2, 3. The full tables and figures for bias, MSE, and
coverage rates are available from the author upon request. The
parameter bias shows the degree to which the parameter estimate
deviates from the true population value. In this study, biases
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TABLE 5 | Parameter estimates of two-predictor models with no intercept difference.

CP = 0.5:0.5 (balanced) CP = 0.75:0.25 (unbalanced)

SS = 300 SS = 500 SS = 1,000 SS = 2,000 SS = 300 SS = 500 SS = 1,000 SS = 2,000

D_RV C PAR TRUE FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS

Large 1 S1 0.626 0.6258 0.4147 0.6239 0.5253 0.6257 0.6333 0.6264 0.7326 0.5406 0.7242 0.5640 0.8691 0.5397 0.7879 0.5387 0.8725

S2 0.626 0.6245 0.2205 0.6252 0.1242 0.6254 0.0016 0.6256 −0.0994 0.5353 −0.0838 0.5603 −0.2341 0.5355 −0.1581 0.5415 −0.2533

I 0 0.0004 −0.0014 −0.0006 0.0034 −0.0008 0.0074 −0.0002 0.0022 −0.0049 −0.0070 −0.0070 −0.0062 0.0036 −0.0047 −0.0048 0.0004

RV 0.02 0.0196 0.4246 0.0196 0.4120 0.0200 0.3919 0.0201 0.3855 0.1748 0.1804 0.1334 0.1879 0.1817 0.1877 0.1938 0.1887

2 S1 0.179 0.1723 0.4889 0.1647 0.5517 0.1717 0.6060 0.1757 0.5560 0.2543 0.6828 0.2325 0.5701 0.2668 0.6417 0.2651 0.5634

S2 0.179 0.1739 0.1412 0.1781 0.0993 0.1768 0.0363 0.1776 0.0802 0.2710 −0.0645 0.2442 0.0602 0.2676 −0.0254 0.2642 0.0629

I 0 −0.0274 0.0324 −0.0205 0.0264 −0.0036 −0.0025 −0.0022 0.0004 −0.0073 0.0000 −0.0084 −0.0006 −0.0018 0.0062 0.0110 0.0021

RV 0.92 0.9179 0.4246 0.9161 0.4120 0.9158 0.3919 0.9241 0.3855 0.7390 0.1804 0.7894 0.1879 0.7354 0.1877 0.7417 0.1887

Moderate 1 S1 0.626 0.6260 0.7446 0.6224 0.6917 0.6263 0.6711 0.6268 0.6563 0.5697 0.9222 0.4455 0.9111 0.5724 0.8896 0.5805 0.6798

S2 0.626 0.6243 −0.0845 0.6222 −0.0234 0.6255 −0.0113 0.6263 −0.0005 0.5752 −0.2797 0.4448 −0.2609 0.5748 −0.2501 0.5802 −0.0201

I 0 0.0017 −0.0303 −0.0012 0.0113 −0.0002 0.0057 −0.0001 0.0022 0.0042 0.0235 −0.0028 −0.0197 0.0016 0.0068 0.0039 0.0080

RV 0.02 0.0199 0.3410 0.0258 0.3389 0.0201 0.3295 0.0202 0.3285 0.1313 0.1588 0.4471 0.1663 0.1462 0.1655 0.1331 0.1661

2 S1 0.358 0.3520 0.5515 0.3526 0.6110 0.3509 0.7208 0.3561 0.7451 0.4082 0.5856 0.5352 0.6241 0.4096 0.6359 0.4038 0.8486

S2 0.358 0.3539 0.1037 0.3614 0.0494 0.3572 −0.0676 0.3586 −0.0940 0.4053 0.0871 0.5338 0.0523 0.4046 0.0264 0.4037 −0.2103

I 0 −0.0233 0.0494 −0.0149 0.0078 −0.0033 0.0019 −0.0030 0.0004 −0.0187 −0.0263 −0.0114 −0.0022 −0.0002 0.0034 0.0014 −0.0022

RV 0.68 0.6856 0.3410 0.6757 0.3389 0.6808 0.3295 0.6834 0.3285 0.5560 0.1588 0.2439 0.1663 0.5399 0.1655 0.5647 0.1161

No 1 S1 0.447 0.3724 0.0130 0.3864 0.0354 0.4003 0.0473 0.4507 0.1589 0.4141 0.0287 0.4228 0.0495 0.3967 0.0931 0.4226 0.1380

S2 0.447 0.3766 0.5073 0.4005 0.5140 0.3987 0.5122 0.4409 0.3693 0.4059 0.4715 0.4291 0.4627 0.4022 0.4771 0.4162 0.3314

I 0 −0.0001 0.0024 −0.0011 0.0844 0.0107 0.0237 0.0023 0.0606 −0.0069 −0.0447 −0.0061 0.0774 0.0033 −0.0624 −0.0012 −0.0068

RV 0.5 0.4816 0.6599 0.4888 0.6798 0.4962 0.6907 0.5011 0.7030 0.4971 0.6209 0.4989 0.6419 0.4979 0.6557 0.5027 0.6554

2 S1 −0.447 −0.3768 −0.0724 −0.3932 −0.0574 −0.3993 −0.0904 −0.4456 −0.1446 −0.4298 0.0034 −0.4382 −0.1102 −0.3957 −0.1563 −0.4208 −0.2330

S2 −0.447 −0.3767 0.4646 −0.3866 0.4441 −0.4010 0.4382 −0.4484 0.3925 −0.4038 0.4391 −0.4191 0.4384 −0.4117 0.4141 −0.4199 0.2411

I 0 −0.0133 0.1639 −0.0148 0.0152 −0.0077 −0.0481 0.0004 −0.0690 −0.0131 −0.0179 −0.0117 −0.0814 −0.0045 −0.0280 0.0003 −0.0048

RV 0.5 0.4859 0.6599 0.4926 0.6798 0.4971 0.6907 0.4981 0.7030 0.4637 0.6209 0.4704 0.6419 0.4869 0.6557 0.4942 0.6554

FREE, residual variances freely estimated; CONS, residual variances equally constrained; SS, sample size; CP, class proportion; D_RV, the disparity in the magnitude of
class-specific residual variances; C, latent class; TRUE, population values for each parameter; PAR, parameters; S1, class-specific slope for x1; S2, class-specific slope
for x2; I, class-specific intercept; RV, class-specific residual variance.

TABLE 6 | Parameter estimates of two-predictor models with intercept difference 1.

CP = 0.5:0.5 (balanced) CP = 0.75:0.25 (unbalanced)

SS = 300 SS = 500 SS = 1,000 SS = 2,000 SS = 300 SS = 500 SS = 1,000 SS = 2,000

D_RV C PAR TRUE FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS FREE CONS

Large 1 S1 0.626 0.6261 0.4561 0.6258 0.5007 0.6264 0.4481 0.6267 0.5516 0.6100 0.3552 0.5991 0.3568 0.5776 0.2771 0.6068 0.1901

S2 0.626 0.6241 0.1876 0.6245 0.1397 0.6255 0.3092 0.6259 0.0727 0.6150 0.2805 0.6080 0.2806 0.5818 0.3420 0.6087 0.4267

I 1 0.9997 0.2195 0.9986 0.1944 0.9993 0.5704 0.9993 0.0732 0.9686 0.0723 0.9443 0.0955 0.8987 0.1380 0.9591 0.0918

RV 0.02 0.0196 0.3758 0.0198 0.3871 0.0199 0.3879 0.0201 0.3931 0.0458 0.1861 0.0600 0.1923 0.1033 0.1959 0.0559 0.1941

2 S1 0.179 0.1655 0.9181 0.1575 0.8683 0.1699 1.0019 0.1733 0.7927 0.1676 1.2428 0.1767 1.2375 0.2221 1.2906 0.1915 1.3324

S2 0.179 0.1814 −0.2864 0.1874 −0.2298 0.1807 −0.3421 0.1772 −0.1576 0.2064 −0.6285 0.2071 −0.6232 0.2229 −0.6814 0.1951 −0.7306

I 0 −0.0214 −0.8745 −0.0157 −0.8140 −0.0026 −0.9894 −0.0041 −0.7301 0.0116 −1.1975 0.0310 −1.2161 0.0976 −1.2768 0.0407 −1.3256

RV 0.92 0.9180 0.3758 0.9201 0.3871 0.9178 0.3879 0.9235 0.3931 0.8662 0.1861 0.8601 0.1923 0.8136 0.1959 0.8798 0.1941

Moderate 1 S1 0.626 0.6263 0.6869 0.6253 0.6783 0.6264 0.6658 0.6272 0.6426 0.6112 0.6507 0.5240 0.6676 0.6020 0.6658 0.6179 0.6657

S2 0.626 0.6247 −0.0235 0.6254 −0.0062 0.6255 0.0029 0.6256 0.0230 0.6022 0.0184 0.5221 0.0129 0.6037 0.0029 0.6184 0.0047

I 1 1.0011 0.3338 0.9999 0.4025 1.0001 0.3863 0.9997 0.4497 0.9244 0.3487 0.6217 0.3608 0.9093 0.3863 0.9682 0.4239

RV 0.02 0.0196 0.2900 0.0196 0.2919 0.0198 0.2921 0.0201 0.2932 0.0612 0.1571 0.2484 0.1611 0.0799 0.2921 0.0395 0.1639

2 S1 0.358 0.3518 1.0911 0.3469 1.1252 0.3530 1.1276 0.3567 1.1466 0.3654 1.3184 0.4427 1.3260 0.3778 1.1276 0.3622 1.3426

S2 0.358 0.3585 −0.4655 0.3605 −0.5064 0.3561 −0.5119 0.3576 −0.5323 0.3863 0.7080 0.4650 −0.7178 0.3760 −0.5119 0.3650 −0.7399

I 0 −0.0175 −0.9652 −0.0110 −1.0164 −0.0027 −1.0269 −0.0019 −1.0850 0.0543 −1.2660 0.3570 −1.2557 0.0874 −1.0269 0.0307 −1.3044

RV 0.68 0.6789 0.2900 0.6840 0.2919 0.6808 0.2921 0.6857 0.2932 0.6130 0.1571 0.4386 0.1611 0.6044 0.2921 0.6587 1.3487

No 1 S1 0.447 0.4276 0.1611 0.4378 0.1642 0.4313 0.1328 0.4441 0.1270 0.4172 0.1836 0.4260 0.1414 0.3140 0.0357 0.3205 0.0115

S2 0.447 0.4308 0.3397 0.4439 0.2973 0.4282 0.2331 0.4328 0.1931 0.4154 0.3281 0.4320 0.3144 0.3175 0.2728 0.3060 0.2506

I 1 0.9929 −0.0843 0.9982 −0.1415 0.9924 −0.2593 0.9943 −0.2619 0.9672 −0.1218 0.9761 −0.1401 0.8493 −0.1965 0.8473 −0.1625

RV 0.5 0.4690 0.6208 0.4701 0.6384 0.4849 0.6451 0.4965 0.6565 0.4871 0.5909 0.4888 0.6144 0.4978 0.6267 0.4974 0.6366

2 S1 −0.447 −0.4291 −0.1625 −0.4394 −0.0771 −0.4195 −0.0999 −0.4321 −0.1189 −0.4240 −0.0167 −0.4334 −0.0554 −0.3015 −0.0836 −0.3093 −0.1177

S2 −0.447 −0.4222 0.3166 −0.4226 0.3756 −0.4283 0.3431 −0.4397 0.3708 −0.4045 0.3090 −0.4096 0.3127 −0.3183 0.2571 −0.3106 0.2178

I 0 0.0083 −0.1203 −0.0038 −0.1829 0.0137 −0.1188 0.0105 −0.0955 0.0072 −0.1680 0.0098 −0.2114 0.1486 −0.1382 0.1529 −0.1233

RV 0.5 0.4876 0.6208 0.4980 0.6384 0.5012 0.6451 0.5024 0.6565 0.4644 0.5909 0.4894 0.6144 0.4961 0.6267 0.5031 0.0272

FREE, residual variances freely estimated; CONS, residual variances equally constrained; SS, sample size; CP, class proportion; D_RV, the disparity in the magnitude of
class-specific residual variances; C, latent class; TRUE, population values for each parameter; PAR, parameters; S1, class-specific slope for x1; S2, class-specific slope
for x2; I, class-specific intercept; RV, class-specific residual variance.
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FIGURE 2 | Parameter bias of single-predictor models (sample size = 500, without intercept difference). Free, residual variances freely estimated; Cons, residual
variances equally constrained; S_1, slope for class 1; RV_1, residual variance for class 1; S_2, slope for class 2; RV_2, residual variance for class 2.
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FIGURE 3 | Parameter bias of two-predictor models (sample size = 500, without intercept difference). Free, residual variances freely estimated; Cons, residual
variances equally constrained; S_1, slope for class 1; RV_1, residual variance for class 1; S_2, slope for class 2; RV_2, residual variance for class 2.
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for the slope(s) and residual variance are calculated among the
estimated parameters reported in the previous section. Since the
intercept for Class 1 is under the conditions with an intercept
difference, the denominator in the bias formula is zero. Therefore,
the bias calculation for these intercepts is not available in this
study. Instead, biasedness of the intercepts can be inferred from
the results of the parameter estimates.

Although free models for some conditions show close
parameter estimates to the true value, biases for most conditions
exceed the cutoff point 0.1. For the single-predictor models, when
intercepts are different between two classes, biases are low in
general. With a larger sample size, there are more acceptable
parameters where biases are lower than 0.1. For large-difference
conditions with large sample sizes (SS = 1,000, SS = 2,000), the
parameter biases are low under an intercept difference while
some are high when the intercepts of the two classes are the
same. Constrained models in large-difference conditions show
an excessive bias for slope factor in Class 2, regardless of the
existence of an intercept difference.

Under non-difference conditions, class proportion has a
significant impact on the biases. For conditions with the
same intercepts, constrained models under the balanced class
proportion have lower biases except for the smallest sample size
of 300. On the other hand, biases are generally high under the
unbalanced settings, only being low for sample sizes 300 or 500.
For the conditions with different intercepts, constrained models
show excessively high biases for the slopes with unbalanced
class proportion while the performance is found to be poor
in most settings.

Though the results for two-predictor models are similar
to single-predictor models, simulation design factors more
systematically impact the results. The results for free estimating
models can be summarized as follows. Compared to the single-
predictor models, biases are lower in most conditions. The
biases for large- and non-difference conditions are lower than
the moderate ones in general. The inclusion of an intercept
difference in the model improves the estimation results. However,
constrained models show higher biases than free models for
every condition, and the number of parameters with serious
biases increases as the magnitude of difference in residual
variances increases. In addition, with the largest sample size
(SS = 2,000) or with a large disparity between residual variances
under balanced class proportion, free models have low biases for
most parameters. Under unbalanced class proportion settings,
some estimates in large- and moderate-difference conditions
show excessively biased values in residual variance of Class
1 even though the residual variance is correctly specified.
Slope factors for Class 1 under moderate-difference conditions
have low biases while some biases for the intercepts, residual
variances, and the slopes of Class 2 are problematic. For
the non-difference condition, biases are low as most of the
parameters show the absolute values of bias under 0.1, but
biases exceed 0.1 under sample sizes of 1,000 to a slight
degree. However, when the residual variances are constrained
to be equal between two classes, parameters are likely to be
severely biased regardless of sample size and class proportion.
The models with an intercept difference have excessive biases.

To be specific, the parameter biases for large- and moderate-
difference conditions with unbalanced class proportion show
the worst results: all parameters exceed the acceptable bias
level and significant biases of which the magnitude was over
1 were found. Slopes of Class 2 are biased downward in
many conditions.

MSE
The results for MSE for conditions of sample size 500 and
intercept 0 are plotted in Figures 4, 5. For the single-predictor
models in which the residual variances are freely estimated,
MSE values are smaller regardless of class proportion when the
sample size is large. However, parameters for the moderate-
difference condition had high MSE in intercepts, which are even
freely estimated. Constrained models show significantly poorer
performance regarding MSE values when compared to the free
models. When residual variances are constrained even though
there is a big difference, the intercepts showed high MSEs than
that of the slopes. Compared to other conditions, constrained
models with sample sizes of 300 and 500 have larger MSEs for
many parameters. When the sample size is 1,000, slopes and
intercepts show high MSEs when those of residual variances are
small. When the magnitude of the disparity between residual
variances is moderate, the MSE of the constrained model is higher
than the free estimation model but to a lesser extent than the
large-difference condition.

When the population values of residual variances for each
class are equal, freely estimated models show lower MSE values
than other conditions; parameters of unbalanced class proportion
show slightly higher MSEs than those of balanced conditions.
Constrained models in these conditions also show undesirable
results in slopes and intercepts when the sample size is 300.
A sample size over 300 shows low MSE values. When an intercept
difference is included in single-predictor models, the MSE values
for free models generally decrease. The MSE values under a small
sample size are also low whereas those of models without a
difference between the intercepts are quite large. Under sample
sizes of 300 and 500, MSEs are slightly larger; for balanced class
proportion, sample sizes from 500 and for the unbalanced, values
under the sample size of 1,000 are satisfactory.

When the residual variances are constrained, all the MSE
values of the large-difference condition are substantially high,
and those of the moderate-difference condition are also higher,
but the value diminishes as the sample size increases. For
the non-difference condition, although most of the values
for other parameters only show a small degree of difference
compared to the free model, that of the intercept in Class
1 is excessively high. When class proportion is unbalanced,
the results of other parameters in the model become more
notable that slope for both classes and intercepts for Class
2 become excessively high, which indicates it can result
in problematic outcomes when the residual variances are
constrained in these conditions although they have the same
population value.

For the freely estimated multivariate models with an intercept
difference of 1, except for some of the intercepts under
unbalanced proportion conditions, most of the parameters
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FIGURE 4 | MSE of single-predictor models (sample size = 500, without intercept difference). Free, residual variances freely estimated; Cons, residual variances
equally constrained; S_1, slope for class 1; RV_1, residual variance for class 1; S_2, slope for class 2; RV_2, residual variance for class 2.
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FIGURE 5 | MSE of two-predictor models (sample size = 500, without intercept difference). Free, residual variances freely estimated; Cons, residual variances
equally constrained; S_1, slope for class 1; RV_1, residual variance for class 1; S_2, slope for class 2; RV_2, residual variance for class 2.
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FIGURE 6 | Coverage of 95% confidence interval of single-predictor models (sample size = 500, without intercept difference). Free, residual variances freely
estimated; Cons, residual variances equally constrained; SS, sample size; CP, class proportion; RV, the disparity in the magnitude of class-specific residual
variances; C1_S, slope for class 1; C1_I, intercept for class 1; C1_RV, residual variance for class 1; C2_S, slope for class 2; C2_I, intercept for class 2; C2_RV,
residual variance for class 2.

have low MSEs. However, the constrained model shows
higher MSEs; for the residual variance discrepant conditions,
the parameters for Class 2 are poorly estimated. However,
when the residual variances are the same, most of the
parameters have lower MSE values except for the intercept
in Class 1. Some MSEs for slopes are problematic but the
degrees are not systematically impacted by the magnitude of
the sample sizes.

Coverage
Results for coverage of the 95% confidence interval for
conditions of sample size 500 and intercept 0 are presented
in Figures 6, 7 and can be summarized as follows. The
coverage rates for the models with one predictor are below
0.9 for many conditions and thus, are unsatisfactory. When
the intercepts are the same between the classes, some of
the parameters show satisfactory coverage rates when the
sample size is 500 and over under balanced class proportion
conditions, and a sample size of 1,000 and over under
unbalanced class proportion conditions. With large sample
sizes (SS = 1,000 and 2,000), some conditions of large-
difference and moderate-difference show quite fair coverage

levels (but most of them were under 0.9, which could be
problematic), considering that RMMs show a lower coverage
rate in general. On the other hand, constrained models show
considerable coverage rates under all large- and moderate-
difference conditions. Parameters for non-difference conditions
show a similar coverage rate to the free model and even
show slightly higher rates than the free model. The intercept
difference between the classes is present and also coverage rates
for most of the parameters are inappropriate, compared to
the desired level. Among those, a model with large-difference
conditions in residual variances show fair coverage when the
sample size is large (SS = 1,000 and 2,000) under either
balanced or unbalanced class proportions. However, in the
moderate- and non-difference, only models under unbalanced
class proportions show a decent rate of coverage when the
sample size is 1,000 or 2,000. When the constraints are
imposed on residual variances, the coverage for the non-
difference condition is lower than the model without an
intercept difference.

When the model has two predictors, coverages for the
free model are higher than the single-predictor model.
Regardless of the intercept difference, coverages for most
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FIGURE 7 | Coverage of 95% confidence interval of two-predictor models (sample size = 500, without intercept difference). Free, residual variances freely estimated;
Cons, residual variances equally constrained; SS, sample size; CP, class proportion; RV, the disparity in the magnitude of class-specific residual variances; C1_S1,
slope for x1 in class 1; C1_S2, slope for x2 in class 1; C1_I, intercept in class 1; C1_RV, residual variance for class 1; C1_S1, slope for x1 in class 2; C1_S2, slope
for x2 in class 2; C2_I, intercept in class 2; C2_RV, residual variance for class 2.

of the free models with balanced class proportion are
satisfactory. The unbalanced model shows lower bias
than the balanced model, except for the non-difference
conditions. The coverage rates for the constrained model
are seriously low except for one or two parameters in a
model. Unlike the single-predictor models, coverages for all
non-difference conditions are low, even though the residual
variances are equal.

To summarize the results, when a sole predictor is included
in the model, even with a correctly specified model, bias
and coverage can be poor. When conditions of balanced
class proportion, a sample size over 1,000, and large class
separation are secured, better estimates can be obtained in a
single-predictor model. When two predictors are included in the
model, correctly specified RMMs can result in better estimates
than a single-predictor model. When class-specific intercepts are
different, results for all criteria are satisfactory under most of
the conditions. However, even in a two-predictor model, for
some conditions, problematic outcomes can result: small sample
sizes, unbalanced class proportion, and low class separation. Even
though there are some conditions with accurate estimates even

below the minimum suggested sample size of 3,000 in correctly
specified models, models with equality constraints on residual
variances yield inaccurate estimates under most conditions
when the sizes of residual variance are discrepant between the
two classes. Under these discrepant conditions, most of the
parameter estimation results are inaccurate. Especially when
the discrepancy between the class-specific residual variances is
large, the problematic results for bias and coverage are severe.
Under the conditions that the residual variances are actually
the same in the population value, the results are problematic
except for some conditions; the single-predictor models without
an intercept difference with a sample size over 500 are well
estimated, and better estimates are obtained than the free model.
Although the free models under these conditions result in poor
estimates when the sample size is small especially in coverage,
restricted models show satisfactory estimates considering all
criteria under these conditions. The impacts of constraints are
more remarkable when the two predictors are included, and
the class-specific intercepts are different, which show more
excessively biased results than the single-predictor models with
inappropriate constraints.
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REAL DATA APPLICATION

Regression Mixture Analysis to Explore
the Differential Effects of Smartphone
Dependency and Depression Among
Adolescents
In this section, we will provide an example of analyzing regression
mixtures with and without equality constraints on residual
variances with a small sample size. This applied example will
provide a simple and practical guide on modeling with RMMs,
focusing on situations where researchers can confront problems
with estimation and may seek for methods (such as constraining
the residual variances) to solve it.

We used the 5th wave of the panel data collected from the
“Research on Juvenile Panel for Aborting Education” by the
Korea Youth Policy Institute. This data set includes several
variables concerning adolescents who dropped out of school
including their relationships with parents, teachers, and friends;
daily patterns of spending time; and psychological traits. The
sample included 318 adolescents who dropped out of middle or
high school. This sample size may be considered insufficient for
regression mixtures. In general, RMMs require a large sample
(i.e., more than 3,000) for a stable analysis. As our simulation
study is focused on circumstances where the dataset is unideal,
such as with small samples, we chose a situation where the sample
is less than 500 in order to demonstrate the results from the
simulation study.

The study explored whether the differential effects
between smartphone dependency and depression exist among
adolescents. We were motivated by the literature of Zhao and
Lapierre (2020) which implied that the impact of problematic
smartphone use on an individual’s stress and depression can
differ among individuals, for example being affected by a given
individual’s purpose of smartphone use or level of social support.
Starting from this literature, we aim to figure out whether there
are hidden subgroups indicating the effect (both in direction
and magnitude) of smartphone dependency on depression. The
single-predictor models where the intercept and slope were
allowed to vary across the classes have been used in order to
intuitively compare these results with the simulation results.
For the free models, residual variances were also allowed to be
variant between the classes; they were constrained to be equal
across classes in restricted models.

The fit statistics of each enumeration phase are given in
Table 7. We compared the fit indices by increasing the number
of latent classes from 1 to 3. As it is known that AIC (Akaike
Information Criterion) often over extracts the latent classes
in regression mixtures, we used BIC Bayesian Information
Criterion) (for selecting the number of the classes. For both free
and restricted models, two-class models were selected.

Next, we estimated the two-class models with and without
the equality constraints on residual variances. For the two-class
models, the restricted model showed an improved entropy
value (0.343 in free model, 0.757 in the restricted model). In
Table 8, the results of the estimation, including the parameter
estimates, standard errors, and p-values, are provided. In the

TABLE 7 | Fit indices for free and restricted models of data-application example.

1-class 2-class 3-class

Free model

Loglikelihood −196.065 −183.02 −175.588

Parameters 3 7 11

AIC 398.129 380.04 373.176

BIC 409.415 406.375 414.559

ABIC 399.9 384.172 379.669

Entropy – 0.343 0.676

Class proportions – –

Class 1 1 0.405 0.314

Class 2 – 0.595 0.582

Class 3 – – 0.104

Restricted model

Loglikelihood −196.065 −183.965 −176.2

Parameters 3 6 9

AIC 398.129 379.929 370.4

BIC 409.415 402.502 404.258

ABIC 399.99 383.471 375.712

Entropy – 0.757 0.667

Class proportions – – –

Class 1 1 0.844 0.412

Class 2 – 0.156 0.107

Class 3 – – 0.481

TABLE 8 | Parameter estimates, standard errors for 2-class models of free and
restricted models of data-application example.

Class 1 Class 2

B SE p B SE p

Free

Intercept 1.27 0.24 0.00 1.13 0.09 0.00

Slope 0.36 0.09 0.00 0.16 0.07 0.02

Residual variance 0.19 0.02 0.00 0.09 0.02 0.00

Restricted

Intercept 1.12 0.08 0.00 1.84 0.37 0.00

Slope 0.21 0.04 0.00 0.27 0.14 0.05

Residual variance 0.11 0.01 0.00 0.11 0.01 0.00

free model in which the residual variances are allowed to differ
between the classes, the characteristics of each two groups can
be distinguished with the magnitude of the slope. Individuals in
Class 1 comprised 40.4% of the sample and showed a stronger
indication of the effect of smartphone dependency on depression
compared to those in Class 2. The intercepts of these classes
were similar in magnitude (difference = 0.14). However, when
the residual variances are constrained (even though the class-
specific residual variances estimated in the free model are not
the same), the estimation results were clearly different from
the results of the free model. While the class proportions of
free models were more balanced (40.4: 59.5), in the restricted
model, the class proportions were significantly unbalanced (84.4:
15.6). The directions of the effects were the same (+) but they
differed in magnitude. In the restricted model, it is possible
that the differential effects were not effectively captured, as the
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slopes of each class are very similar in magnitude and the
difference is 0.057.

Although these results may not be straightforwardly helpful in
comparisons of the performance of the free and restricted models
since the true model derived from applied research cannot
be known in advance, this real data application demonstrates
how inappropriately imposing equality constraints can distort
the estimation results, even though these constraints may
lead to better indices regarding convergence. Therefore, we
recommend not to constrain class-specific residual variances
with small samples especially when the absolute value of effects
(demonstrated by slope) is different between the classes.

CONCLUSION AND DISCUSSION

This study conducted a Monte Carlo simulation study to examine
the performance of freely estimated and restricted RMMs in
parameter estimation and compared the results of the two
models. Data were generated for the two-class model, and
four types of models were considered: single and two-predictor
models with two different settings for class-specific intercepts.
Manipulated factors for simulation design are the magnitude
of difference with class-specific residual variance, which are
set by varying the class specifications, sample size, and class
proportion. Under manipulated conditions, four models were
estimated twice, one with freely estimating residual variances
and one with restricted residual variances. To evaluate parameter
estimation accuracy, the criteria of parameter estimate bias, MSE,
and coverage were considered comprehensively.

The results can be summarized as follows. For the free
estimating models, although the parameter estimates were fairly
obtained, only a few of them met the criteria, and bias and
coverage were especially problematic under many conditions.
But under the following conditions, more accurate estimates
were obtained: models with two predictors, large sample sizes
(SS = 1,000 and SS = 2,000), a large difference in regression
weights between the classes (0.7/0.2, 0.5/−0.5), and balanced class
proportion. These results for free models are consistent with the
study of Jaki et al. (2019) where coverage rates were slightly lower
than the acceptable level even when the parameter estimates were
close to the true value, parameter estimates were inaccurate for
sample sizes of 500 and below, and lower accuracy was found in
decreased class separation settings. For the constrained models,
the estimates were unfavorable except for some cases. When the
residual variances were unequal between the classes, estimates
were very poor under all settings. A large discrepancy in residual
variances between the classes led to worse results. Models with a
smaller discrepancy for those were also problematic under most
conditions, but to a lower degree.

Moreover, although good estimates were expected when the
values for residual variance were equal between the classes,
the results were also poor in many cases. These results were
inconsistent with Kim et al. (2016) where the constrained
models under the discrepant condition generally resulted in
better estimates than the free model. It can be expected that
even a slight model misspecification led to a problematic
result in smaller sample size settings as previous studies have

reported that RMMs are very sensitive to model assumptions
and specification (Lamont et al., 2016; Wadsworth et al., 2018;
Sherlock et al., 2021).

Furthermore, the patterns of problematic consequences that
were different from the results of Kim et al. (2016) can be
summarized as follows. First, the type of parameters with serious
problems was different. Unlike the previous study, where only
the slopes were biased, in this study, the intercepts and residual
variances including the slopes were also biased. In particular, the
intercepts were seriously biased in many cases in this study while
intercepts were accurately estimated even in harsh conditions in
Kim et al. (2016). Second, although their study resulted in bias
for both classes, parameters in Class 2 resulted in more serious
bias in this study. This result is similar to Jaki et al. (2019)
in that the coverage rates for classes with smaller slopes were
more severe. These different results may have been caused by the
model instability of RMMs (Jaki et al., 2019), considering that the
simulation conditions set in this study are not ideal.

Therefore, taken together with the results from Kim et al.
(2016) and Jaki et al. (2019), the recommendations for researchers
using RMMs are proposed as follows. First, for researchers using
smaller sizes than the recommended minimum size of 3,000, the
equality constraints on class-specific residual variances should
not be imposed when the residual variances are discrepant. With
the discrepant conditions, even problems in estimation were
confronted when using data of small sample sizes, reducing
the number of parameters can lead to more serious problems
than the correctly specified models. Thus, in this case, it is
always recommended to use a sample size of more than 500
and correctly specify the residual variance component. Second,
considering the free models with sample sizes of 500 and
below showed problematic results under most conditions, when
it is unavoidable to use small samples, such circumstances
are required for better estimation: more than one predictor,
larger difference in slopes or intercepts between the classes,
and balanced class proportion. Lastly, even in situations where
residual variances are equal across classes, equality constraints
should be imposed with caution when the sample size is
under 3,000. Although restricted models mostly showed better
performance than free models with large samples (Kim et al.,
2016), when the sample size is small, only under conditions
of “a single-predictor model with both class intercept zero and
sample sizes of 500, 1,000, and 2,000,” was the accuracy of
parameter estimates satisfactory, even better than that of free
model. Thus, researchers should keep in mind that in some
situations when residual variances are the same within a class, the
constraints could lead to more accurate estimation than the free
estimation model.

The contributions of this study are as follows. First, this
study included diverse and realistic conditions that are prevalent
in applied study settings in systematically examining the
consequences of the correctly specified and the misspecified
model and comparing the results of the two. Previous simulation
studies are limited on this topic, and the existing study on
RMMs only included ideal conditions, which is irrelevant to
most applied researchers using data under realistic conditions.
To reconcile this discrepancy between simulation research and
applied research, this study included a small sample size starting
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from 300 and unbalanced class proportions that are often
encountered in applied research settings. Specifically, researchers
applying RMMs with less than ideal data could refer to the
findings in the current study to use a model in a more appropriate
way. Second, this study is meaningful in that it revealed
the impact of residual variances in RMMs while the aspects
of residual variance components have not been thoroughly
examined in finite mixture modeling.

Despite the significance of this study as described above,
some limitations exist that are recommended to be discussed in
future researches. First, the conditions of this study are limited to
specific circumstances. This study builds upon the conclusions
of previous literature of Kim et al. (2016) by including small
sample sizes and unbalanced class proportions, both of which
are often encountered in applied research settings. Therefore,
more factors can be manipulated in future research, such as
the number of classes or interaction between the predictors in
multivariate models. Next, this study is limited to a situation
where the model is quite simple, as the covariates are not
included in its scope. As these constraints could result in
different results when the model is more complex in RMMs, it
is recommended that future researchers conduct research with
more complicated RMMs to thoroughly investigate methods

of dealing with non-convergence issues by using equality
constraints in RMMs.
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