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It is widely accepted that human learning and memory is mediated by multiple memory
systems that are each best suited to different requirements and demands. Within the
domain of categorization, at least two systems are thought to facilitate learning: an
explicit (declarative) system depending largely on the prefrontal cortex, and a procedural
(non-declarative) system depending on the basal ganglia. Substantial evidence suggests
that each system is optimally suited to learn particular categorization tasks. However, it
remains unknown precisely how these systems interact to produce optimal learning and
behavior. In order to investigate this issue, the present research evaluated the progression
of learning through simulation of categorization tasks using COVIS, a well-known model
of human category learning that includes both explicit and procedural learning systems.
Specifically, the model’s parameter space was thoroughly explored in procedurally learned
categorization tasks across a variety of conditions and architectures to identify plausible
interaction architectures. The simulation results support the hypothesis that one-way
interaction between the systems occurs such that the explicit system “bootstraps”
learning early on in the procedural system. Thus, the procedural system initially learns
a suboptimal strategy employed by the explicit system and later refines its strategy. This
bootstrapping could be from cortical-striatal projections that originate in premotor or motor
regions of cortex, or possibly by the explicit system’s control of motor responses through
basal ganglia-mediated loops
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INTRODUCTION
The existence of multiple memory systems was theorized as early
as the 1970s (Tulving, 1972), and the idea was more formally
stated in the mid-1980s (Tulving, 1985). The distinction between
declarative (i.e., explicit, conscious memory for specific events or
facts) and non-declarative (i.e., implicit) memory systems is now
well established (e.g., Poldrack and Packard, 2003).

The fundamental ideas driving multiple memory system the-
ories have been applied more recently to the domain of category
learning. Perhaps the most successful multiple system model of
category learning is COVIS (Ashby et al., 1998). COVIS assumes
two interacting systems that each map onto previously hypothe-
sized human memory systems (Ashby and O’Brien, 2005). The
COVIS explicit system uses declarative memory and mediates
learning in tasks that require hypothesis testing, logical reason-
ing, and the application of verbalizable rules. In contrast, the
procedural system uses non-declarative memory and learns to
gradually associate motor programs with regions of perceptual
space through reinforcement learning (Ashby and Waldron, 1999;
Ashby et al., 2007).

Computational and mathematical models based on other the-
ories of human category learning have been described, tested, and
compared (e.g., Homa et al., 1979; Hintzman, 1984; Nosofsky,
1986; Kruschke, 1992; Ashby and Maddox, 1993; Smith and

Minda, 2000; Love et al., 2004), and even other multiple-systems
accounts have been proposed (Erickson and Kruschke, 1998;
Anderson and Betz, 2001), though no other model has been for-
mulated with such deep ties to known neurobiology as COVIS.
It is precisely because of these neurobiological constraints that
COVIS has been such a successful model of human category
learning.

The neurobiology underlying its two distinct systems has been
well described (Ashby et al., 1998; Ashby and Valentin, 2005;
Ashby and Ennis, 2006). Furthermore, the neurobiological moti-
vation of COVIS serves to constrain the model by utilizing the
known neural basis of the constituent memory systems respon-
sible for category learning to define the function and implemen-
tation of each system. Following is a brief description of the two
systems of COVIS.

COVIS
As mentioned above, the explicit system of COVIS learns in
tasks that require logical reasoning and explicit rules. This system
tests simple hypotheses about category membership by allocat-
ing executive attention to single stimulus dimensions and then
formulating explicit rules using Boolean algebra (e.g., logical con-
junctions). Working memory is used to store candidate rules
during testing. The COVIS explicit system is assumed to be
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mediated by a broad neural network that includes the prefrontal
cortex (PFC), the anterior cingulate cortex (ACC), the head of the
caudate nucleus, and medial temporal lobe (MTL) structures.

The procedural system of COVIS learns to associate motor
programs with multidimensional stimuli via reinforcement learn-
ing (Ashby and Waldron, 1999). The neuroanatomical basis is
the direct pathway through the basal ganglia. More specifically,
for visual stimuli the relevant structures are early visual cortex
(excluding V1) and parietal visual areas, posterior putamen, the
internal segment of the globus pallidus (GPi), the ventral-anterior
and ventral-lateral thalamic nuclei, and premotor cortex [i.e.,
supplementary motor area (SMA) and/or dorsal premotor cortex
(PMd)]. The key site of learning is at cortical-striatal synapses,
and plasticity there follows reinforcement learning rules, with
dopamine from the substantia nigra pars compacta (SNpc) serv-
ing as the training signal.

COVIS assumes that the explicit system dominates in rule-
based (RB) category-learning tasks. In RB tasks, the categories can
be separated by a rule that is easy to describe verbally. In many
cases, only a single stimulus dimension is relevant, although tasks
where the optimal strategy is a logical conjunction are also RB. An
example is shown in the bottom panel of Figure 1. Here, stimuli
are discs with alternating black/white bars that vary in their ori-
entation and thickness (or spatial frequency). A simple rule on
the thickness dimension successfully accounts for the separation
of the categories.

The top panel of Figure 1 shows an example of an
information-integration (II) category–learning task. Here, infor-
mation about both stimulus dimensions (i.e., orientation and
spatial frequency) must be (pre-decisionally) integrated to
respond optimally. Note that there is no way to verbalize the opti-
mal strategy in this task (i.e., denoted by the diagonal boundary).
RB strategies could be (and frequently are) adopted in II tasks, but
such strategies lead to suboptimal performance. COVIS assumes
that when the explicit system fails to learn a task of this kind, it
passes control to the procedural system.

Many dissociations in learning RB and II categories have been
observed across a variety of methodologies and in numerous
human and non-human populations (see Ashby and Maddox,
2005, 2011 for reviews). These dissociations strongly support the
hypothesis that multiple memory systems contribute to category
learning.

INTERACTIONS BETWEEN DECLARATIVE AND
PROCEDURAL MEMORY
Although overwhelming evidence now supports the existence of
functionally separate declarative and procedural memory sys-
tems, much less is known about how these systems interact.
The first important question to answer is how a single response
is selected, given that either system can presumably control
behavior?

Logically, there are at least three possible ways to select a single
response when two learning and memory systems are simultane-
ously active. One possibility is that the outputs of the constituent
systems are mixed or blended to produce the final output. This
assumption is made by several currently popular categorization
models (Erickson and Kruschke, 1998; Anderson and Betz, 2001).

FIGURE 1 | Examples of information-integration and rule-based

category-learning tasks. The optimal boundary separating categories is
shown as a solid black line.

Mixture models assume that all categorization responses reflect
a mixture of declarative and procedural processes, so that the
difference between RB and II tasks is quantitative rather than
qualitative—that is, the mixture might weight the declarative out-
put more heavily in an RB task than in an II task, but some
weight is always given to both systems. The problem for mix-
ture models is to account for the many behavioral dissociations
that have been reported between performance in RB and II tasks.
For example, a simultaneous dual task greatly interferes with RB
category learning, but not with II learning (Waldron and Ashby,
2001; Zeithamova and Maddox, 2006). If the dual task interferes
with the use of declarative memory and responding is always a
mixture of declarative and procedural memory processes then
it seems that a dual task should interfere with both RB and II
learning.

A second logical possibility, which we call soft switching, is that
only one system controls each response, but that control is passed
back and forth between the systems on a trial-by-trial basis. This
is the assumption made by the original version of COVIS. More
specifically, COVIS assumes that the response on each trial is
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generated by whichever system is most confident in the accuracy
of its response (weighted by a system bias parameter).

Ashby and Crossley (2010) reported results that argue against
soft switching. These experiments used hybrid categories (illus-
trated in Figure 2) that were constructed so that perfect perfor-
mance is possible if participants use a 1D rule on disks with steep
orientations and an II strategy on disks with shallow orientations.
Nevertheless, fewer than 5% of participants were able to adopt a
strategy of the optimal type (solid black line). On the other hand,
Erickson (2008) reported the results of an experiment in which
about 40% of his participants appeared to switch successfully
between declarative (i.e., RB) and procedural (i.e., II) strategies
on a trial-by-trial basis. But this experiment provided participants
with several explicit cues that signaled which memory system to
use on each trial. Despite all of these cues, most participants failed
to switch strategies. Thus, although the existing data suggest that
some participants are able to soft switch under some conditions,
the evidence argues strongly against soft switching as the default
mechanism to resolve system interactions.

A third logical possibility is hard switching (HS), in which
one system is used exclusively and a single switch is made to the
other system (when the task demands it). This hypothesis seems
most consistent with the available data—in that it accounts for
all the RB vs. II behavioral dissociations, as well as the data of
Erickson (2008) and Ashby and Crossley (2010). Nevertheless,
hard switching faces numerous theoretical challenges. For exam-
ple, consider an II category-learning task. A hard-switch version
of COVIS assumes that participants begin experimenting with
explicit strategies, and then when these all fail, switch to a proce-
dural strategy. If so, then what is happening within the procedural
system early in learning when declarative memory systems con-
trol behavior? One possibility is that no procedural learning
occurs until the procedural system controls behavior. This model
makes a strong prediction. A suboptimal explicit strategy will
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FIGURE 2 | Hybrid categories used by Ashby and Crossley (2010). Each
black and gray dot marks the 2D coordinates of a stimulus (e.g., disks
varying in spatial frequency and orientation as in Figure 1). The solid black
line represents the optimal boundary; the dashed black line represents a
suboptimal rule-based boundary. Note that the axes are in arbitrary units.

almost always yield performance that is significantly above chance
in an II task. Thus, if the procedural system cannot learn while the
explicit system controls behavior, then a hard-switch model must
predict that accuracy will rise to well above chance and then sud-
denly fall back to chance when control is passed to the procedural
system. To our knowledge, none of the many published II studies
has ever reported this strange data pattern.

The second possibility is that the procedural system learns on
trials when the explicit system is controlling behavior. COVIS
actually predicts such learning because it assumes that each sys-
tem receives its own separate feedback signal that rewards or
punishes the system for recommending either the correct or
incorrect response, respectively, regardless of whether that recom-
mendation was used to select the single response made on that
trial. These separate feedback signals allow both systems to learn
independently of the other, and regardless of whether or not they
control responding.

The assumption that the explicit and procedural category-
learning systems each receive their own independent feedback
signal on every trial is very strong. In most category learning
experiments, only a single feedback signal is given that is based
entirely on the emitted (observable) response; independent feed-
back would require sophisticated self-monitoring that might for
example, send a reward signal to the procedural system on tri-
als when the emitted response was incorrect. The explicit system
might have such flexibility: evidence suggests that the PFC can
handle abstract forms of feedback and generate second-order
feedback (Ashby et al., 2002; Maddox et al., 2003; Cools et al.,
2006; Maddox et al., 2008; Wallis and Kennerley, 2010). On the
other hand, the available evidence does not support the hypoth-
esis that the procedural system can self-monitor and generate
its own feedback. Learning in the procedural system depends
on dopamine signals in the striatum. Dopamine neurons in
SNpc respond to rewards and reward-predicting stimuli, and also
encode reward prediction error (Schultz et al., 1997, 2000; Tobler
et al., 2003), which depends in part on the valence of the feedback.
This suggests that the basal ganglia are unable to flexibly manip-
ulate feedback signals, and instead respond to the valence (and
expectation) of feedback (and reward). As such, the possibility of
independent feedback seems unlikely.

A more plausible solution is to assume that each system
receives the feedback elicited by the observable response and that
each system must use this common feedback to guide learning.
The theoretical challenge for this hypothesis is to show how one
system can learn from feedback that is based on the response of
the other system. Because the evidence is good that the explicit
system dominates during early responding, this question is moot
for any tasks that are learned by the explicit system (e.g., RB
tasks), because in such cases, evidence suggests that the procedu-
ral system is never used. In II tasks however, we expect the explicit
system to control early learning and the procedural system to con-
trol late learning. The key question addressed by this article is how
the procedural system can learn during trials when the explicit
system controls responding and there is only a single source of
feedback.

To begin, we need to identify a candidate neural mechanism
that mediates the competition between the two systems. The
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hypothesis that the procedural system is able to learn while the
explicit system is in control suggests that when in control, the
explicit system prevents the procedural system from accessing
motor output systems, but does not interfere with learning. Some
independent evidence supports this hypothesis (e.g., Packard and
McGaugh, 1996; Foerde et al., 2006, 2007).

Given these considerations, Ashby and Crossley (2010) pro-
posed that frontal cortex and the subthalamic nucleus (STN)
control system interactions via the hyperdirect pathway through
the basal ganglia. The hyperdirect pathway begins with direct
excitatory glutamate projections from frontal cortex (via presup-
plementary cortex, preSMA) to the STN, which sends excitatory
glutamate projections directly to the internal segment of the
globus pallidus (GPi; Parent and Hazrati, 1995; Joel and Weiner,
1997), making it more difficult for striatal activity to affect cortex.
The evidence that the preSMA is in this circuit comes from sev-
eral sources. First, Hikosaka and Isoda (2010) reviewed evidence
that the preSMA is crucial for switching between controlled and
automatic responding. Second, Waldschmidt and Ashby (2011)
reported that after 20 sessions of practice, the only brain areas in
which neural activation correlated with accuracy in an II task were
the preSMA and SMA.

Evidence for a role of the STN in this model comes largely from
studies using the stop-signal task where participants initiate a
motor response as quickly as possible when a cue is presented. On
some trials, a second cue is presented soon after the first signaling
participants to inhibit their response. A variety of evidence impli-
cates the STN in this task (Aron and Poldrack, 2006; Aron et al.,
2007; Mostofsky and Simmonds, 2008). A popular model is that
the second cue generates a “stop signal” in cortex that is rapidly
transmitted through the hyperdirect pathway to the GPi, where it
cancels out the “go signal” being sent through the striatum.

Ashby and Crossley (2010) hypothesized that when the explicit
system is controlling behavior a stop signal may inhibit a poten-
tially competing response generated by the procedural system: the
PFC could increase STN output via the hyperdirect pathway, pre-
venting the procedural system from influencing cortical motor
systems, thereby allowing the explicit system to control the over-
all response. Note that because the inhibition occurs downstream
from the striatum, this hypothesis theoretically allows procedural
learning to occur within the striatum. The next section describes
several different model architectures that will be used to explore
the conditions under which procedural learning can occur with a
single source of feedback.

SIMULATION SET 1—COVIS ARCHITECTURES
The basic model that we will use in all investigations is COVIS
(Ashby et al., 1998, 2011). The original version of COVIS
assumed soft switching and independent feedback. However,
to gain more insight into system interactions, we will explore
a number of alternative model architectures. For the reasons
described above, our focus will be on two model features: the
nature of the feedback signal (separate signals to each system
vs. a single feedback signal); and the switching mechanism (soft
vs. hard). Following are descriptions of three alternative ver-
sions of COVIS that explore the effects of varying these two
features.

MODEL 0: INDEPENDENT FEEDBACK, SOFT SWITCHING
Our first goal is to implement COVIS computationally as
described in Ashby et al. (2011). Only components critical to the
simulations will be described; interested readers are encouraged
to review the complete description elsewhere (e.g., Ashby et al.,
1998, 2011; Hélie et al., 2012a,b). Model 0 is simply the indepen-
dent feedback model previously described with some simplifica-
tions made to each system to improve the likelihood of learning in
the procedural system, and to maximize computational efficiency.

First, because our goal is not to elucidate the nature of learn-
ing in the explicit system, it was heavily simplified to respond with
the most accurate possible one-dimensional rule from the outset
of the simulated experiment (in normal applications, the explicit
system selects and tests a variety of rules). Thus, in current appli-
cations, the explicit system has no free parameters and reduces to
the equation below. The response rule is: respond A on trial n if
hE(x) < 0; respond B if hE(x) > 0; and the discriminant function
is defined as:

hE (x) = xd − Cd − εE, (1)

where xd is the value of stimulus x on dimension d, Cd is a con-
stant that plays the role of a decision criterion (typically learned;
hard-coded here) and εE is a normally distributed random vari-
able with mean 0 and variance σ2

E that models the variability
in both stimulus perception and memory of the decision cri-
terion. When σ2

E is large, the discriminant value becomes less
deterministic, so σ2

E was set to zero in the present application.
The COVIS procedural system is a two-layer connectionist net-

work. The input layer includes 625 input units arranged in a
25 × 25 grid (i.e., because the simulations will use stimuli that
vary on two stimulus dimensions). Each input unit is tuned to
a particular stimulus, in the sense that it is maximally activated
when its preferred stimulus is presented, and it is less activated
when similar stimuli are presented. The activation in sensory
cortical unit K on trial n is given by

IK(n) = e
−d(K, stimulus)2

σR (2)

where d(K, stimulus) is the Euclidean distance (in stimulus space)
between the stimulus preferred by unit K and the presented stim-
ulus (i.e., in units of 25 × 25 space). Equation 2 is a radial basis
function (e.g., Kruschke, 1992; Riesenhuber and Poggio, 1999).
The constant σR has the effect of expanding or narrowing the
width of the radial basis function, much like a variance.

The output layer in the COVIS procedural system is assumed
to represent the striatum. The model includes the same number
of output units as there are alternative responses. All simula-
tions described here used two categories (A and B), so all models
included two output units. Activation of striatal unit J in the out-
put layer is determined by the weighted sum of activations from
the input layer projecting to it:

SJ(n) =
625∑

K = 1

wK, J(n)IK(n) (3)
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where wK, J(n) is the strength of the synapse between cortical
unit K and striatal cell J on trial n. The decision rule in the
procedural system is similar to that of the explicit system. The
decision rule is: respond A on trial n if SA(n) > SB(n); otherwise
respond B. The relative activity between striatal units changes as
the model learns, and learning is accomplished by adjusting the
synaptic weights, wK, J (n), up or down from trial-to-trial via
reinforcement learning.

The weights in the procedural system are updated based on the
three factors: (1) pre-synaptic activation, (2) post-synaptic activa-
tion, and (3) dopamine levels (e.g., Arbuthnott et al., 2000; Ashby
and Hélie, 2011). Specifically, wK, J(n) is updated after each trial
using the following learning rule:

wK, J(n + 1) = wK, J(n) + αIK(n)
[
SJ(n) − θNMDA

]+

[D(n) − Dbase]+
[
wmax − wK,J(n)

]
(4)

−βIK(n)
[
SJ(n) − θNMDA

]+
[Dbase − D(n)]+ wK, J(n)

−γIK(n)
[
θNMDA − SJ(n)

]+ [
SJ(n) − θAMPA

]+
wK, J(n)

The function [g(n)]+ = g(n) if g(n) > 0, and otherwise g(n) = 0.
The constant Dbase is the baseline dopamine level, D(n) is the
amount of dopamine released on trial n following feedback, and
α, β, γ, θNMDA, and θAMPA are all constants. The first three
of these (i.e., α, β, and γ) operate like standard learning rates
because they determine the magnitudes of increases and decreases
in synaptic strength. The constants θNMDA and θAMPA represent
the activation thresholds for post-synaptic NMDA and AMPA
(more precisely, non-NMDA) glutamate receptors, respectively.
The numerical value of θNMDA > θAMPA because NMDA recep-
tors have a higher threshold for activation than AMPA receptors.
This is critical because NMDA receptor activation is required to
strengthen cortical-striatal synapses (Calabresi et al., 1996).

The positive term in Equation (4) describes the conditions
under which synapses are strengthened (i.e., striatal activation
above the threshold for NMDA receptor activation and dopamine
above baseline) and the two negative terms describe conditions
that cause the synapse to be weakened. The first possibility (line 3)
is that post-synaptic activation is above the NMDA threshold but
dopamine is below baseline (as on an error trial), and the sec-
ond possibility is that striatal activation is between the AMPA and
NMDA thresholds. Note that synaptic strength does not change if
post-synaptic activation is below the AMPA threshold.

The Equation (4) model of reinforcement learning requires
that the amount of dopamine released in response to the feedback
signal [that is, the D(n) term] is specified on every trial. COVIS
adopts the popular model that, over a wide range, dopamine fir-
ing is proportional to the reward prediction error (RPE) (e.g.,
Schultz et al., 1997; Tobler et al., 2003):

RPE = Obtained Reward − Predicted Reward (5)

The procedural system of COVIS uses a simple model of
dopamine release by first computing both obtained and predicted
reward, and then by estimating the amount of dopamine released
as a function of RPE.

In applications that do not vary the valence of the rewards, the
obtained reward Rn on trial n is defined as

Rn =
⎧⎨
⎩

+1 if correct feedback
0 if no feedback is given

−1 if error feedback

(6)

In models that assume separate, independent feedback signals, the
reward signal is based on the response suggested by the procedural
system regardless of which system initiated the response. In mod-
els that assume a single feedback signal, the reward is based on the
observable response. The single-operator learning model (Bush
and Mosteller, 1955) is used to compute predicted reward, Pn:

Pn = Pn − 1 + αpr (Rn − 1 − Pn − 1) (7)

It is well known that when computed in this fashion, Pn con-
verges exponentially to the mean reward value and then fluctu-
ates around this value (until reward contingencies change). The
parameter αpr governs how quickly Pn converges.

Finally, to compute the dopamine release to the feedback, a
simple model matching empirical results reported by Bayer and
Glimcher (2005) is used:

D(n) =
⎧⎨
⎩

1 if RPE > 1
0.8RPE + 0.2 if − 0.25 ≤ RPE ≤ 1

0 if RPE < −0.25

(8)

Note that the baseline dopamine level is 0.2 (i.e., when RPE =
0) and that dopamine levels increase linearly with RPE between a
floor of 0 and a ceiling of 1.

For the final simplification, a strong form of lateral inhibition
at the level of the striatum was assumed. Computationally, this
amounts to updating only the weights associated with the striatal
unit matching the response suggested by the procedural system.
For example, if the procedural system suggests an “A” response,
only the weights associated with the “A” striatal unit are modified.
This simplification effectively serves a dual-purpose: it acceler-
ates learning in the procedural system because only the weights
relevant to that trial are updated and improves computational
efficiency.

In order to resolve the competition between the systems and
to select an overall model response, confidence is measured on
every trial by calculating a discriminant value for each system.
For the explicit system, the discriminant value equals the distance
from the stimulus to the decision bound used by the explicit sys-
tem. The confidence of the explicit system, which equals |hE(n)|,
will be large on any trial where the stimulus is far (in stimulus
space) from the response criterion. In the procedural system, con-
fidence is measured by the difference in striatal unit activity and
is defined by:

|hP(n)| = |SA(n) − SB(n)| (9)

Note that as with the explicit system, the procedural system will
be highly confident when it strongly favors one response over
another. Hence, the explicit system is more confident when the
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stimulus is far from the bound and the procedural is more con-
fident when the stimulus is strongly associated with one motor
response but not the other.

The trust placed in each system is determined by overall sys-
tem weights, θE(n) and θP(n), where θE(n) + θP(n) = 1. Because
humans are naturally rule preferring and there is no procedural
learning at the beginning of an experiment, COVIS assumes that
trust in the explicit system is initially much higher than in the
procedural system, hence θE(1) = 0.99. Throughout each exper-
iment, the system weights are adjusted based on the success of
the explicit system. When the explicit system suggests a correct
response,

θE(n + 1) = θE(n) + �OC [1 − θE(n)] , (10)

where �OC is a learning rate constant. If instead the explicit
system suggests an incorrect response then

θE(n + 1) = θE(n) − �OEθE(n), (11)

where �OE is another rate constant. The two regulatory terms
on the ends of Eqs. 10 and 11 restrict θE(n) to the range
0 ≤ θE(n) ≤ 1. Finally, on every trial, θP(n) = 1 − θE(n). Thus,
Equations 10 and 11 also guarantee that θP(n) falls in the range
0 < θP(n) < 1. The parameters �OC and �OE control how fast
θE(n) changes in response to correct and incorrect feedback,
respectively; thus, they also control how quickly θP(n) changes,
which is related to how frequently the procedural system will be
allowed to generate the overall system response.

The overall system decision rule is to emit the response
suggested by the explicit system if θE(n)× | hE(n) |> θP(n) ×
|hP(n)|; otherwise emit the response suggested by the procedu-
ral system. Notice that this is done on a trial-by-trial basis and
that either system may be responsible for the overall response
generated depending on the confidence and trust; hence, this a
soft-switching model.

All exploratory analyses will be conducted with this model,
so that Model 0 will serve as a baseline to compare the effects
of modifications to this standard implementation. The simpli-
fications made to the model serve only to optimize learning
performance and computational efficiency. It is important to
emphasize that the simplifications will only help the procedu-
ral system learn faster, so all results should be interpreted as a
best-case learning scenario.

MODEL 1: SINGLE SOURCE OF FEEDBACK, HARD SWITCH
The first modified COVIS model follows the revisions suggested
by the evidence reviewed above. Specifically, this model only
receives a single source of feedback based on the response of the
controlling system and assumes that the switch from the explicit
to the procedural system is a one-time, hard switch.

The goal of the present research is not to specify exactly how
this hard switch is implemented computationally, but instead to
evaluate learning in the procedural system under explicit-system
controlled responding. For this reason, Model 1 never switches
from the explicit to the procedural system. The hyperdirect path-
way model places the switching gate downstream from learning

in the procedural system (i.e., downstream from the striatum),
so the procedural system weights are still modified on every trial.
The absence of any switching is a worst-case scenario for a hard-
switch model in a procedurally learned task, but it is also the best
way to evaluate the ability of the procedural system to learn while
the explicit system controls responding (by design, the procedural
system will necessarily learn after a switch).

With a single feedback source, and because the model never
switches, RPE (Equations 5 and 7) and therefore dopamine
Equation (8) will always be driven by the responses of the explicit
system. Concretely, reward, Rn is determined only by the explicit
system’s response to the stimulus (affecting RPE and dopamine
calculations). The procedural system will suggest its response nor-
mally, but the weights will be updated based on the feedback
elicited by the explicit system response. All other features of this
model are identical to the implementation of Model 0.

MODEL 2: SINGLE SOURCE OF FEEDBACK, SOFT SWITCH
The second modified COVIS model is a simple modification of
Model 0 in which a single source of feedback is used in con-
junction with soft switching. Models 1 and 2 together allow
procedural-system learning with a single source of feedback to be
evaluated both under hard- and soft-switching architectures.

As with Model 0, the switching algorithm described above was
used to select between procedural and explicit system responses
on every trial. The difference from Model 0 is that, while the
explicit system controls the overall response, the procedural sys-
tem (specifically, RPE and dopamine) is updated using the feed-
back signal generated by the explicit system’s response. On the
other hand, whenever the procedural system controls the over-
all response, the feedback signal is guaranteed to be congruent
with the response suggested by the procedural system. All other
features of this model are identical to the implementation of
Model 0.

A summary of these models and their differences appears in
Table 1.

METHOD—SIMULATION SET 1
CATEGORIZATION SIMULATIONS
Information-integration categories
Each model was evaluated through simulation to determine
whether the procedural system could learn II categories (e.g., as in
Figure 1, top panel). Human participants reliably learn categories
like these, so any multiple systems model of category learning
must pass this basic performance benchmark. These simulations
served as a first-pass elimination round—any model performing
poorly on this category structure should be considered unviable
while all successful models will move on to a second simula-
tion experiment. A total of 300 sample stimuli were drawn from
each of two bivariate normal distributions (with the category
means and variances in Table 2). The sample category distribu-
tions used are shown in Figure 3. Maximum performance by the
explicit system on these categories is 78.5%, and the explicit one-
dimensional bound (the dashed line) was set to guarantee that the
explicit system reached this level of performance.

Model 0 should have no trouble learning these categories as
each subsystem receives independent feedback. Models 1 and 2
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Table 1 | Summary of each model and brief description of differences.

Name Feedback type Switching type Description

Model 0 (2FB-SS) Independent (2FB) Soft (SS) Original formulation of COVIS where each system receives independent feedback and
either system controls responding on a trial-by-trial basis.

Model 1 (1FB-HS) Single (1FB) Hard (HS) Each system is only updated with a single feedback signal from the responding system;
switching from explicit to procedural responding occurs once.

Model 2 (1FB-SS) Single (1FB) Soft (SS) Each system is only updated with a single feedback signal from the responding system;
system switching is on a trial-by-trial basis.

Table 2 | Mean, variance, and covariance parameters for each

category in Figure 3.

Category μx μy σ2
x , σ2

y Covx, y

A 40 60 167.59 151.26

B 60 40 167.59 151.26

0 20 40 60 80 100
0

20

40

60

80

100
Information integration categories

A
B
bound
RB bound

FIGURE 3 | Information integration (II) categories used in the

simulation experiments. Each black and gray dot marks the 2D
coordinates of a stimulus (e.g., disks varying in spatial frequency and
orientation as in Figure 1). The solid black line represents the optimal
boundary; the dashed black line represents a suboptimal rule-based
boundary. Note that the axes are in arbitrary units.

are particularly interesting because, currently, it is unknown if
any COVIS model will successfully learn II categories without
independent feedback.

Hybrid categories (Ashby and Crossley, 2010)
All models that successfully learned the benchmark II category
structures were tested on the hybrid categories shown in Figure 2
(Ashby and Crossley, 2010). These categories require a 1D rule
on disks with steep orientations and an II strategy on disks with
shallow orientations, so optimal responding requires trial-by-
trial system switching. As mentioned earlier, Ashby and Crossley

(2010) reported that only 4% of participants showed any evi-
dence of trial-by-trial switching. An obvious prediction is that
soft-switching models will perform well on these categories (i.e.,
better than human participants), but it is not clear how well
hard-switching models will perform.

The hybrid categories shown in Figure 2 were used in this sim-
ulation. A total of 300 stimuli were uniformly sampled from each
of two categories separated by the hybrid bound. Maximum per-
formance by the explicit system on these categories is 88.33%,
and the one-dimensional bound of the explicit system (the dashed
line) was set to this optimal position.

ASSESSMENT OF MODEL PERFORMANCE—PARAMETER SPACE
PARTITIONING
The goal of our simulation analyses is not to ask how well each
particular model can fit some data set, but rather to ask whether
each model is or is not capable of learning. Before concluding that
a model cannot learn, it is vital to examine its performance under
a wide range of parameter settings. Similarly, when a model does
learn, it is important to know whether the learning is representa-
tive of the model, or restricted to a small set of parameter settings.
Because of these unique modeling goals, we chose to evaluate the
performance of each model using a parameter space partitioning
(PSP) analysis (Pitt et al., 2006, 2008). PSP is a technique used to
investigate the global performance of cognitive models. The basic
idea is to exhaustively explore the parameter space (defined by the
free parameters of the model) and to map out regions that lead to
qualitatively different behaviors (called data patterns).

The end result is a disjoint partitioning of the parameter space
into regions that each produces a qualitatively unique behavior
(data pattern). The finite set of data patterns must be defined
by the experimenter. In order to map out the space, discrete
“steps” in the parameter space are each assigned a data pattern.
A step is defined as a particular set of numerical values for every
parameter that defines the space. Because the computational
demands of searching the parameter space increase dramatically
with the number of parameters, PSP uses an efficient Markov
chain Monte Carlo search algorithm (Pitt et al., 2006). Recall that
the implementation of COVIS used here was optimized for com-
putational efficiency so that the parameter space search would be
computationally tractable. Once the entire parameter space has
been mapped, volumes (i.e., contiguous regions) of the space are
computed to quantify the range of parameters that produce a par-
ticular data pattern. These volumes describe how likely a behavior
is to be produced by the model.
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Figure 4 offers a schematic representation of this analysis and
related concepts. In this hypothetical example, a simple model is
defined by two parameters (θ1, θ2). By simultaneously varying
these parameters, the model can account for three qualitatively
different behaviors or data patterns. These could be almost any-
thing. For example, pattern 1 might be that performance is
significantly better in an experimental condition than in a control
condition (e.g., at least 5% better), pattern 2 could be the reverse
ordering, and pattern 3 might be that performance in the two
conditions is not significantly different. The PSP analysis mea-
sures the area (or volume when there are 3 or more parameters)
of the parameter space that predicts each of the three patterns.
In this case, the analysis reveals that for most pairs of parame-
ters, data pattern 1 is produced, but for more restricted sets of
parameters, patterns 2 or 3 occur.

IMPLEMENTATION OF PSP
In the following analyses, a MATLAB implementation of the PSP
algorithm was obtained from the website of J. I. Myung (http://
faculty.psy.ohio-state.edu/myung/personal/psp.html). For the
PSP search algorithm to proceed, the model must produce deter-
ministic output (i.e., produce the same behavior) for a given set of
parameters. In order to accomplish this, all randomized features
of the model must be fixed. All models used here omit the noise
(e.g., perceptual and criterial) terms typically included. Thus, the
only probabilistic features are the random initial weights for each
striatal unit and the randomized stimulus ordering.

In normal applications of the model the stimulus ordering
is completely randomized in every simulation. Because of this,
the performance of the model averaged across many (i.e., 100
or more) simulations will be robust to stimulus ordering. This
is important because Pitt et al. (2006) observed that other models

FIGURE 4 | A hypothetical example of parameter space partitioning

(PSP) for a model with two parameters, (θ1 and θ2). In this example,
varying these two parameters allows the model to produce three
qualitatively different data patterns. The PSP algorithm efficiently steps
through the space to determine which data pattern is produced by each
combination of parameters. The curves separate regions where different
patterns are predicted. The PSP algorithm returns the area (or volume) of
each of these three regions. In this example, pattern 1 accounts for more
than 50% of the total area.

of category learning (e.g., ALCOVE; Kruschke, 1992) are sensitive
to stimulus ordering. In addition, the effect of stimulus ordering
interacts with the particular initial randomization of weights in
the procedural system. To handle these random ordering and ini-
tialization effects, it is necessary to choose a fixed random sample
on which to run all PSP analyses. For these reasons a random set
of 19 random stimulus orderings and weight initializations were
generated. Each simulation (each step in the parameter space) was
tested on this set, and the model performance was averaged across
them. This allowed for deterministic output and relatively stable
estimates of the model behavior.

It is necessary to select the parameters defining the param-
eter space. Including every parameter of the model would be
inefficient because the parameter space would be very high
dimensional and many parameters interact in predictable ways.
For example, in COVIS, if the AMPA and NMDA thresholds
(Equation 4) are set too high, then the procedural system will be
unable to learn regardless of the values of any other parameters.

Our goal is only to evaluate the ability of learning to proceed
in the procedural system, so the parameter space was constrained
to parameters that directly affect procedural learning: the learn-
ing rates, α and β (Equation 4), and αpr (Equation 7), which
determines how fast predicted reward converges to the expected
reward value, and therefore affects the trial-by-trial dopamine
fluctuations and weight adjustment.

Additionally, for Model 2 only, the system switching rate
parameters �OC and �OE (Equations 10, 11) were also included
in the PSP analysis. These parameters directly affect system-
switching behavior and learning in the procedural system (note
that this is not true for model 0 because the procedural system
always receives independent feedback). Table 3 summarizes the
function and search range for each manipulated parameter. Every
other parameter was fixed to the specific value shown in Table 4.
The learning rate parameter γ (Equation 4) was irrelevant because
the AMPA and NMDA thresholds were set low enough that the
model would never be above AMPA but below NMDA (e.g., line
3 of Equation 4).

The next choice in a PSP analysis is to define the qualitative
behaviors (data patterns) that determine the partitioning of the
parameter space. We chose to partition based on the accuracy
of the procedural system separated into deciles from 0 to 100%;
hence, a total of 10 data patterns were possible. For example, data
pattern 1 occurs if the procedural system accuracy falls between

Table 3 | Function and search range for each parameter in the PSP

analysis.

Parameter Function Range

αpr Controls how fast predicted reward converges,
affecting dopamine.

[0.005, 1]

α Learning rate for strengthening weights. [0.001, 1]

β Learning rate for weakening weights. [0.001, 1]

�OC Controls how explicit system bias grows for
correct responses

[0.001, 0.2]

�OE Controls how explicit system bias decays for
incorrect responses

[0.001, 0.2]
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Table 4 | Values of all parameters that remained fixed across all

simulations.

Parameter Function Value (for each model)

σR Width of the RBF 4.5

θAMPA AMPA threshold 0.01

θNMDA NMDA threshold 0.1

0 and 10%, pattern 2 occurs if accuracy falls between 10 and
20%, and so forth. This simple definition of data patterns eas-
ily allows for a rough quantification of how well the procedural
system performs on the category structure after the weights have
been trained.

The PSP analysis proceeded in two stages: the initial partition-
ing stage, and an evaluation of robustness stage. For the initial
stage, each step in the parameter space was tested on all 19 ini-
tializations. Each initialization included a training phase, where
the model was trained with feedback on the sample stimuli, and a
testing phase where end-of-simulation (learned) procedural sys-
tem weights were run forward through the stimuli again simply
to estimate the asymptotic procedural system accuracy. The test
performance of the model was averaged over all 19 initializations
to determine the final data pattern for each step in the parameter
space. The PSP algorithm proceeded for six search cycles to obtain
a reliable partitioning of the parameter space.

The complete PSP search returned the volume of parameter
space that was associated with each of the 10 data patterns, and
a specific set of parameter values that generated each discov-
ered pattern. The robustness stage further tested each model in
200 random stimulus orderings and weight initializations using
the parameters returned for each discovered data pattern. This
two-stage approach was used because the initial PSP analysis is
computationally demanding, so running hundreds of simulations
per step in parameter space would be prohibitively time consum-
ing. The second stage is important, though, because it essentially
establishes the reliability of the parameters to produce a particular
behavior (pattern).

RESULTS—SIMULATION SET 1
MODEL 0: INDEPENDENT FEEDBACK, SOFT SWITCH
Recall that Model 0 is simply the COVIS model as previously
described. It is an independent feedback model (i.e., both sys-
tems learn independently and receive a separate feedback signal),
and uses soft switching (either system can potentially control
the overall system response on every trial). This version of
Model 0 will be referred to as Model 0 (2FB-SS) because it
receives two independent feedback (2FB) signals and uses soft
switching (SS).

Information integration categories
Figure 5 shows the percentage of the volume of parameter space
that produced each data pattern that was discovered. Note that
Model 0 (2FB-SS) showed robust learning of the II categories in
the majority of the parameter space (Figure 5, first column). A
total of three data patterns were found. Over 99.99% of the vol-
ume of the parameter space learned the categories at or above

FIGURE 5 | Percentage of volume of the parameter space for each data

pattern discovered for every model and category structure. The legend
corresponds to test phase accuracy of the procedural system (i.e., possible
data patterns). Each color represents a unique data pattern discovered by
the PSP for that combination of model/category structure, and the height of
the color in the bar corresponds to the volume of parameter space
producing that data pattern. The range from 65 to 69% is a special pattern
only searched for in model 1 (see text for details).

90% accuracy (Pattern 10). The remaining two data patterns
accounted for less than 0.01% of the parameter space volume and
corresponded to accuracy in the 70–79% and the 80–89% deciles
(Patterns 8 and 9).

Recall that in the Stage 2 analysis, representative parameter val-
ues were chosen that produced each of the three observed data
patterns and then the model was tested on 200 random stim-
ulus orderings and weight initializations for each of these three
parameter settings. In all cases, the performance of the model on
these new tests was virtually identical to the performance on the
19 stimulus orderings and weight initializations used in the PSP
analysis. Thus, learning in Model 0 (2FB-SS) is highly robust.

Finally, Figure 6 shows the learned procedural system weights
for each striatal unit at the end of training (again, averaged across
200 simulations). It is clear from the figure that a progression of
weight strength follows the data patterns: parameters producing
the worst model performance led to noisier, smaller weights than
parameters producing the best model performance. Still, the suc-
cess of Model 0 (2FB-SS) in the II categories suggests that it will
learn equally well in the hybrid category structures.

Hybrid categories
As with the II categories, Model 0 (2FB-SS) showed very good
learning throughout the parameter space with the hybrid cate-
gories (Figure 5, second column). A total of five data patterns
were found. Over 99.94% of the parameter space learned the
hybrid categories at or above 90% accuracy. Less than 0.06% of
the parameter space was accounted for by data patterns corre-
sponding to the four accuracy deciles between 50 and 90%.

As with the II categories, Model 0 (2FB-SS) showed very robust
learning in each region of the parameter space. In all cases, perfor-
mance on the 200 random initializations was virtually identical
to performance on the 19 training initializations. The behavior
of the model appears to be very similar for both hybrid and
II categories. An examination of the weights showed that they
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closely mimicked the structure of the hybrid categories (e.g., as
the Figure 6 weights mimic the structure of the II categories).

MODEL 1: SINGLE SOURCE OF FEEDBACK, HARD SWITCH
Recall that Model 1 receives only one feedback signal, and uses
hard switching (the explicit system controls responding until it
yields control to the procedural system, at which point the pro-
cedural system controls responding), so we refer to this model as
Model 1 (1FB-HS). Also recall that in these simulations the pro-
cedural system is never allowed to respond—in other words, the
hard switch never occurs. This way, the ability of the procedu-
ral system to learn during explicit system responding can be fully
evaluated.

Information integration categories
The partitioning for Model 1 (1FB-HS) required a slight modifi-
cation to acquire a higher resolution partitioning of the space. In
the first partitioning, approximately 62% of the parameter space
volume was between 40 and 59% test performance accuracy, and
about 38% of the volume was associated with test performance
accuracy between 60 and 69%. To create a finer-grained partition-
ing, for Model 1 (1FB-HS) only the 60–69% decile was subdivided
into 60–64 and 65–69% ranges.

Figure 5 shows that the model performed poorly on the II cat-
egories. Approximately 60% of the parameter space performed
at between 40 and 59% in the test phase, suggesting that, for
more than half of the volume, the model produced no measur-
able learning. About 39% of the parameter space volume showed
between 60 and 64% test accuracy and slightly more than 1% of

FIGURE 6 | “A” and “B” striatal weights in the procedural system of

model 0 (2FB-SS) after training in information integration categories,

averaged across 200 simulations. Blue (cool colors) represent small
weights whereas red (warm colors) represent large weights. Patterns 8, 9,
and 10 refer to the 70–79, 80–89, and 90–100% performance deciles,
respectively. Note the good correspondence between the high-performing
bottom row weights (Pattern 3) and the stimuli plotted in Figure 3, and also
the weaker correspondence in the lower-performing weights.

the volume was above 65% test accuracy. The robustness analysis,
described in Figure 7, shows that Figure 5 actually overestimates
the performance of Model 1 (1FB-HS). While the test perfor-
mance of the model clearly produces the expected output when
averaged across the 19 fixed initializations (dark gray bars), every
set of parameters (i.e., for each discovered data pattern) performs
no better than 52% in the test phase when averaged across 200
random initializations (light gray bars). Because of the model’s
II categorization learning failure, the hybrid categories were not
explored.

MODEL 2: SINGLE SOURCE OF FEEDBACK, SOFT-SWITCH
Model 2 (1FB-SS) receives only one source of feedback [as in
Model 1 (1FB-HS)], and uses soft switching [either system can
potentially control the overall system response on every trial [as
in Model 0 (2FB-SS)].

Information integration categories
The partitioning for Model 2 (1FB-SS) was comparatively diverse,
suggesting that this model is capable of a wider range of behav-
iors. A total of 6 data patterns were discovered for the II categories
(Figure 6, fourth column). The percentage of volume associated
with each data region is also shown in Table 5. Although the
model is capable of responding with accuracy above 90%, this
behavior occurs only for a very small proportion of the param-
eter space. In fact, accuracy in the test phase was below 70% for
approximately 80% of the parameter space. Overall, each data
pattern appeared relatively robust across the 200 simulations.
Only data patterns 3 and 4 performed worse (10 and 6%, respec-
tively) on the 200 simulations than on the 19 fixed initializations.
Hence, the performance of this model seems to be reliable.

Although only a small proportion (approximately 1%) of the
overall parameter space was associated with test performance
at or above 80% after training, the results suggest that for a
restricted range of parameters, this model can successfully learn
II categories with only a single source of feedback.

FIGURE 7 | Robustness of Model 1 (1FB-HS) in II categories for each of

four discovered data patterns. Dark gray bars represent the performance
of the model (proportion correct in the test phase) for the 19 fixed
initializations used in the PSP analysis; light gray bars represent the
performance of the model across 200 random initializations. In every case,
the stage 2 analysis using 200 simulations failed to reproduce the patterns
observed in the PSP across the 19 fixed initializations suggesting that the
observed PSP performance was not robust. Note that the 60–69%
performance decile was separated into two patterns (7a and 7b) for a more
fine-grained evaluation.
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Table 5 | Percentage of parameter space volume for each observed

data pattern (or test phase accuracy ranges) for Model 2 (1FB-SS).

Category Test phase accuracy range (data patterns)

40–49% 50–59% 60–69% 70–79% 80–89% ≥90%

II 0.002 17.075 61.113 20.718 0.949 0.143

Hybrid 0.032 54.875 28.374 13.036 3.556 0.127

Hybrid categories
The performance of Model 2 (1FB-SS) on the hybrid categories
was similar to its performance on the II categories. The same data
patterns were observed, and the parameter space volumes asso-
ciated with each of these patterns were similar (compare the 4th
and 5th columns of Figure 5). When tested across the 200 random
initializations, the model’s performance was robust.

Soft switching drives learning in the procedural system
The ability of Model 2 (1FB-SS) to learn at all is in stark con-
trast to Model 1. The only difference between those models is
the switching mechanism—Model 1 uses hard switching, whereas
Model 2 uses soft switching. These results suggest that the switch-
ing mechanism is allowing the procedural system to learn in
Model 2 (1FB-SS). For example, when the model switches to
the procedural system, the procedural system receives veridical
feedback, which should facilitate procedural learning. Note that
this hypothesis predicts that model accuracy should increase with
the proportion of trials controlled by the procedural system. To
test this prediction, we computed the correlations between accu-
racy and the number of procedural system responses for Model 2
(1FB-SS) separately on the II and hybrid categories, both for the
19 training initializations and the 200 random initializations. All
four of these correlations were r ≥ 0.97 (all p < 0.001).

Given that the procedural system only learns when it is
parameterized so that it generates the majority (nearly 90%) of
responses, a follow-up test was conducted to evaluate whether
the procedural system would take over control of responding
with simple RB categories (Figure 1, bottom panel). The RB
categories were created by rotating the II categories (Figure 3)
counter-clockwise so that the optimal bound (solid black line) is
vertical.

The model was run for 200 simulations on these RB categories
using the parameters that produced the best II learning (i.e., pat-
tern 6). In these simulations, the RB performance was hard-coded
so that the explicit system either performed at 90, 95, 99, or 100%
accuracy. These simulations revealed that the average propor-
tion of trials where the procedural system controlled responding
was 0.84, 0.76, 0.41, and 0.00, respectively. This is fundamentally
problematic because the explicit system should overwhelmingly
control responding in RB tasks, especially when it is performing
at such high accuracy levels.

DISCUSSION—SIMULATION SET 1
The results of the PSP analyses reveal the strength and limita-
tions imposed by the feedback signal. First, when each system
receives independent feedback (Model 0, 2FB-SS), the procedural

system of COVIS readily learns to respond accurately in both II
and hybrid categories. This is problematic because the model per-
forms substantially better than humans in the hybrid task. Soft
switching allows the model to pass control to the procedural sys-
tem, which easily learns the hybrid categories. It is important to
recall that Model 0 (2FB-SS) was designed deliberately to max-
imize learning. For this reason, our results represent a best-case
scenario for this model.

In contrast, procedural learning was seriously compromised
when both systems received the same feedback signal. Although
the PSP for Model 1 hinted at a small amount of learning in the
procedural system, that learning depended critically on the exact
ordering of the stimuli during training, because during test the
apparent learning disappeared. Note that Model 1 failed to learn
even though the explicit system received correct feedback more
than 75% of the time. This was because the feedback was inde-
pendent of any activation within the procedural system, and thus
it had the same effect as if the feedback was random.

Of course, the procedural system of Model 1 would learn after
the hard switch occurs. But our results show clearly that the pro-
cedural system learns nothing until it controls responding in the
task. Thus, in the II task simulated here, Model 1 predicts that
accuracy should drop from around 75% correct to chance on the
trial of the hard switch. As noted earlier, we know of no II studies
that have reported such a mid-session drop in accuracy.

Finally, the results from Model 2 (1FB-SS) show that with soft
switching, the procedural system of COVIS can learn provided
that it controls responding for the majority of trials in the exper-
iment. In other words, when the procedural system is allowed to
generate the overall response for a large proportion of the training
trials, it successfully learns to respond to the categories. That this
occurs is unsurprising and essentially suggests that, within a nar-
row range of parameterizations, the model learns with one source
of feedback in a serial fashion.

The empirical evidence (e.g., Ashby and Crossley, 2010) sug-
gests that soft switching is not the dominant method via which
humans resolve competition between declarative and procedu-
ral memory systems. However, other evidence (Erickson, 2008)
suggests that a minority of humans seem to be able to switch trial-
by-trial if given enough cues, so it may be the case that under
some conditions, soft switching could occur naturally during the
course of learning. When the task demands are clear, people may
successfully adopt different strategies and flexibly shift among
them. This is the idea behind knowledge partitioning, where
participants learn to apply different strategies to different stim-
uli within one task (Lewandowsky and Kirsner, 2000; Yang and
Lewandowsky, 2004).

Regardless of the plausibility of soft switching, the greatest
problem with Model 2 (1FB-SS) is that it only predicts learning
in the procedural system when the procedural system dominates
responding in the task, regardless of whether that task is RB or
II. This is problematic because the model predicts that even one-
dimensional RB tasks will frequently be learned procedurally—a
prediction that is strongly contradicted by the literature (e.g.,
Waldron and Ashby, 2001).

The results of these simulations largely suggest that with a
single feedback source, simply modifying the system switching
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mechanism is not sufficient to account for human learning data.
Regardless of the switching mechanism, the results show that
learning in the procedural system is possible only if the procedural
system controls responding throughout the majority of training.

ADDITIONAL COVIS MODIFICATIONS—THE
BOOTSTRAPPING HYPOTHESIS
All of the models so far investigated predict no procedural learn-
ing while the explicit system controls responding. If we take for
granted that the procedural system learns even while it does not
control responding, then it appears that another modification
to the architecture of COVIS may be necessary. One possibil-
ity is that the explicit system somehow trains or bootstraps the
procedural system while it controls responding.

Although speculative, this could occur if the procedural system
is somehow informed of the response the explicit system gener-
ates. As discussed above, the problem with the single feedback
models so far investigated is that when the explicit system con-
trols responding, the feedback it elicits is independent of activity
within the procedural system. In other words, any change in
cortical-striatal weights is as likely to be rewarded as any other
change. If the procedural system is somehow fed information
about the explicit system response, however, then this indepen-
dence could disappear, which might allow the procedural system
to learn from the explicit system.

IMPLEMENTING BOOTSTRAPPING IN COVIS
In order to implement bootstrapping in COVIS, a simple mod-
ification was made. Recall from earlier that, on every trial, the
explicit system generates a discriminant value, hE(n), that quanti-
fies the overall output of the explicit system’s response. Also recall
that, on every trial, each striatal unit produces an overall activa-
tion value that is driven by the stimulus. For example, activation
in striatal unit J on trial n is denoted by SJ(n) (i.e., see Equation
3). Using these values, the following modification was made to
reflect the hypothesis that the procedural system is privy to the
response generated by the explicit system whenever the explicit
system controls responding. If the explicit system controls the
overall response and emits a response corresponding to category
J on trial n, set

SJ(n) = SJ(n)+ | hE(n) | (12)

and make no changes to SK (n), for all K �= J.
This modification makes no changes to the parameters of

the model; it only makes a new assumption about the flow of
information when the explicit system is generating the overall sys-
tem response. Specifically, it assumes that information about the
explicit system’s response is fed back into the procedural system
at the level of the striatum and only to the striatal unit match-
ing the response of the explicit system. Ramping up the activity
of the striatal unit corresponding to the response generated by
the explicit system translates into larger changes in the weights
associated with that striatal unit (see the reinforcement learning
equation, Equation 4). The timing of this ramping-up of activity
only needs to occur before feedback is given to the model, and
because the explicit system discriminant value hE(n) is related

to the explicit system decision, one can further assume that this
information transfer occurs in tandem with the explicit system
decision.

One attractive property of this modification is that it does
not necessarily override the output of the procedural system.
For example, suppose that the procedural system has been par-
tially trained in an II categorization task, so its weights have been
modified to respond accurately. The explicit system may make
an incorrect “A” response to a stimulus, but because the pro-
cedural system has been trained, it is suggesting a correct “B”
response with high confidence. The explicit system discriminant
value hE(n) would be added to the striatal unit response SA(n),
but SB(n) could still be larger and thus, the procedural system’s
output would not be washed out by the explicit system.

Early in training when the procedural system has not yet
learned anything, both SA(n) and SB(n) will be approximately
equal, so the explicit system’s output will nudge learning in
the procedural system in the direction of the explicit system’s
response when the weights are updated. The end result should
be procedural system weights that are updated to reflect the
response strategy of the explicit system as long as the explicit
system controls responding.

SIMULATION SET 2—BOOTSTRAPPED COVIS
ARCHITECTURES
This section explores two COVIS architectures (Models 1 and 2)
with bootstrapping implemented. The general methodology and
presentation of results will follow those already described and
presented. Bootstrapping Model 0 (2FB-SS) is unnecessary as it
receives independent feedback in each system.

MODEL 1: SINGLE SOURCE OF FEEDBACK, HARD SWITCH,
BOOTSTRAPPED
This model is exactly as described above with the additional
bootstrapping modification. It will be referred to as Model 1
(1FB-HS-B) because it receives only a single source of feedback
(1FB), assumes hard switching, and is bootstrapped (B) by the
explicit system.

MODEL 2: SINGLE SOURCE OF FEEDBACK, SOFT SWITCH,
BOOTSTRAPPED
Model 2 (1FB-SS-B) is exactly as described above with the addi-
tional bootstrapping modification.

METHOD—SIMULATION SET 2
The methods of assessment for both models were identical to
those described for simulation set 1.

RESULTS—SIMULATION SET 2
MODEL 1 (1FB-HS-B)
Information integration categories
The PSP on Model 1 (1FB-HS-B) was definitive: only one data
pattern was discovered, corresponding to test phase accuracies
greater than 90%. This suggests that across all parameter val-
ues (at least for the parameters defining the parameter space)
the model learns II categories handily. The robustness analysis
showed that the performance of the model across the 200 random
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simulations were essentially identical as across the 19 training
simulations. Thus, the model is highly robust. Recall, however,
that the suboptimal explicit strategy only performs at about 78%
correct in II categories. How, then can the procedural system
outperform the suboptimal strategy it was trained on?

A careful evaluation of the procedural system weights provides
insight. The average trained procedural system weights across
200 simulations appear different than in previous models; the
weights now show a residual trace of the vertical bound used by
the explicit system (Figure 8, top). The effects of the explicit sys-
tem training are most easily seen in the bottom of Figure 8, which
shows a ratio of the A and B weights (i.e., A/B and B/A). Here, the
solid red vertical line approximately corresponds to the boundary
used by the explicit system. Note the small regions to the right and
left of the bound in the A/B and B/A ratios, respectively. These
are the regions where the procedural system weights are driven
to zero due to the incorrect responses being made by the explicit
system (top row, yellow arrows).

In other words, the procedural system not only learns to make
the responses that the explicit system gets correct, but it also
learns to avoid responses made by the explicit system that were
incorrect. This analysis resolves the apparent paradox of how
the procedural system was able to outperform the system that
trained it.

Hybrid categories
The partitioning for Model 1 (1FB-HS-B) on the hybrid cat-
egories was similar to the II partitioning. The PSP algorithm
discovered two data patterns corresponding to 80–89% test phase
accuracy and greater than 90% test phase accuracy. The vol-
ume estimate was nearly 100% for the pattern corresponding

FIGURE 8 | Top: Striatal weights in the procedural system of Model 1
(1FB-HS-B) trained on II categories, averaged across 200 simulations. Blue
(cool colors) represent small weights whereas red (warm colors) represent
large weights. Note the qualitative difference between these weights and
those in Figure 6. Bottom: Ratio of procedural system weights. Solid
vertical line approximately corresponds to the explicit system rule-based
bound. Note that large values in the ratio correspond to regions where the
weights in the denominator are driven toward zero (darkest blue regions in
the top row indicated by yellow arrows).

to >90% test accuracy. The model’s performance was also very
robust across 200 simulations.

As with the II categories, the weights learned by the procedu-
ral system show a residual trace of the explicit system training.
This is most easily seen in Figure 9, which shows a ratio of
the A and B weights. Note that, as with the II categories, the
procedural system weights for the striatal unit where incorrect
responses are made appear to be driven toward zero in the
region where the explicit system responds incorrectly. Specifically,
notice in the bottom right panel that there are some large pos-
itive values to the left of the explicit system’s approximated
bound. These large positive values in the ratio are due to the
A-weights being very close to zero in those regions. Again, the
procedural system learns what response not to make in this
region.

MODEL 2 (1FB-SS-B)
Information integration categories
The PSP analysis found only two data patterns corresponding to
80–89% and >90% test phase accuracy. Again, the volume of
parameter space was nearly 100% for the >90% data pattern,
and again, the model’s performance was very stable across 200
simulations using random stimulus orderings and weight initial-
izations. The pattern of weights learned by Model 2 (1FB-SS-B)
were functionally identical to the weights learned by Model 1
(1FB-HS-B).

The only noteworthy difference between the models is that
in Model 2 (1FB-SS-B), the procedural system is sometimes
allowed to generate the overall system response. Recall that, in
Model 2 (1FB-SS), the procedural system could learn, but only
when the procedural system dominated responding (nearly 90%
of all responses). This, however, was not a learning require-
ment in Model 2 (1FB-SS-B). Across 200 simulations, for pat-
tern 9 (80–89% accuracy in the test phase), the procedural
system only generated 7% of the overall responses on aver-
age; for pattern 2 (>90% test phase accuracy), the proce-
dural system generated about 40% of the overall responses.

FIGURE 9 | Ratio of procedural system weights in Model 1 (1FB-HS-B)

trained with hybrid categories. Solid vertical line approximately
corresponds to the explicit system rule-based bound.
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Thus, procedural system learning in Model 2 (1FB-SS-B) is
not critically dependent on the procedural system taking over
the task.

Hybrid categories
Again, the PSP analysis only found two data patterns for Model
2 (1FB-SS-B) in the hybrid categories and nearly 100% of the
volume of the parameter space was assigned to the pattern cor-
responding to >90% test phase accuracy. The performance of the
model was also very robust across 200 simulations. The learned
weights to those learned by Model 1 (1FB-HS-B).

Finally, as with the II categories, the success of Model 2
(1FB-SS-B) no longer hinged critically on the procedural system
dominating the training phase. Across 200 simulations, the pro-
cedural system of Model 2 (1FB-SS-B) never accounted for more
than 7% of the overall responses, on average (i.e., no parameter-
ization caused the procedural system to dominate responding as
before).

DISCUSSION—SIMULATION SET 2
With the addition of bootstrapping, there was a striking difference
in the model’s performance using only a single source of feedback.
Basically, the bootstrapping modification allowed the feedback
elicited by the responses of the explicit system to become useful to
the procedural system. Model 1 failed to learn without bootstrap-
ping whereas, with bootstrapping, it learned the categories well,
even without ever generating a response. Model 2’s performance
previously depended on soft switching, which allowed the pro-
cedural system to dominate responding, but with the bootstrap-
ping mechanism implemented, the model no longer required
control.

Notably, the bootstrapping models learn both to respond and
to not respond in certain regions of stimulus space, effectively
allowing the procedural system to learn the categories better than
the explicit system even though the procedural system only gets
feedback based on the suboptimal explicit system strategy. This is
a unique and strong prediction, which should be interpreted with
some caution—recall that the models were biased toward learning
very well, so it may be that, with a full explicit system and noise,
the procedural system might not show such a dramatic perfor-
mance improvement. This would be more in line with observed
learning in human studies (i.e., learning curves generally have no
large discontinuities from sudden drops or jumps in accuracy).
However, even with noise, the weights in the procedural system
should change in the same general fashion, so it seems that, with
bootstrapping, the procedural system is capable of learning a little
better than the explicit system, and once it is allowed to take over,
refine its strategy.

Finally, it is interesting that in the soft switching Model 2 (1FB-
SS-B), the procedural system was able to make as many as 40% of
the overall responses with II categories, but not more than 7%
with hybrid categories. This result is in line with the observation
in Ashby and Crossley (2010) that humans tend to persist with
suboptimal RB strategies with hybrid categories. Overall, learn-
ing in both models presented here is nearly identical. The current
simulations, therefore, do not support a hard switching mecha-
nism over a soft switching mechanism. With the assumption of

bootstrapping, these simulations only confirm that the procedu-
ral system can learn with one source of feedback, regardless of the
switching mechanism.

GENERAL DISCUSSION
The simulations show clearly that the procedural system can learn
with one source of feedback as long as the response generated
by the explicit system is communicated back to the procedural
system (i.e., via bootstrapping). Specifically, the model assumes
that this information is passed back to the procedural system
at the level of the striatum. COVIS is a model constrained by
neurobiology, so although the simulations reported above verify
that bootstrapping is a plausible computational mechanism that
allows the procedural system to learn during explicit system con-
trol, an ideal model would identify a neurobiologically plausible
explanation for how bootstrapping could work in a human brain.

There are a number of possible specific pathways via which the
procedural system could receive an efferent copy of the explicit
system motor response. In general, the challenge for all these
accounts is that this efferent motor signal must project to the same
striatal targets in the procedural system that receive the relevant
visual input. Unfortunately, current neuroanatomy is not precise
enough to draw any strong conclusions. Thus, the possibilities
considered in this section must all be considered speculative.
Hopefully, future research will clarify this issue.

The organizing scheme of the basal ganglia is characterized
by parallel cortical-striatal-cortical projection loops (Alexander
et al., 1986; Parent and Hazrati, 1995; DeLong and Wichmann,
2007). For this reason, one obvious hypothesis is that an efferent
copy of the explicit system response is passed back to the striatum
via direct cortical-striatal projections from premotor or motor
areas of cortex to the striatal regions responsible for procedural
learning. Within premotor areas, one intriguing possibility is that
the signal originates in ventral premotor cortex (PMv), which is a
likely candidate for the first motor-target of the explicit system.

Tracing and direct stimulation studies have found that premo-
tor and motor regions project to distinct regions of the striatum
(Takada et al., 1998; Nambu et al., 2002). Specifically, neurons
from primary motor cortex (M1) send projections to medial
aspects of the putamen, and neurons in premotor cortex project
to dorsolateral regions of the putamen. Further evidence sug-
gests connectivity patterns are both segregated and overlapping
(Draganski et al., 2008), and also in accordance to the same soma-
totopic organization in cortex (Jones et al., 1977; Flaherty and
Graybiel, 1993; Takada et al., 1998), which together suggest that
the projections may indeed terminate in the general regions of
the striatum responsible for executing the motor responses of the
procedural system.

Recent studies have found different kinds of projections from
M1 cortical layer V into the striatum. For example, Parent and
Parent (2006) found not only direct projections from M1 into the
striatum, but also indirect projections via long-range pyramidal
tract neurons that form en passant synapses across wide regions.
It is believed that these different projections actually stem from
two different classes of layer V pyramidal neurons (Molnár and
Cheung, 2006): those that send projections within the cortex and
basal ganglia (IT-type) and those that send projections to deeper
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structures, brain stem, and spinal cord (PT-type; Reiner et al.,
2003, 2010).

Another well-known organizing principle within the basal
ganglia is the direct- and indirect-pathways (Albin et al., 1989;
Gerfen, 1992; Pollack, 2001). Both pathways receive excitatory
cortical input, but the direct pathway has the effect of increas-
ing striatal output whereas the indirect pathway has the opposite
effect. Some evidence now suggests that direct pathway stri-
atal neurons receive input predominantly from IT-type neurons,
whereas the indirect pathway neurons receive input largely from
PT-type neurons (Reiner et al., 2003, 2010; Lei et al., 2004), and
that short projecting IT-type neurons convey a different motor
signal to the striatum than the motor signal conveyed to the spinal
cord via long projecting neurons (Bauswein et al., 1989; Turner
and DeLong, 2000). In contrast, the long projecting PT-type neu-
rons may communicate to the striatum an efferent copy of the
motor signals being sent to the spinal cord (Parent and Parent,
2006). Reiner et al. (2010) thus proposed a theory that these
inputs ultimately lead to different kinds of motor modulation
within the striatum. Specifically, they suggested that IT-type neu-
ronal projections to the striatum facilitate planned motor actions
along the direct pathway and that PT-type projections stymie
conflicting motor actions along the indirect pathway.

This hypothesis suggests that projections to the indirect path-
way might teach the procedural system what responses not to
make early on during explicit system control by driving weights
toward zero in regions where the suboptimal explicit strategy
yields incorrect responses. Similarly, projections to the direct
pathway could teach the procedural system when there is agree-
ment between the explicit system’s strategy and the categories
by increasing weights. Broadly speaking, the differential effects
of these cortical-striatal projections would translate to increasing
one striatal response and decreasing another, which has the over-
all effect of increasing the output of the elicited motor response
relative to the not-elicited response. Although there is no indirect
pathway in COVIS, this is computationally the effect achieved by
adding the output of the explicit system to the procedural system.
Furthermore, it would be straightforward to implement COVIS
with the addition of the indirect pathway. Even if this dichotomy
between projections to the striatum is incorrect, the existence
of projections from cortical motor regions to the striatal nuclei
hypothesized to mediate procedural learning is well-established,
and thus a plausible pipeline through which explicit system
responses are communicated to the procedural system.

A very different alternative possibility is that the explicit sys-
tem executes its motor response by activating the striatum, in
which case the information about its response might automat-
ically be communicated to the striatum. In other words, this
hypothesis predicts that the striatum is involved in explicitly pro-
duced, volitional movements, either at the level of generation
or execution of motor movements. Striatal involvement in voli-
tional movement is corroborated by PET (Roland et al., 1982;
Jueptner and Weiller, 1998), and fMRI (Cunnington et al., 2002)
experiments. Neurophysiological studies in non-human primates
provide more direct evidence (e.g., Romo et al., 1992; Schultz and
Romo, 1992). In those experiments, striatal neurons responded
to self-initiated movement, either leading up to the movement

(suggesting involvement in generating the motor action), or with
the movement (suggesting involvement in executing the motor
action).

Although the exact computational mechanism is currently
unknown, the available neurobiological evidence supports the
possibility that the procedural system of COVIS can be boot-
strapped by the explicit system before it takes over responding in
a perceptual category-learning task. This bootstrapping could be
from cortical-striatal projections from premotor or motor regions
into the striatum, or possibly by the explicit system’s control of
motor responses through basal ganglia-mediated loops.
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