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a b s t r a c t 

The nervous and immune systems are crucial in fighting infections and inflammation and in maintaining immune 
homeostasis. The immune and nervous systems are independent, yet tightly integrated and coordinated organi- 
zations. Numerous molecules and receptors play key roles in enabling communication between the two systems. 
Transient receptor potential vanilloid subfamily member 1 (TRPV1) is a non-selective cation channel, recently 
shown to be widely expressed in the neuroimmune axis and implicated in neuropathic pain, autoimmune disor- 
ders, and immune cell function. TRPV1 is a key bridge in neuroimmune interactions, allowing for smooth and 
convenient communication between the two systems. Here, we discuss the coordinated cross-talking between 
the immune and nervous systems and the functional role and the functioning manner of the TRPV1 involved. 
We suggest that TRPV1 provides new insights into the collaborative relationship between the nervous and im- 
mune systems, highlighting exciting opportunities for advanced therapeutic approaches to treating neurogenic 
inflammation and immune-mediated diseases. 
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ntroduction of Transient Receptor Potential Vanilloid 

ubfamily Member 1 (TRPV1) 

The transient receptor potential (TRP) channel superfamily
onsists of over 30 subtypes that function as polymodal signal
ntegrators, which detect diverse environmental and physiolog-
cal signals in mammals. [1] TRP channels are involved in diverse
hysiological processes, including transducing chemoreception,
njury sensing, and mediating the release of cytokines and the
elease of neuropeptides, all of which contribute to the mainte-
ance of immune homeostasis. [2,3] TRPV1 was the first member
f the TRP channel family to be identified, making it the most
horoughly characterized TRP channel. Additionally, the struc-
ure and functional properties of TRPV1 are well-known in the
iterature. 

TRPV1 was originally known as a capsaicin receptor wherein
t is activated by capsaicin, sodium, and calcium ions influx to
epolarize nociceptive neurons, leading to the action potential
ring and the sensation of pain. [4] In 1997, Michael et al. [5] first
loned TRPV1 from rat dorsal root ganglia and identified its role
s a “noxious heat ” sensor. Subsequently, several studies have
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evealed the structure and functional properties of TRPV1. The
RPV1 protein is encoded by the TRPV1 gene located on chro-
osome 17p13 and has a molecular weight of 95 KD. It is a

etrameric protein consisting of four monomers, each of which
onsists of six transmembrane segments (S1–S6) with cytoplas-
ic C- and N-terminal domains and a pore region between the

5 and S6 domains. [5] 

Besides being sensitive to capsaicin, as a polymodal no-
isensor par excellence, TRPV1 is essential to nociception,
hermosensation, and chemaesthesis. Various biotins derived
rom plants and animals are TRPV1 activators. DkTx, a toxin
rom the Earth Tiger tarantula, is an irreversible TRPV1 ac-
ivator. DkTx has a bivalent nature; it traps TRPV1 in the
pen state by interacting with residues in the presumptive
ore-forming region of the channel. [6] Resiniferatoxin (RTX), a
horbol ester isolated from the irritant lattices of the Moroccan
actus, showed exquisite sensitivity to TRPV1, which may make
he channel more permeable to cations, ultimately leading to
n analgesic effect through channel desensitization. [7,8] Addi-
ionally, RTX, piperine, gingerol, zingerone, camphor, eugenol,
thanol, etc., can also activate TRPV1 channels. [8] The endoge-
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ous ligands of TRPV1 are mainly lipid-derived molecules,
uch as N-arachidonoyl-dopamine, N-oleoyldopamine,
leoylethanolamide, 12-(S)-hydroperoxyeicosatetraenoic acid,
nd 15-(S)-hydroperoxyeicosatetraenoic acid. [9] Moreover, it
an be activated by proalgesic pathways, such as noxious heat
 > 40 °C) and acidic solutions (pH < 6.5) [10] and by divalent
ations Mg2 + and Ba2 + . [11] 

Previous studies have shown that TRPV1 is mainly dis-
ributed in sensory neurons, including dorsal root neurons,
rigeminal neurons, and small- and medium-sized neurons of the
agal ganglion. [10] TRPV1 has also been found in the neurons
nd glial cells of the central nervous system (CNS), where it is
ssociated with thermoception and nociception. Additionally,
RPV1 expression has been detected in non-neuronal tissues
uch as heart, liver, lung, kidney, adipose tissue, skeletal mus-
le, and intestine. [12-14] Thus, it has been associated with many
isease processes, such as neuroinflammatory diseases, autoim-
une diseases, and hypersensitivity reactions. The function of
RPV1 has also been studied in various physiological and patho-

ogical processes, including vascular activation, inflammatory
esponse, anxiety and depression, cell proliferation, and apop-
osis. 

n Introduction to Neuroimmunity 

Neuroimmune cross-talking is an emerging hotspot for medi-
al and life science research. The two systems involved —the ner-
ous and immune systems —are highly complex and integrated
nd can receive and process signals from all types of physical
nd chemical stimuli in the environment. With human evolu-
ion, neuroimmune cross-talking is becoming increasingly com-
lex and advanced in response to environmental harms to pro-
ect tissues from damage. 

The immune system consists of innate and adaptive im-
unity. When the innate immune system detects an invading
athogen or tissue damage, it sends signals to the adaptive im-
une system. The latter immediately exerts cellular and hu-
oral immunity by mobilizing various immune cells and cy-

okines in the anti-inflammatory immune process. [15] Contrary
o the immune system with mobile and dispersed cells, the or-
anization of the nervous system is fixed and is divided into the
NS and the peripheral nervous system (PNS). Typically, sen-
ory neurons are responsible for the translation of physical stim-
li translation; stimuli such as touch, temperature, and exoge-
ous or endogenous chemicals can be translated into electrical
ignals and then sent to the CNS. [16] The CNS rapidly integrates
nd processes the signals and directly activates muscle contrac-
ion and glandular secretion. [16] The nervous and immune sys-
ems are autonomous entities with unique characteristics, but
hey often work together, acting in an integrated and coordi-
ated manner in host defense and, therefore, provide a more ef-
ective defense than when acting in isolation. [17] Specific spatial
onnections between neurons, nerve cells, and immune cells al-
ow for easier and convenient communication between the two
ystems, especially in the skin and mucous membranes, which
re rich in sensory neurons. In the mucosa of mice with aller-
ic airway inflammation, dendritic cells (DCs) and T cells were
ither directly contacted by nerves or located near the nerve
bers, which greatly enhanced the efficiency and speed of sig-
aling. [18] In the skin of psoriasis mice, most DCs are in close
443
ontact with nociceptive sensory neurons. [19] This close com-
unication induces the secretion of more proinflammatory fac-

ors and the aggregation of various immune cells, which pro-
otes local and systemic feedback activity, greatly increasing

he body’s efficiency and combativeness against inflammation
nd pathogens. 

The synergistic effects with high efficiency and existing be-
ween the nervous and immune systems have been attributed
o several factors. First, the two systems share “communication
anguage, ” including cytokines, growth factors, and neuropep-
ides. Second, they share a variety of the same signaling re-
eptor. Both systems share many recognition receptors for var-
ous pathogens, metabolites, and products of an inflammatory
esponse, enabling timely reception and feedback of abnormal
ignals from the environment. [17,20–22] Third, they have their spe-
ialized roles. For instance, the nervous system responds more
uickly to physical stimuli, while the immune system is more
ensitive to chemical signals. The role of neuroimmunity in di-
erse disease contexts and the mechanisms involved are receiv-
ng increasing attention and focus, and the interaction involved
n neuroimmunity is increasingly being implicated in the patho-
hysiology and pathological processes of tumors, neurological
isorders, infectious diseases, metabolic diseases, etc. However,
ue to the different microenvironments, the functional role of
he neuroimmunity interaction is also diverse. Thus, the mech-
nisms involved are complex and varied, and the results from
nimal and in vivo studies still require further clinical valida-
ion. Nevertheless, it is evident that an in-depth study of the
ellular and molecular mechanisms involved in neuroimmune
nteractions may help discover novel therapeutic targets for dis-
ases. [23] 

RPV1 and the Immune System 

TRPV1 was originally thought to be exclusively neuronal, but
ow it appears indispensable for the immune system. As a key
ommunication mediator between the nervous and immune sys-
ems, it is widely expressed in immune cells and regulates im-
une cell activity and immune molecule secretion in various
ays. Hence, TRPV1 plays a wide range of regulatory roles in in-
ammatory responses and immune-related diseases ( Figure 1 ).
owever, data about its exact role in the immune system are

imited. 

RPV1 regulates the immune system through various 

echanisms 

xpression of TRPV1 in the immune system 

TRPV1 expression is widely distributed in the nervous sys-
em, being found in astrocytes, microglia, and neurons. Re-
ent studies have detected TRPV1 in the hippocampus, cor-
ex, cerebellum, olfactory bulb, mesencephalon, hindbrain, and
ther sites of the mouse, rat, and human brain. [24,25] Further-
ore, studies have found TRPV1 in intracellular organelles of

strocytes and microglia. [13,26] Additionally, using immunocy-
ochemistry at the ultrastructural level, TRPV1 expression was
lso detected in astrocytes in the spinal cord. [26,27] The func-
ion of glial cells in the nervous system is similar to that of
acrophages in the immune system. TRPV1 actively engages

n proliferation, apoptosis, phagocytosis, and inflammatory fac-
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Figure 1. The effect of TRPV1 on the immune system. Many external factors, such as capsaicin, noxious heat, acidic solutions, and physical damage, as well as 
immune challenges, rapidly activate TRPV1, resulting in the release of neuropeptides such as CGRP and SP. These neuropeptides activate immune cells, including 
macrophages, T cells, and neutrophils, and exert various effects that influence immune cell proliferation, differentiation, death, recruitment, and activation. These 
changes in cell activity may lead to proinflammatory or anti-inflammatory effects under different disease contexts (The picture was made using Figdraw). 
CGRP: Calcitonin gene-related peptide; CNS: Central nervous system; SP: Substance P; TRPV1: Transient receptor potential vanilloid subfamily member 1. 
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or secretion in microglia and astrocytes. [28] For instance, Has-
an et al. [29] found that cannabidiol enhances microglial phago-
ytosis via TRPV1 channel activation, while inhibition of mi-
roglia TRPV1 promotes interleukin (IL)− 6 release and nuclear
actor-kappa B (NF- 𝜅B) activation. [30] Similarly, in the periph-
ral immune system, since the first detection of TRPV1 in hu-
an peripheral blood mononuclear cells, [31] many studies have

evealed the expression and role of TRPV1 on various immune
ells. TRPV1 expression has been detected in T lymphocytes,
acrophages, DCs, natural killer (NK) cells, neutrophils, and

ther immune cells in human and mouse immune organs and
lood. [32–34] 

RPV1 promotes the secretion of neuropeptides to regulate the 

mmune system 

TRPV1-expressing sensory neurons mediate the neuroim-
une cross-talking by releasing neuropeptides to innervated tis-

ues and immune cells. TRPV1 activation can lead to the release
f calcitonin gene-related peptide (CGRP), substance P (SP), so-
atostatin, and other neurotransmitters, and these neuropep-

ides can mediate a range of immunological responses. CGRP is
 critical and highly expressed sensory signal, making it impor-
ant in neuroimmune communication pathways. One of the pri-
ary outcomes of TRPV1 activation is the release of CGRP. [35] 

imilar to TRPV1, CGRP is expressed in sensory neurons and
GRP+ neurons have also been detected in many immune or-
ans and immune cells. [36,37] TRPV1 agonists (rutaecarpine, cap-
444
aicin and its derivatives, etc.) stimulate the secretion of CGRP
nd the antagonists inhibit the release of CGRP. [33,38,39] Activa-
ion of TRPV1 by protons leads to the upregulation of CGRP via
alcium/calmodulin-dependent protein kinase II (CaMKII) and
REB in dorsal root ganglion (DRG), while CGRP expression is
educed in TRPV1-deficient mice. [40] CGRP modulates the sys-
emic immune response through various mechanisms. For in-
tance, CGRP promotes DC motility, reduces phagocytic capac-
ty, [41] and affects antigen-delivery function. [42] It also regulates
ymphocyte differentiation and cytokine production 

[43] and af-
ects the migration and adhesion of T cells and monocytes. [44] 

onathan et al. [45] fully illustrated the role of CGRP in the in-
ammatory response under TRPV1 induction. TRPV1 neuron
ctivation elicited the type 17 immune response and increased
ecretion of CGRP —which is accompanied by the increased
ecretion of type 17-related inflammatory factors IL17A and
L22 —while CGRP antagonism decreased the secretion of these
nflammatory factors, suggesting that TRPV1-induced CGRP re-
ease is required for the induction of type 17 inflammation. [45] 

SP is a neuropeptide with immunomodulatory effects, which
s stored in peripheral sensory neurons and mainly released af-
er pain stimuli. [46] SP is mainly expressed in neurons, glial
ells, and non-neurological sites, including some immune cells,
uch as T cells, DCs, and macrophages. The widespread expres-
ion of SP in diverse cell types suggests that it plays key roles
n many physiological and pathological processes by activating
everal signaling pathways. [47,48] In allergic diseases, allergens
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irectly activate TRPV1+ neurons, inducing SP release and the
C migration to lymph nodes. [48] Allergens also activate Mas-

elated G protein-coupled receptor B2 in skin mast cells to ini-
iate anaphylactic responses [49] and promote leukocyte adhe-
ion. [46] The above-mentioned data indicate that SP has proin-
ammatory functions, although some studies have reported con-
rasting findings. Giovanna et al. [50] found that SP significantly
educes the production of proinflammatory cytokines and en-
ymes, such as tumor necrosis factor (TNF)- 𝛼, IL-6, inducible
itric oxide synthase (iNOS), and cyclooxygenase-2, and facili-
ates migration of and phagocytic properties in lipopolysaccha-
ide (LPS)-stimulated RAW 264.7 cells. Also, SP stimulates the
nti-inflammatory effects of macrophages by suppressing NF-
B activation and inducing hemeoxygenase-1 expression. These
ndings suggest a diverse role for SP in immune response. 

In addition to the release of neuropeptides, TRPV1 promotes
he release of other immunomodulatory factors to modulate the
mmune response. For instance, Raffaele et al. [51] found that
RPV1 activation leads to the release of miR-21–5p in the exo-
omal fraction by DRG neurons; miR-21–5p is readily phagocy-
osed by macrophages in which increased miR-21–5p expression
romotes a proinflammatory phenotype. 

RPV1 activates Ca2 + channels to modulate the immune system 

Calcium acts as a second messenger in most immune cells,
nd resting cells maintain a low concentration of Ca2 + . How-
ver, the engagement of antigen receptors, such as the T-cell
eceptor, B-cell receptor, chemokine, and co-stimulatory recep-
ors, induces calcium influx from the extracellular space. [52,53] 

RPV1 promotes Ca2 + influx into immune cells, such as DCs
nd T cells, [33,54] while TRPV1 deficiency results in reduced
a2 + influx. [34,55] Calcium signaling is key to many cell func-
ions, including apoptosis, mobility, and immune responses.
hus, TRPV1 may regulate immune cell activity by modulat-

ng Ca2 + signaling. TRPV1-induced Ca2 + influx attenuated M1
acrophage polarization, as TRPV1 promoted the phosphoryla-

ion of CaMKII and facilitated the nuclear localization of nuclear
actor-erythroid 2-related factor 2 (Nrf2), ultimately inhibiting
1 macrophage polarization. [56] Ca2 + is also thought to regu-

ate autophagy. TRPV1 activation causes Ca2 + influx into the
icroglia, activating ATG5 and Ca2 + /CaMKK2/AMPK/mTOR

ignaling pathways and promoting microglia phagocytosis. [57] 

RPV1 blockade results in sustained perturbation in intracel-
ular calcium, which induces a rapid increase in mitochondrial
eactive oxygen species production and mitophagy and mito-
hondrial damage. [58] Although TRPV1 regulates immune re-
ponses through Ca2 + signaling, it cannot fully control the func-
ion of Ca2 + signaling. Rebecca et al. [59] showed that elevated
ydrostatic pressure induced a significant increase in microglial
ntracellular Ca2 + , which in turn induced increased microglial
L-6 and cytosolic NF- 𝜅B; however, TRPV1 activation by cap-
aicin alone was not sufficient to increase IL-6 levels. This in-
icates that TRPV1 and Ca2 + can functionally compensate for
ach other, but their roles differ. 

In summary, TRPV1 expression can be detected in immune
ells. TRPV1 can regulate the function of immune cells through
he release of neuropeptides or calcium signals because im-
une cells respond to TRPV1 agonists by promoting Ca2 + influx

nd neuropeptides such as CGRP and SP release. Additionally,
RPV1 antagonists or TRPV1 knockdown significantly inhibits
445
a2 + influx and neuropeptide release. Finally, Ca2 + or neuropep-
ides upregulated by TRPV1 induce subsequent marker activa-
ion and cytokine release to participate in immune regulation
nd homeostasis. However, uncertainties persist about whether
a2 + and neuropeptides such as CGRP act alone or in synergy
ith each other. Nonetheless, it is becoming clear that TRPV1

an accelerate nerve/immune cell cross-talking through a range
f pathways. 

ffect of TRPV1 on immune cells 

TRPV1 has been shown to affect various aspects of immune
ells, such as proliferation, differentiation, and signal transmis-
ion. It exerts direct and rapid regulation of immune processes
nd inflammatory signaling pathways and exerts diverse effects
nder different disease backgrounds, demonstrating the sub-
tantial functional diversity of the TRPV1 channel. 

RPV1 and proliferation and differentiation of immune cells 

The effect of TRPV1 on proliferation varies according to the
mmune cells. Capsaicin, the ligand of TRPV1, regulates the
roliferation of immune cells. Oral administration of capsaicin
o mice promotes the proliferation of macrophages and results
n an altered macrophage activation state. [60] In contrast, Feng
t al. [61] found that TRPV1 knockdown significantly increased
he number of macrophages, suggesting that the effect of TRPV1
n macrophage proliferation varies by disease type. TRPV1 also
egulates the number and activation state of NK cells. In malaria-
nfected mice, capsazepine treatment increased the circulating
K population without interfering with natural killer T (NKT)
ell numbers and blood NK and NKT activation. [62] However,
apsazepine reduced CD69 expression in spleen NKT but not
K cells, [62] suggesting the effect of TRPV1 on DC proliferation

n different organs is diverse. A study investigating the effect of
RPV1 on lymphocyte proliferation showed that capsaicin can

nhibit the proliferation of T cells in pancreatic lymph nodes. [60] 

nother ligand of TRPV1, piperine, inhibited B-cell proliferation
nd activation. However, the inhibitory effect of piperine on B-
ell proliferation was not mediated through TRPV1, as piperine
lso inhibited the proliferation of B cells in TRPV1 knock-out
KO) mice. [63] 

RPV1 and immune cell death 

TRPV1 affects the cell death modality. TRPV1 KO mice dis-
layed autophagy dysfunctions, as TRPV1 induces autophagy
hrough the Atg6/Beclin-1 pathway. [64,65] Treatment with the
utophagy inducer rapamycin failed to reverse autophagy, in-
icating that TRPV1 knockdown significantly inhibited au-
ophagy. Additionally, there is an interplay between autophagic
urvival and apoptotic cell death under the influence of TRPV1,
s the level of apoptosis significantly increased after autophagy
nhibition and the apoptotic regulator Atf4 transcription factor
nd ERp57 protein levels were upregulated. [66] Further stud-
es found that capsaicin affected thymocyte death in a dose-
ependent manner: low concentrations (5 𝜇mol/L) of CPS in-
uced apoptosis, whereas high concentrations (25 𝜇mol/L) in-
uced necrosis. The mechanism involved is related to TRPV1-
nduced Ca2 + influx, phosphatidylserine exposure, and mito-
hondrial permeability transmembrane pore opening. [67] TRPV1
lso regulates macrophage apoptosis. In peritoneal macrophages
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rom TRPV1 KO mice, the expression of the apoptosis-associated
olecule FAS, as well as the apoptosis effectors p53 and

aspase-3, were significantly upregulated, suggesting that re-
uced TRPV1 expression significantly promotes macrophage
poptosis. [68] 

RPV1 and immune cell recruitment 

TRPV1 neurons affect the recruitment of immune cells.
RPV1 inhibited the recruitment of neutrophils. After using
TX to chemically denervate and ablate TRPV1+ neurons,
TX-treated mice displayed greater lung neutrophil recruit-
ent and higher CD4 T cells number. [69] Similarly, TRPV1
O mice showed increased neutrophil numbers, as well as in-
reased expression of chemokines for neutrophil recruitment
KC and macrophage inflammatory protein 2) and key adhe-
ion molecules ICAM-1. [70] Different TRPV1 ligands may reg-
late the effect of TRPV1 on neutrophil aggregation. Some
f the constituents in essential oils from Ferula akitschkensis

re agonists, and some are antagonists for neutrophil aggrega-
ion; hence they exert different effects on neutrophil migration
nd cell viability. [71] TRPV1 also regulates the aggregation of
acrophages and T cells. Capsaicin reduced the macrophage

nd T-cell infiltration in the rat sciatic nerve, thereby exerting
n anti-inflammatory effect. [72] In contrast, capsaicin treatment
esulted in a dose-dependent inhibition of T-cell proliferation
n the colon of mice. More unexpectedly, the TRPV1 antagonist
CTC also showed a dose-dependent inhibition of T-cell prolifer-
tion. [73] We, therefore, conclude that capsaicin regulates T-cell
roliferation by a TRPV1 receptor-independent way. However,
his has not been fully confirmed, and the role and mechanism
f TRPV1 on T-cell proliferation still deserve to be further ex-
lored. 

RPV1 and immune cell activation 

TRPV1 is involved in regulating immune cell activation.
RPV1 is expressed in primary human T cells and primary
urine splenic T cells, and its expression increases during T-cell

ctivation. In contrast, knockdown or inhibition of TRPV1 activ-
ty results in reduced secretion of cytokines (including TNF, IL-
, IL-6, and IL-17) and the downregulation of the phosphoryla-
ion of T-cell antigen receptor activates related molecules, [54,74] 

uggesting that inhibition of TRPV1 activity attenuates T-cell
ctivation. Consistently, TRPV1 knockdown decreases the ex-
ression of CD4+ T-cell surface activity markers (CD25 and hu-
an leukocyte antigen-DR) in mice. [75] Collectively, these data

ndicate that the TRPV1 channel plays an essential role in the
ctivation and the acquisition of inflammatory properties by T
ells. T-cell activation by TRPV1 was associated with Ca2 + sig-
aling, as inhibition of TRPV1 channels reduced Ca2 + influx and
-cell activation. [54] TRPV1 also regulates macrophage activa-
ion. Some TRPV1 antagonists such as AMG9810 and CPZ sig-
ificantly inhibited macrophage activation and macrophage se-
retion of inflammatory factors such as IL-6, IL-1 𝛽, and IL-18,
hereas some antagonists such as SB366791 and BCTC had no

ignificant effect on macrophage activity. [76] 

RPV1 regulates inflammatory response 

TRPV1 plays a role in different inflammatory diseases by ex-
rting proinflammatory or anti-inflammatory responses depend-
446
ng on the disease context. This section briefly discusses the clin-
cal implications of TRPV1 immunobiology for allergic diseases
nd sepsis, where there is growing research interest in neuropep-
ides. 

TRPV1 is expressed in a large subset of sensory nerves, es-
ecially in the skin and airway, [19] where they integrate nu-
erous noxious stimuli. [77] Allergens like endogenous mediators

eicosanoids, cytokines, and histamines) and exogenous sub-
tances (injurious heat or cold, ultraviolet [physical factors],
nd chemical irritants or allergens) can further activate or sen-
itize TRPV1, [78] resulting in the rapid release of neurotrans-
itters. [79] The released neuropeptides act on skin and airway

ells, leading to degranulation, vasodilation, and extravasation
f plasma proteins and leukocytes, which enhance allergic reac-
ions. Many studies have shown that TRPV1 has a proinflamma-
ory effect in allergic inflammation. In atopic dermatitis, IL-31
nduces itch by directly activating TRPV1+ neurons in the skin;
RPV1 facilitates the transmission of itch sensations [80] and reg-
lates the inflammatory response. [80,81] In psoriasiform skin in-
ammation, TRPV1 promotes IL-23 secretion by dermal DCs,
hereby promoting the recruitment of circulating neutrophils
nd monocytes to provoke psoriasis-like inflammation. [19] The
ffect of TRPV1 on allergic reactions was further confirmed by
RPV1 antagonists. The TRPV1 antagonist PAC-14,028 cream
Asivatrep: C21H22F5N3O3S) significantly inhibited cutaneous
nflammation and scratching behavior by decreasing the expres-
ion of inflammation factors. [82] Similarly, TRPV1 deficiency re-
uced the levels of inflammatory factors, decreased eosinophil
umbers, and attenuated allergic responses in allergic rhinitis
ice [74] ; it also alleviated airway hyperresponsiveness and in-
ammation in asthma murine. [83] In summary, these results in-
icate that the TRPV1 antagonist acts as an anti-inflammatory
actor in allergic reactions like allergic dermatitis, rhinitis, and
sthma. The TRPV1 receptor may be a potential drug target for
hronic inflammation. 

TRPV1 plays a protective role in sepsis, as TRPV1 deficiency
isrupts immune homeostasis in septic mice. TRPV1 KO mice
isplayed increased neutrophil recruitment, increased serum cy-
okines (such as TNF- 𝛼, IL-1 𝛽, and IL-6), and elevated serum lev-
ls of creatinine and alanine aminotransferase, indicating liver
nd kidney organ dysfunction. Additionally, enhanced hypoten-
ion, decreased core temperature, and edema suggest worse cir-
ulatory failure systemic control. [84] A further study showed that
he mortality of TRPV1-deficient septic mice exceeded that of
ild-type mice, suggesting that TRPV1 KO may lead to a fa-

al outcome in septic mice. [85] The inhibitory effect of TRPV1
n inflammation is related to the Ca2 + /phosphatidylinositol 3-
inase (PI3K)/threonine protein kinase B (PKB; also known
s AKT)/endothelial nitric oxide synthase (eNOS)/nitric oxide
NO) pathway. [86] Additionally, TRPV1 agonists are protective
n sepsis. In contrast, antagonists promote septic inflammation.
0-Hydroxyeicosateraenoic acid, a TRPV1 activator, reduces
eart damage caused by sepsis in mice, [87] whereas prolonged
reatment with capsazepine or the selective TRPV1 antagonist
B366791 increased mortality in septic wild-type mice. [88] 

RPV1 and the Nervous System 

TRPV1 is widely distributed in the nervous system, including
he PNS and CNS. As a multimodal receptor, it can be activated
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y physical and thermal stimuli and chemokines. [45] TRPV1 is
ike a functional switch. Activation of TRPV1+ sensory neu-
ons triggers the action potential and subsequent neurogenic
esponses. TRPV1+ neurons at different locations play different
oles in organ function, with the most recognized function being
he “polymodal nociceptor ” in the PNS. As research progressed,
RPV1+ neurons were found to mediate several important func-
ions in the CNS and in different peripheral and visceral tissues.

he function of TRPV1 flows in the nervous system 

Since the TRPV1 channel is widely expressed in neurons and
erve cells of the central and PNS, it has diverse functional roles,
cting as “polymodal nociceptor ” in the PNS and “emotional
ane ” and “learning flow ” in the CNS. 

he role of TRPV1 in PNS functions 

In the PNS, TRPV1 is highly expressed in a subset of primary
ensory neurons of the trigeminal, vagal, and DRG with C- and
- 𝛿 fibers, which is found in various sensory fibers in the skin,
irway, [89] bone, [90] viscera, etc. TRPV1 is best known for its
ole in nociceptive sensory transmission, as it can be rapidly
ctivated by noxious stimuli. [5] Their activation excites the ter-
inals of primary sensory neurons, resulting in their depolariza-

ion and the initiation of action potentials, ultimately contribut-
ng to pain- and itch-associated responses. The role of TRPV1
n pain control has been most studied. TRPV1-expressing neu-
ons related to pain in diverse sites (skin, visceral, limb, etc.)
nd different types (inflammatory pain, neuropathic pain, and
isceral pain) have been proposed in several diseases. The re-
ults demonstrated that TRPV1 collectively plays a critical fa-
ilitating role. [91] A recent study reported that two individuals
ith TRPV1 functional loss showed impaired heat pain- and cold
ain-detection thresholds and absent capsaicin-induced neuro-
enic inflammation, [92] providing strong evidence for the in-
olvement of TRPV1 in pain processing. TRPV1-targeted drugs
re, therefore, widely used as clinical routine analgesic medi-
ation. [93] TRPV1 also serve as a promoter in itchy sensation
ransmission. It is involved in acute and chronic itch and in his-
aminergic and non-histaminergic itch. [94] Additionally, it has
een implicated in several itch-related diseases, including neu-
opathic itch, [95] atopic dermatitis, allergic contact dermatitis,
nd psoriasis. [96] TRPV1 expression positively correlates with
tch intensity, [97] while TRPV1 KO mice showed impaired itch
nd pain sensation. [98] However, in humans, TRPV1 inhibitors
annot improve chronic itch in patients. [99] 

Apart from pain and itch, TRPV1+ axons are also involved in
iverse other stimuli in various organs and tissues. In the respi-
atory system, TRPV1 is expressed in the sensory nerves of the
irway wall and has been implicated in the airway smooth mus-
le constriction, [100] airway hyperresponsiveness, [101] and mu-
us secretion. [102] Hence, it enhances the cough reflex in chronic
ersistent cough of diverse causes [103] and worsens asthma. [104] 

n the circulatory system, TRPV1 is involved in the modulation
f thermoregulation and vasodilation; vasodilators like anan-
amide exert their effects by activating TRPV1 on perivascu-
ar sensory nerves. [105] Eliminating TRPV1 expression in sensory
eurons abrogates capsaicin-induced body temperature pertur-
ations and hyperthermia in mice. [106] In the urinary tract,
RPV1+ neurons mediate the mechanosensation of the bladder
447
uring its filling. [107] The gastrointestinal system is known to be
ich in capsaicin-sensitive sensory nerves. As a capsaicin recep-
or, TRPV1 has been extensively studied for the visceral sensa-
ions (urge to pain, defecate, burning, and warmth sensation)
ediated by ingested capsaicin. [108] On this basis, studies re-

ated to TRPV1 expression levels, axonal distribution density,
nd pain severity at different sites and in different models of the
igestive system have shown that TRPV1 plays a crucial facili-
ating role in pain induced by mechanical and chemical proal-
esic factors. Additionally, TRPV1+ sensory nerves have been
mplicated in gastrointestinal motor activity, abdominal ther-
oregulation, nausea, and vomiting caused by toxic ingested

ood or drugs. [109,110] Furthermore, the activation of TRPV1+ 

xons induced the release of CGRP and SP substances, thereby
romoting vasodilatory mucus secretion by the gut and achiev-
ng the purpose of protecting the gastrointestinal mucosa. It is,
herefore, a potential target for drug action in digestive dis-
ases. [111] 

Many potential TRPV1 interaction partners, also known as
TRPV1 chaperones, ” influence the expression, sensitivity, and
ctivation of TPRV1. These molecules are mostly structurally co-
xpressed/co-distributed/co-localized with TRPV1 in neurons,
or example, the scaffolding protein AKAP79/150, [112] GABAA
eceptor associated protein, [113] anoctamin 1, [114] voltage-
ated K channel accessory subunit beta 2, [115] Ankyrin-rich
embrane-spanning protein, [116] Whirlin, [117] inducible kinin
1 receptor, [118] N-methyl- d -aspartate receptors, [119] and Toll-

ike receptor 4. [120] Some of these molecules are distributed
n sensory fibers, DRG, or the spinal cord. The interaction of
RPV1 and these chaperones may modulate aspects of TRPV1
unction, enhancing TRPV1 sensitivity to capsaicin, thermal hy-
eralgesia, inflammatory or neuropathic pain transmission, and
istamine-induced itch. Other members of the TRP family also
nteract with TRPV1 in some aspects to augment TRPV1 activ-
ty. The most prominent is transient receptor potential ankyrin
 (TRPA1), [94] which can be activated simultaneously by many
ociceptive stimuli, [121,122] in vitro mediators, [123,124] and in vivo

nflammatory factors. [55] 

he role of TRPV1 in peripheral central system functions 

The putative role of TRPV1 as a nociceptor in the PNS is
ell established, but its role in the CNS is less clear. TRPV1

s present in several brain areas, mainly in a contiguous band
f cells within and adjacent to the caudal hypothalamus in ex-
remely low levels, [125,126] where it modulates the synaptic trans-
ission of nociceptive signals from the periphery. Besides the

rain, TRPV1 was also found in the spinal cord and trigeminal
anglia. [127] Capsaicin-sensitive sensory neurons transmit noci-
eptive information from the periphery into the CNS, implicat-
ng TRPV1 in the CNS in pain processing, rendering this channel
 potential target of brain-acting drugs for pain relief. 

Later studies showed that TRPV1 in CNS has some exciting
ossibilities, as it may be involved in the control of emotions,
earning, and satiety. TRPV1 phosphorylation induced control
onditioned place aversion in mice, [128] while TRPV1 KO mice
howed reduced anxiety, conditioned fear, [129] antidepressant-
ike, anxiolytic, abnormal social, and reduced memorial behav-
ors. [130] These findings highlight the role of TRPV1 as an “emo-
ional lane, ” exaggerating depressed emotions or feelings. [131] 

esides, TRPV1 was shown to induce “learning flow, ” protecting
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earning and memory. [132] Downregulated TRPV1 expression is
orrelated with learning and memory impairments following
iliary cirrhosis, [133] while capsaicin or TRPV1 upregulation re-
ersed memory deficits and ameliorated cognitive by regulat-
ng microglia functions in mice with Alzheimer’s disease. [134,135] 

dditionally, TRPV1 plays a role in modulating synaptic plas-
icity and ameliorating synaptic functions [136] ; TRPV1 activa-
ion channels enhanced excitability, while TRPV1 inhibition
uppressed ongoing electrographic seizures. [137,138] In summary,
RPV1 is involved in numerous critical neuropathic responses,
ut the mechanisms involved are still unclear. However, previ-
us studies suggest that the functional role of TRPV1 is closely
inked with the region of the CNS in which it is expressed. It
s, therefore, involved in the regulation of many nervous system
unctions, as it is ubiquitously expressed in the CNS. 

mplications of the immune system (inflammatory mediators) 

n TRPV1 and neurological disease 

TRPV1 promotes the secretion of inflammatory factors but
an also be sensitized by many inflammatory mediators, includ-
ng cytokines, chemokines, and neurotransmitters. Most inflam-
atory mediators enhance TRPV1 activity, while sustaining in-
ammation might mediate a positive feedback loop of neuroin-
ammation and exacerbate neurological disorders ( Figure 2 ). 

Itch typically includes degrees of burning, prickling, and
tinging. As one of the prime noxious heat sensors, TRPV1
s responsible for itch-sensing. Some immune mediators are
nown to activate TRPV1 and cause pruritus. Histamine is the
ain cause of itching in patients with dermatitis. Won-Sik Shim

t al. [139] showed histamine excites sensory neurons by acti-
igure 2. The effect of inflammatory mediators on TRPV1 and neurological diseas
eurological disorders. For example, elevated levels of histamine, Leukotriene B4, a
nd IGF-1 induced the upregulation of TRPV1 expression and enhancement of pain. [1

nd HMGB1, resulted in TRPV1 activation and frequently repetitive febrile seizures. [

NS: Central nervous system; HMGB1: High mobility group box-1 protein; IGF-1: Insu
ransient receptor potential vanilloid subfamily member 1. 

448
ating TRPV1, while scratching behavior was markedly less
requent in TRPV1-deficient mice. Similarly, leukotriene B4 is
bundantly expressed in patients with atopic dermatitis. [140,144] 

eukotriene B4 can activate TRPV1 and induce itch-associated
esponses; hence, it is presumed that the itching it causes may be
ssociated with TRPV1. [145] Insulin-like growth factor-1 (IGF-1)
s a cytokine secreted by T cells. Cutaneous and intrathecal in-
ections of IL-31 evoked intense itch, while mice lacking TRPV1
howed markedly reduced IL-31-induced scratching compared
ith wild type. [81] These results indicate that TRPV1 plays a
ey role in mediating the pruritogenic action. 

Some substances enhance the activity of TRPV1 and conse-
uently facilitate pain. TRPV1 plays a role in inflammation, can-
er, and neuropathic pain. In the rat model of arthritis, TNF- 𝛼 in-
reased the proportion of neurons that express TRPV1 and thus
ontributed to the generation and maintenance of inflammatory
ain. [141] IGF-1 is also a hepatokine. In a rat model of bone can-
er pain, IGF-1 induced the upregulation of TRPV1 expression
nd enhanced cancer-related pain. [142] In addition to mediating
ain and the itchy sensation, TRPV1 potentiates epileptogene-
is. Huang et al. [143] reported that increased levels of proinflam-
atory factors, including IL-1 𝛽, IL-6, TNF- 𝛼, and high mobility

roup box-1 protein (HMGB1), resulted in TRPV1 activation and
requently repetitive febrile seizures. TRPV1 is believed to act
s a polymodal nociceptor. Inflammatory mediators cause sen-
itization of nociceptors, which interact with the CNS to amplify
he perception of heat, pain, etc. Additionally, TRPV1 promotes
he secretion of neuropeptides that modulate the inflammatory
esponse. 

Indeed, TRPV1 play a key “switch ” role in neuroimmune in-
eractions. Its effect generally contributes to the amplification of
e. TRPV1 can be sensitized by many inflammatory mediators and exacerbate 
nd IL-31 lead to TRPV1 activation and induce itch. [81,139,140] Increased TNF- 𝛼
41,142] Increased levels of proinflammatory factors, including IL-1 𝛽, IL-6, TNF- 𝛼, 
143] (The picture was made using Figdraw). 
lin-like growth factor-1; IL: Interleukin; TNF- 𝛼: Tumor necrosis factor- 𝛼; TRPV1: 



J. Chen, W. Sun, Y. Zhu et al. Journal of Intensive Medicine 4 (2024) 442–452

m  

v  

t  

b  

i
n  

a  

T  

s  

l  

c  

t  

p  

p  

a  

r  

s

S

 

c  

m  

t  

u  

s  

s  

p  

i  

a  

m  

a  

i  

d  

s  

v  

a  

t  

h  

t  

t  

a  

a  

t

A

 

W  

F  

–  

W  

A

 

p  

t

F

 

a

E

C

 

a  

b

D

 

c  

r

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aladaptive feedforward inflammatory loops, enabling the de-
elopment of allergy, autoimmunity, itch, and pain. During bac-
erial infection, the pore-forming toxin Streptolysin S secreted
y Streptococcus pyogenes directly activates TRPV1 neurons to
nduce pain, while increasing the release of CGRP from TRPV1+ 

eurons and impairing neutrophil recruitment and bactericidal
ctivity. [146] Thus, during the body’s defense against S. pyogenes ,
RPV1 acts as a transmitter between the nervous and immune
ystems, accelerating the immune response. Similarly, formy-
ated peptides and alpha-hemolysin (Hla) secreted by Staphylo-

occus aureus directly activated TRPV1 neurons and promoted
he release of CGRP from TRPV1+ neurons, thereby modulating
ain and immune response, while TRPV1 antagonists reduced
ain and inflammatory responses such as leukocyte infiltration
nd inflammatory factor secretion, [147] demonstrating the bidi-
ectional regulatory role of TRPV1 on the nervous and immune
ystems. 

ummary and Conclusions 

The nervous and immune systems are close in spatial lo-
ation. They are functionally interconnected, intimately com-
unicating with each other, and bidirectionally regulated. The

wo systems communicate through common neuropeptides and
se unique sensing mechanisms to detect environmental danger
ignals to terminate damage and restore organismal homeosta-
is, which is fundamental for the organism to defend against
athogens and maintain homeostasis. TRPV1 is a key bridge
n neuroimmune interactions, expressed in neuroimmune axes
nd directly regulates immune cell function. Besides, it pro-
otes the secretion of CGRP, SP, and other neuropeptides

nd immunomodulatory factors. Hence, it plays a critical role
n the regulation of immune diseases and neurological-related
isorders such as pain and itching. The role of TRPV1 in
trengthening the interaction between the two systems pro-
ides insights into our understanding of neuroimmune inter-
ctions. Many unknowns remain regarding neuroimmune in-
eractions, and the related mechanism of TRPV1 involvement
as not been completely understood. Additionally, the clinical
ranslation of TRPV1 into practical applications still needs fur-
her exploration. In summary, TRPV1 in neuroimmune inter-
ctions offers a deeper understanding of organismic immunity
nd opens new directions and opportunities for diagnosis and
reatment. 
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