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SUMMARY

The lack of protein or just the amino acid leucine in the diet
inhibits the pancreatic synthetic machinery to a similar
extent, but through different regulation of protein trans-
lation mechanisms. This dietary deficiency could lead to
pancreatic insufficiency and malnutrition.

BACKGROUND & AIMS: Chronic amino acid (AA) deficiency, as
in kwashiorkor, reduces the size of the pancreas through an
effect on mammalian target of rapamycin complex 1 (mTORC1).
Because of the physiological importance of AAs and their role
as a substrate, a stimulant of mTORC1, and protein synthesis,
we studied the effect of acute protein and AA deficiency on the
response to feeding.

METHODS: ICR/CD-1 mice were fasted overnight and refed for
2 hours with 4 different isocaloric diets: control (20% Prot);
Protein-free (0% Prot); control (AA-based diet), and a leucine-
free (No Leu). Protein synthesis, polysomal profiling, and the
activation of several protein translation factors were analyzed
in pancreas samples.

RESULTS: All diets stimulated the Protein Kinase-B (Akt)/
mTORC1 pathway, increasing the phosphorylation of the kinase
Akt, the ribosomal protein S6 (S6) and the formation of the
eukaryotic initiation factor 4F (eIF4F) complex. Total protein
synthesis and polysome formation were inhibited in the 0%
Prot and No Leu groups to a similar extent, compared with the
20% Prot group. The 0% Prot diet partially reduced the Akt/
mTORC1 pathway and the activity of the guanine nucleotide
exchange factor eIF2B, without affecting eIF2a phosphoryla-
tion. The No Leu diet increased the phosphorylation of eIF2a
and general control nonderepressible 2, and also inhibited
eIF2B activity, without affecting mTORC1. Essential and
nonessential AA levels in plasma and pancreas indicated a
complex regulation of their cellular transport mechanisms and
their specific effect on the synthesis of digestive enzymes.

CONCLUSIONS: These studies show that dietary AAs are
important regulators of postprandial digestive enzyme
synthesis, and their deficiency could induce pancreatic
insufficiency and malnutrition. (Cell Mol Gastroenterol Hepatol
2021;11:99–115; https://doi.org/10.1016/j.jcmgh.2020.07.008)

Keywords: Protein Deficiency; mTORC1; Pancreatic Digestive
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rotein and amino acids (AAs) are an essential
Pcomponent of both human and animal nutrition and
are involved in the maintenance of general health and well-
being.1–3 Amino acids are the building blocks of protein, cell
structures, and tissues, and also can act as regulators of
protein metabolism and many physiological processes.4,5

The long-term deficiency of the essential amino acids
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(EAAs)6 in the diet causes depletion of plasma AAs, and can
cause several metabolic problems such as protein-energy
malnutrition,7 marasmus, or the kwashiorkor syndrome (a
form of malnutrition caused by a lack of protein in the
diet).8 It also can aggravate other health-related issues, such
as hemoglobin production, infectious diseases such as hu-
man immunodeficiency virus/acquired immune deficiency
syndrome,9 or tuberculosis,10 sarcopenia,11 or Pompe dis-
ease.12 Many studies have shown the therapeutic effect of
AAs when administered to patients, especially to infants, for
growth as well as to maintain metabolism.13,14 They also are
used in parenteral nutrition in cases of maldigestion,
malabsorption, short-bowel syndrome, eosinophilic gastro-
intestinal disorders, and gastrointestinal tract impair-
ment.1,15,16 Amino acid supplementation specifically can
benefit patients with chronic pancreatitis and pancreatic
cancer because they have low circulating AA levels and
suffer from malnutrition.17 In the past 15 years, AA levels in
plasma and in different organs have been used in the
diagnosis of animal and human disease (including pancre-
atitis, cancer, and diabetes), and monitor/predict their
progression.18–20 Some studies also analyzed the role of the
different AA transporters in normal conditions and during
disease.19,21–23

The branched-chain amino acids (BCAAs), leucine,
isoleucine, and valine, in particular, are considered biolog-
ical regulators,24 and are available as supplements for pa-
tients with liver25,26 or kidney27 disease, and athletes with
McArdle disease,28 among others. They play an important
role in energy homeostasis,29 and are involved in the
stimulation of cell proliferation in certain types of cancer.30

Moreover, the deficiency of BCAA in the diet improves
metabolic health in mice31 and human beings.32

Clinical and histopathologic studies have documented the
occurrence of pancreatic injury in response to a severe
reduction of protein in the diet that lead to nutrient malab-
sorption and a state of malnutrition,7,33–35 which can be
especially critical in children and young adults.21,36 The
exocrine pancreas synthesizes and secretes between 6 and 20 g
of digestive enzymes per day and requires optimal nutrition for
enzyme synthesis.7,37 Consequently, the pancreas is extremely
vulnerable to protein deficiency states. In fact, the pancreas of
patients with the kwashiorkor syndrome is one of the most
severely affected tissues, with reductions in size and secretory
capacity.7,8,34 A study from our laboratory, mimicking this di-
etary protein deficiency, showed that mice fed a protein-
deficient diet have pancreatic atrophy, and this process in-
volves the mammalian target of rapamycin complex 1
(mTORC1) pathway.38 It has also been shown that protein and
AAs can stimulate pancreas growth. A high-protein (40%) diet
can induce pancreas growth in mice, independent of chole-
cystokinin (CCK).39 Other studies have shown that AAs can
increase pancreatic trypsin levels and stimulate pancreas
growth,40,41 and the AA leucine, specifically, modulates growth
responses of pancreatic progenitors, involving mTORC1.42,43

Although these long-term effects occur through changes in
the synthetic rates and messenger RNA (mRNA) levels during
several days or weeks, little is known about their intracellular
mechanisms in a short-term, more physiological setting.
Short-term effects of protein and AAs seem mainly to target
the regulation of the protein synthetic machinery of pancre-
atic acinar cells through mTORC1 activation. BCAAs, especially
leucine, can stimulate mTORC1 and the pancreatic protein
synthesis machinery of rats, independently of CCK and insu-
lin.44 Other studies also have shown the role of leucine in the
exocrine pancreas of rats,45 pigs,46 and ruminants.47

Protein synthesis is an acutely regulated process,
involving translation of mRNA attached to ribosomes
(polysome complexes) into protein.48–50 The initiation step
involves the attachment of the mRNA to the ribosome and
translation continues with the elongation of the polypeptide
chain. Because ribosomal attachment can restart before
peptide synthesis is completed this results in the formation
of polysomes.50,51 Polysomal fractionation analysis shows
that mRNAs are being translated actively into proteins.52,53

When the protein synthesis mechanisms are truncated, they
can induce an accumulation of unfolded (or misfolded)
proteins in the endoplasmic reticulum (ER), causing ER
stress, and triggering the unfolded protein response.54,55

BCAAs have been shown to stimulate mTORC1 through
an unknown rapamycin-insensitive pathway.56,57 Growth
factors and AAs action converge on mTORC1, stimulating
the mRNA binding step of translation initiation.58,59

mTORC1 regulates the phosphorylation of the translational
repressor factor 4E (eIF4E) binding protein 1 (4E-BP1), the
70-kilodalton ribosomal protein S6 kinase (S6K),50,60 ribo-
somal proteins, and elongation factors.49

Our earlier studies showed that a short-term meal
stimulated pancreatic protein synthesis at the translational
level, with the activation of Protein Kinase-B (Akt) and
mTORC1 downstream pathways, as well as the formation of
the eIF4F complex,61 and that the protein elongation pro-
cess is regulated by CCK in pancreatic acini.49 Because of the
importance of protein and AA availability to the pancreas,
we also studied the effects of BCAAs in the regulation of
digestive enzyme synthesis, and leucine (Leu) was the one
that had a more significant effect.44 We therefore now
studied the impact that short-term dietary protein and a
specific AA (Leu) deficiency could have on pancreas physi-
ology, and the synthesis of pancreatic digestive enzymes.
Protein was removed from one of the experimental diets,
and in another group only the BCAA leuci234ne was
removed from an isocaloric AA-based diet. The study
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involved overnight fasting before refeeding for 2 hours. Our
findings show that both the lack of protein or only leucine in
the diet inhibit total pancreatic protein synthesis and mRNA
attachment to the polysomal fraction by different mecha-
nisms, with different effects on mTORC1.

Results
Effects of Dietary Protein or Leucine Deficiency
on Pancreatic Protein Synthesis

To show that dietary protein is important in the stimu-
lation of pancreatic protein synthesis, mice were fasted for
16 hours and refed either a standard diet with 20% protein
(20% Prot) or a protein-free diet (0% Prot) for 2 hours.
Total pancreatic protein synthesis was analyzed by the
flooding-dose technique. In addition, because we have
shown that BCAAs, in particular leucine, stimulate pancre-
atic protein synthetic machinery,44 we analyzed whether the
removal of only this specific amino acid from the diet would
affect the regulation of pancreatic protein synthesis. The 2-
hour refeeding time point was chosen because this is the
time when maximal stimulation of pancreatic protein syn-
thesis can be achieved by feeding fasted mice.61 The results
showed that refeeding mice with the 20% protein control
diet (20% Prot) increased total protein synthesis to 156.3%
± 14%, compared with the fasted group (Figure 1); the L-AA
defined diet (AA) increased it to 138.7% ± 11%; the
protein-free (0% Prot) and leucine-free (No Leu) diets
induced a strong inhibition of total protein synthesis, to
57.6% and 41.3%, respectively, compared with the fasted
group (Figure 1). Therefore, dietary protein and the BCAA
leucine are required for the stimulation of total pancreatic
protein synthesis after a meal.

Effects of Dietary Protein or Leucine Deficiency
on Pancreatic Polysomal Profiles

To study whether the effect of protein and leucine defi-
ciency on the diet affected polysomal aggregation in the
Figure 1. Effect of the different feeding treatments on total
pancreatic protein synthesis, analyzed using the flooding-
dose technique, and expressed as nanomoles of Phenyl-
alanine incorporated into milligrams of pancreatic protein.
Mice were fasted for 16 hours, and refed with 3 experimental
diets: control diet (20% Protein), protein-deficient diet (0%
Prot), and leucine-deficient diet (No Leu). *P < .05 vs control
fasted group. #P < .05 vs control refed group.
pancreas, polysomal profiling analysis was performed on
pancreatic homogenates. The control refed group (20%
Prot) showed a significant increase in the polysomal fraction
(ie, more actively translated mRNAs into protein) than the
fasted group (Figure 2A and B). This was reflected in the
analysis of the area under the curve of the polysomal frac-
tions (74.1% refed, compared with 69.1% in the fasted
group) (Figure 2A and B). The group refed with the AA diet
had a similar profile and area under the curve as the control
diet with 20% protein (data not shown). The groups refed
with a protein-free (0% Prot) or leucine-free (No Leu) diet,
showed a very similar polysomal profile with a large
reduction of the polysomal fraction, when compared with
the polysomal fraction of the refed or fasted control groups
(Figure 2C and D). These results were confirmed with the
calculations of the area under the curve of their polysomal
fraction (65.1% for both groups) (Figure 2). In addition, the
analysis of the profile of the subpolysomal fraction clearly
indicated the following: refeeding with a 20% protein diet
reduced the amount of the free ribosomal subunits 40S and
60S (Figure 2) consistent with the increase in the 80S ri-
bosomal unit, and the polysomal fraction; and the lack of
protein or leucine in the diet increased the subpolysomal
40S and 60S peaks (area under the curve for both groups),
compared with the refed control and fasted groups
(Figure 2C and D). These data confirmed that total pancre-
atic protein synthesis was inhibited in the 0% Prot and No
Leu groups, with a strong reduction of the mRNAs attached
to the ribosomes for their translation into protein.
Protein and Amino Acid Deficiency in the Diet
Partially Inhibit the Akt/mTOR C1 Pathway

The mTOR C1 pathway is involved in the activation of
pancreatic protein synthesis after feeding61 and after
leucine administration.44 To assess the activation of the
Akt/mTOR C1 pathway by dietary protein and leucine in
this study, the phosphorylation (indicative of their activa-
tion) of Akt and the ribosomal protein S6 (downstream of
mTORC1), as well as the formation of the eIF4F complex
(also downstream of mTORC1). were analyzed. The No
Protein feeding partially reduced the phosphorylation of Akt
(Figure 3A) and S6 (Figure 3B). By contrast, the No Leu diet
was not different from the 20% Prot in its effect on Akt and
S6. Thus, there is a difference in the effect of protein and
leucine deficiency. The phosphorylation of another effector
downstream of mTORC1, 4E-BP1, was analyzed, and all the
different diets stimulated its phosphorylation, mimicking
the results for S6 phosphorylation.

The formation of the eIF4F complex is an important
regulatory step in the protein synthesis mechanisms that
catalyzes the recruitment and assembly of the capped
mRNA with the 43S ribosomal complex. The formation of
the eIF4F complex was analyzed by immunoprecipitation of
eIF4G bound to eIF4E and was increased to more than
145% after feeding all the different diets compared with the
fasted group (Figure 3C). eIF4E phosphorylation also was
increased in response to all different diets, in correlation
with the increase on eIF4F complex formation in the same



Figure 2. Effect of the 4
different experimental
treatments on pancre-
atic polysomal profiles.
Each profile shows the
peaks for the 40S and 60S
ribosomal subunits, as
well as for the whole ribo-
some (80S) and the
different polysomes, in the
polysomal fraction for
representative fraction-
ations. The graphs also
show the calculations of
the area under the curve
for the subpolysomal and
the polysomal fractions.
The experimental groups
were as follows: (A) Fas-
ted; (B) refed (20% Prot);
(C) refed protein-deficient
diet (0% Prot); and (D)
refed leucine-deficient diet
(No Leu). N ¼ 5–8/group.
*P < .05 vs control group.
#P < .05 vs control refed
group.
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groups. Therefore, the eIF4F complex formation can be
activated independently of the dietary protein and AA con-
tent in a postprandial situation after a meal.
Amino Acid (Leucine) Deficiency in the Diet
Increases eIF2a and General Control
Nonderepressible 2 Phosphorylation

Pancreatic eIF2a phosphorylation is increased in stress
situations such as acute pancreatitis in vivo and supra-
physiological stimulation of isolated pancreatic acini
in vitro.62,63 In this study, eIF2a phosphorylation was
increased significantly only in the leucine-free diet (No Leu)
group to 250% of the fasted group (Figure 4A). In concor-
dance with this result, the described AA imbalance detector,
the general control nonderepressible 2 (GCN2) kinase, also
only was phosphorylated in the No Leu group to 160% of
the fasted group (Figure 4B). We therefore conclude that the
dietary AA imbalance caused by removing only leucine from
the diet activates the ER stress mediator GCN2 and in-
creases the phosphorylation of eIF2a, which, in turn, could
be responsible for the inhibition of the total pancreatic
protein synthesis and polysomal formation seen in the No
Leu group (Figures 1 and 2).

Protein and Leucine Deficiency in the Diet Inhibit
eIF2B Activity

The guanine nucleotide exchange factor eIF2B is an
important regulatory factor of protein synthesis, and its
activity is inhibited by phosphorylated eIF2a.62 eIF2B ac-
tivity was not enhanced (92% of the fasted group) by
feeding the control diet (20% Prot), but was reduced
significantly in both the 0% Prot (to 76.5%) and the No Leu
(to 58.7% of the fasted group) groups (Figure 5A). There-
fore, the lack of protein or the AA leucine in the diet
significantly inhibited pancreatic eIF2B activity after 2-hour
refeeding (Figure 5A). This result partially can explain the
reduction in total protein synthesis and polysomal forma-
tion in the 0% Prot and No Leu groups.

eIF2a phosphorylation was not increased in the 0% Prot
group compared with the refed control group (20% Prot),
and therefore could not account for the inhibition of eIF2B
seen in this group. To study which other mechanisms could
be involved with the inhibition of eIF2B activity, the



Figure 3. Effect of the different diets on (A) Protein Kinase-B
and (B) ribosomal protein S6 phosphorylation, as well as on
(C) eukaryotic initiation factor 4F (eIF4F) complex formation.
Insets show representative immunoblots for phosphorylated
Protein Kinase-B and S6, and loading controls in panels A and B.
Results are expressed as a percentage of phosphorylation in the
fasted group. (C) The eIF4F formation is expressed as a per-
centage of the co-immunoprecipitation of the initiation factor
eIF4E with eIF4G compared with control values in the Fasted
group. Inset shows representative immunoblot for eIF4G and
eIF4E. *P < .05 vs control group. #P < .05 vs control refed group.
(A) The representative image from the Western Blot signal for
phosphorylated-Protein Kinase-B was taken at the same time, in
the same gel and film, as the other ones, but it was not contin-
uous to the 0% Prot, as shown in panel. It has been arranged
to match the order of the groups in the graph. IP,
immunoprecipitation.

Figure 4. Effect of the different diets on the phosphorylation
(activation) of (A) eukaryotic initiation factor 2a (eIF2a) and
the (B) general control nonderepressible kinase 2 in mouse
pancreas. Phosphorylation results are expressed as a per-
centage of the Fasted group. Insets show representative
immunoblot for phosphorylated-eukaryotic initiation factor 2
and general control nonderepressible kinase 2, and their total
amount in the cells. *P < .05 vs control fasted group. #P < .05
vs control refed group. (B) The representative image from the
Western blot signal for phosphorylated-general control non-
derepressible kinase 2 was taken at the same time, in the same
gel and film, as the other ones, but it was not continuous to the
0% Prot, as shown in the figure. It has been arranged to match
the order of the groups in the graph.
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phosphorylation status of glycogen synthase kinase-3
(GSK3) (eIF2B activator) also was analyzed. GSK3 usually
is dephosphorylated when active and phosphorylation of its
Ser 21/9 residues inhibits its activity. In this study, GSK3
phosphorylation was increased significantly in the 0% Prot
group to 177.3% ± 34% of the fasted group (Figure 5B).
This enhanced phosphorylation is associated with GSK3



Figure 5. Effects of the different diets on (A) eukaryotic
initiation factor 2B (eIF2B) activity and (B) glycogen syn-
thase kinase-3 phosphorylation. Measurements of eIF2B
activity are described in the Materials and Methods section.
Both eIF2B activity and glycogen synthase kinase-3 phos-
phorylation (p-GSK3a/b) levels are expressed as a percent-
age of the fasted group. *P < .05 vs control fasted group. #P
< .05 vs control refed group.
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inhibition and therefore could not be responsible for the
inhibition of eIF2B activity in the same group. Therefore,
eIF2B activity in the 0% Prot group has to be inhibited
through a different mechanism.
EAA and Nonessential AA Concentrations in
Plasma and Pancreas After Refeeding

AA concentrations in plasma and the pancreas were
analyzed to document any metabolic change resulting from
the administration of the different diets. We measured the
amount of 18 AAs in all the experimental groups, and
analyzed whether there was a difference between EAAs
and nonessential AAs (NEAAs) in the pancreas and plasma.
The fasted group showed low levels of both types of AAs in
plasma and pancreas, which doubled in the refed control
group with 20% of protein, except for the EAAs in the
pancreas, which showed no change, compared with the
fasted group (Figure 6). The group with the 0% Prot diet
showed a marked reduction (approximately half of the
fasted group) of circulating EAAs and NEAAs in plasma
(Figure 6A and B), but did not show this decrease in the
pancreas (Figure 6C and D). The AA levels in the pancreas
of the 0% Prot group were the same as the 20% Prot
group, indicating that the pancreas captures, and/or re-
tains, a similar amount of AAs in the postprandial situation,
independently of the amount being fed. This also could
indicate that these AAs must come from an internal body
pool (not from food), and that they accumulate inside the
acinar cell because they are not used for protein synthesis
and might even keep being recruited to the pancreas by
another postprandial stimulatory effect. The plasma AA
levels in the No Leu group followed a pattern similar to the
20% Prot group (Figure 6A and B). In the pancreas of the
same group (No Leu), the amount of both EAAs and NEAAs
was higher than in any other group, indicating that the
pancreas was capturing and retaining a larger amount of
AAs without decreasing their plasma levels. These AAs also
might come from other body sources and contribute to an
AA imbalance situation inside the acinar cells (Figure 6C
and D).

The amount of NEAAs inside the pancreas (compared
with the total amount of AAs), was higher (>65%) than the
amount of EAAs; reaching a maximum (87%) in the 0% Prot
group. The amount of EAAs inside the pancreas was lower
than 35% in all groups, and was very low (approximately
13%) in the 0% Prot group, most likely because of the lack
of EAAs coming from this diet. These results indicate that
most of the AAs in the pancreas were NEAAs and had to
come from internal sources. NEAAs most likely are needed
as building blocks for protein synthesis and not for acti-
vating the process.

The levels of all individual AAs in the plasma and in the
pancreas are listed on Tables 1 and 2, respectively.
Refeeding a balanced diet (20% Prot) increased the plasma
concentration of most of the AAs compared with the fasted
group, except for Cys, Gly, Iso, Leu, and Trp. Removing
protein from the diet (0% Prot) caused a decrease in the
plasma concentration of most AAs, except for Cys. After
removing only leucine (No Leu) from the diet, many of them
increased (Ala, Asp, Glu, Gly, Iso, Phe, Ser, Thr, Trp, Tyr, and
Val), did not change significantly (Cys, His, Pro, Ser, Trp, and
Tyr), although some were reduced significantly (Asn, Leu,
Lys, and Met), compared with the 20% Prot group (Table 1).

In the pancreas, the levels of all AAs in the fasted group
were higher than in the plasma, except for Cys, Glu, and Met.
Refeeding a balanced diet (20% Prot) increased the
pancreas content of most of them, except for Asn, Cys, His,
Iso, Leu, Lys, Ser, and Trp. In the 0% Prot group there was a
decrease in the pancreas content of most AAs, except for
Asn, His, Phe, and Trp. Gly and Ser levels, on the contrary,
increased significantly. In the No Leu group, there was no
significant change in Cys and Glu levels, but the majority of
them increased to levels higher than the refed 20% Prot
group. As expected, leucine levels were very low in this
group (Table 2).

Together, these results indicate that the ingestion of the
20% Prot diet increased the concentration of most circu-
lating AAs in plasma and pancreas, presumably from the
diet, thus making them available as a substrate for tissue or
organ protein synthesis. The protein-free diet (0% Prot)



Figure 6. Effect of the
different diets on the
concentration of essen-
tial amino acids (AAs)
and nonessential AAs in
(A and B) plasma and in
(C and D) pancreas,
respectively. Plasma AA
concentrations are
expressed in micromolar
units. Pancreas AA con-
centrations are expressed
as micromoles of AA per
gram of tissue. *P < .05 vs
control fasted group. #P <
.05 vs control refed group
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significantly reduced their plasma levels, but increased the
concentration of the NEAAs in the pancreas. The AA anal-
ysis in the No Leu group clearly shows an AA imbalance in
plasma and pancreas that very likely could cause the
Table 1.Plasma Concentrations of Different Amino Acids After

Amino acid Fasted Refed (20%

Essential
Histidine 61.0 ± 3.0 91.7 ± 7.3
Lysine 287.6 ± 24.1 513.3 ± 54
Methionine 40.3 ± 9.8 126.2 ± 12
Phenylalanine 86.3 ± 5.4 109.7 ± 10
Threonine 113.1 ± 18.1 266.1 ± 27
Tryptophan 41.1 ± 2.4 54.3 ± 3.5

BCAA
Leucine 226.3 ± 16.7 254.9 ± 19
Isoleucine 138.7 ± 11.7 143.4 ± 10
Valine 320.2 ± 25.6 507.4 ± 34

Nonessential
Alanine 255.5 ± 46.4 791.6 ± 79
Asparagine 30.1 ± 5.7 63.9 ± 4.8
Aspartic acid 3.3 ± 1.5 4.5 ± 1.2
Cysteine 44.4 ± 1.8 44.9 ± 1.7
Glutamic acid 27.7 ± 1.8 53.2 ± 20
Glycine 196.6 ± 17.1 171.4 ± 18
Proline 90.3 ± 26.5 439.9 ± 54
Serine 71.7 ± 6.4 123.5 ± 20
Tyrosine 52.0 ± 7.2 136.0 ± 22

NOTE. Results are the average and SEM of 6 samples per gro
BCAA, branched-chain amino acid; No-Leu, leucine-free diet; 20
diet.
aP < .05 vs the control fasted group.
bP < .05 vs the control refed group.
cP < .05 vs the 0% Prot group.
stimulation of the ER stress mediators eIF2a and GCN2
(Figure 4), and the inhibition of pancreatic protein syn-
thesis seen in this group (Figures 1 and 2). More studies
need to be performed to determine the transport of the
2 Hours of Refeeding Different Diets

Different diets

Prot) Refed (0% Prot) Refed (No-Leu)

a 50.9 ± 1.5b 83.9 ± 4.0a,c

.1a 148.8 ± 4.2a,b 354.2 ± 27.9b,c

.0a 19.6 ± 3.3a,b 99.2 ± 5.0b,c

.5a 38.7 ± 1.5a,b 96.6 ± 4.4c

.6a 45.4 ± 7.6a,b 275.8 ± 20.3a,c
a 33.3 ± 1.6b 52.8 ± 3.3a,c

.1 36.1 ± 1.5a,b 24.5 ± 2.2a,b

.6 15.0 ± 1.4a,b 190.4 ± 15.8a,b,c

.1a 45.3 ± 1.3a,b 561.8 ± 22.6a,c

.6a 308.4 ± 15.0a,b 1006.4 ± 47.6a,b,c
a 12.3 ± 3.7b 20.8 ± 4.6b

2.3 ± 1.0a,b 10.4 ± 2.3a,b,c

43.4 ± 1.8 44.6 ± 1.7
.4 148.8 ± 4.2a,b 67.3 ± 14.5c

.8 138.0 ± 9.3a,b 191.3 ± 13.7c

.3a 58.9 ± 1.8b 398.6 ± 28.2a,c

.6a 45.5 ± 5.0a,b 121.1 ± 9.6a,c

.6a 22.0 ± 2.3b 123.2 ± 10.2a,c

up. Measurements are shown in micromolars.
% Prot, standard diet with 20% protein; 0% Prot, protein-free



Table 2.Pancreas Content of Different Amino Acids After 2-Hour of Refeeding Different Diets

Amino acid

Different diets

Fasted Refed (20% Prot) Refed (0% Prot) Refed (No-Leu)

Essential
Histidine 643.8 ± 79.0 657.8 ± 97.9 665.8 ± 98.2 809.9 ± 119.3
Lysine 640.4 ± 25.1 705.9 ± 39.1 586.5 ± 55.2 1020.6 ± 96.7a,b,c

Methionine 64.0 ± 11.4 284.7 ± 29.2a 96.3 ± 14.2b 530.8 ± 42.2a,b,c

Phenylalanine 183.6 ± 29.5 251.8 ± 18.7 203.8 ± 18.8 667.9 ± 76.7a,b,c

Threonine 399.8 ± 128.9 844.6 ± 66.9a 417.6 ± 71.4b 2033.1 ± 166.6a,b,c

Tryptophan 207.8 ± 35.1 189.4 ± 41.6 223.0 ± 43.9 255.7 ± 119.3

BCAA
Leucine 441.6 ± 68.2 338.5 ± 29.4 98.2 ± 15.2a,b 53.0 ± 11.1a,b

Isoleucine 225.3 ± 44.7 126.5 ± 12.5 34.7 ± 3.5 1147.9 ± 175.1a,b,c

Valine 541.0 ± 117.2 781.1 ± 101.3 125.0 ± 11.9a,b 3531.8 ± 216.6a,b,c

Nonessential
Alanine 1096.4 ± 178.7 4512.7 ± 253.0a 3967.8 ± 323.0a 8948.4 ± 579.7a,b,c

Asparagine 225.6 ± 19.1 218.1 ± 13.0 299.2 ± 30.1 360.3 ± 27.5a,b

Aspartic acid 417.7 ± 82.0 766.9 ± 73.5a 451.8 ± 51.0b 911.3 ± 99.3a,c

Cysteine 48.4 ± 0.2 48.7 ± 0.3 47.3 ± 0.0 48.5 ± 0.1
Glutamic acid 2446.3 ± 168 4050.5 ± 255.3a 2383.6 ± 228.5b 3971.6 ± 406.2a,c

Glycine 3820.6 ± 221.3 3331.7 ± 463.6 7462.1 ± 949.4a,b 7263.8 ± 803.6a,b

Proline 417.0 ± 57.6 2724.7 ± 308.4a 1023.0 ± 115.9b 3174.7 ± 377.3a,c

Serine 359.8 ± 66.6 412.4 ± 52.1 535.7 ± 53.6 744.7 ± 87.7a,b,c

Tyrosine 127.9 ± 41.0 464.8 ± 64.6a 242.3 ± 28.2b 1101.1 ± 101.5a,b,c

NOTE. Results are the average and SEM of 6 samples per group. Measurements are shown in micromoles per gram.
BCAA, branched-chain amino acid; No-Leu, leucine-free diet; 20% Prot, standard diet with 20% protein; 0% Prot, protein-free
diet.
aP < .05 vs the control fasted group.
bP < .05 vs the control refed group.
cP < .05 vs the 0% Prot group.
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different AAs to pancreatic acinar cells, and their role on
pancreatic digestive enzyme synthesis and pancreas
physiology.

The Effect of Dietary Protein on Plasma Glucose
and Insulin Levels

To assess whether metabolic changes were induced by
feeding the different diets, plasma glucose and insulin were
analyzed. Plasma glucose levels increased to normal post-
prandial levels (between 150 and 250 mg/dL in all groups)
(Figure 7A). Plasma insulin levels were increased signifi-
cantly after refeeding control or protein-free diets compared
with basal (Figure 7B), but in the No Leu group it was
reduced significantly compared with the control 20% Prot
group (from 163 to 30 mU/mL). These reduced insulin levels
could contribute to the reduction in protein synthesis in the
No Leu group, but it does not appear to act through
reduction of mTORC1 (Figure 3).

Discussion
Dietary protein and AAs, especially the EAAs,6 are

indispensable components of human and animal nutrition
and health, as part of a protein-containing diet, and as
supplements, because they are involved in many physio-
logical processes. AAs, taken as supplements, improve gen-
eral well-being, athletic performance, stimulate muscle
protein synthesis,64–66 and play an important role in
medical nutrition.1 In excess, however, they can lead to
metabolic problems involving the brain, liver, muscle, kid-
neys, and/or the endocrine and exocrine pancreas.67–69

Their continued deficiency in the diet causes severe
malnutrition, affecting growth in young individuals, as well
as many other effects in human and animal meta-
bolism.2,70,71 In the case of the exocrine pancreas, its high
protein turnover makes this organ very vulnerable to
protein-calorie malnutrition.37 The kwashiorkor syndrome
affects the pancreas by reducing its size and overall
pancreatic secretion.7,34,37,38 This reduction of pancreas
size, over a period of several days, has been linked to an
mTORC1-dependent mechanism in mice.38 mTORC1 also is
involved in the short-term stimulation of pancreatic protein
synthesis in response to eating a balanced meal,61 CCK
stimulation,72 and by acute administration of BCAAs, more
specifically, leucine, to mice and rats,44 dairy goats,73 and
calves.74

Protein-free diets have a very relevant clinical impact32

because AAs (especially leucine) also act as nutrient sig-
nals and physiologic regulators on several tissues.29,75 Their
mechanisms of action on protein synthesis in the pancreas
are not completely understood. We therefore studied the
effects of protein (AAs) and leucine in short-term pancreatic
physiology by feeding mice a protein- or leucine-deficient
diet, after an overnight fast, and studied the responses to
these dietary deficiencies at the cellular, molecular, and
physiological levels. This was performed by analyzing the



Figure 7. Effects of the different diets on (A) glucose and
(B) insulin levels in plasma. Glucose levels are expressed in
milligrams per deciliter, and insulin concentration in micro-
units per milliliter. *P < .05 vs control fasted group. #P < .05
vs control refed group.
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effects on mTORC1 and pancreatic digestive enzyme syn-
thesis after a meal because of its relevance for optimal
digestion of nutrients in the gastrointestinal tract that can
affect whole-body nutritional status and changes in overall
well-being.

In many cell types, including pancreatic acinar
cells,48,61,72 the stimulation of protein synthesis has been
associated with the stimulation of mTORC1.76 mTORC1 co-
ordinates several upstream signals including growth factors,
intracellular amino acid availability, and energy status to
regulate protein synthesis, autophagy, and cell growth,76

and is implicated in many human diseases including can-
cer, epilepsy, obesity, and diabetes.77 The ribosomal protein
S6K and the translational repressor 4E-BP1 are mTORC1
downstream effectors involved in the regulation of protein
synthesis.48,61,76 It has been shown that AAs (especially
leucine, arginine, and methionine) can regulate mTORC1
activity, and thus protein synthesis in several cell types.78–80

Somewhat surprisingly, but perhaps because of the short
time scale, in our study the experimental groups without
protein (0% Prot) and leucine (No Leu) inhibited protein
synthesis but did not cause a major inhibitory effect on
mTORC1 activity (Figure 3). Only the 0% Prot group
showed a partial reduction of Akt and ribosomal protein S6
phosphorylation, which partially could account for the in-
hibition of total protein synthesis seen in this group
(Figure 1), but did not affect the formation of the eIF4F
complex (Figure 3C). The mechanisms regulated down-
stream of S6K and the ribosomal protein S681 therefore
could be responsible in part for the inhibition of total
pancreatic protein synthesis (Figure 1) and polysomal for-
mation (Figure 2) seen in the 0% Prot group. In the absence
of leucine in the diet, mTORC1 activity was not affected, and
thus it cannot be responsible for the inhibition of total
protein synthesis and polysomal aggregation seen in the No
Leu group (Figures 1 and 2).

Because leucine has been described as an AA that is able
to affect several metabolic processes, and it is known that
AA depletion reduces translation by a mechanism involving
phosphorylation of eIF2a,82,83 we have compared the effects
that dietary protein deficiency can cause to the exocrine
pancreas protein synthetic machinery with the effects
caused by removing only leucine from the diet. In our study,
both groups caused a similar inhibition of total pancreatic
protein synthesis (Figure 1), compared with the control
group fed standard chow with 20% protein content.61 These
results were correlated strongly with a reduction in the
amount of ribosomes engaged on the mRNA translation
process into protein (polysomes) (Figure 2), similarly to
what occurs in hepatocytes84 and in other systems.85 So far,
these results indicate that protein (AAs) and leucine defi-
ciency in the diet inhibit overall pancreatic protein synthe-
sis, hence, pancreatic digestive enzyme synthesis, and that
this inhibition goes to the same extent in both groups,
despite the differences in the AA composition of the diets.
These results are in concordance with what has been
described in another study, in which feeding a protein-
deficient diet showed a reduction in the content of
pancreatic digestive enzymes in blood.7 The lack of protein
or certain AAs in the diet also can affect the synthesis of
specific proteins in other tissues, as in the case of albumin in
the liver,86 the myofibrillar protein in the muscle,87 or
casein in mammary epithelial cells of dairy cows.88 Leucine,
among other actions, can be a postprandial effector of the
digestive system. For instance, leucine stimulates insulin
secretion,89 and, at high concentrations, it has been linked to
a reduction of food intake, and impaired cognitive outcome,
among other general toxic effects.90–92 Clinically, persistent
low levels of leucine also can cause decreased appetite,
lethargy, poor growth, weight and hair loss, skin rashes, and
desquamation.93 Leucine-free diets can be prescribed to
patients with Maple syrup urine disease to counteract their
high levels of leucine in plasma.92 When there is a dietary
restriction of certain AAs, this AA imbalance situation (seen
in Figure 6 and Table 2) triggers a stress response that
activates the GCN2 kinase and phosphorylates eIF2a on Ser-
51,94 and, in the brain, leads to a reduction of food intake.95

eIF2a phosphorylation has been described as a brake to
protein synthesis.96 In our study, removing leucine from the
diet caused the activation of GCN2, seen by an increase on
its phosphorylation (Figure 4B), and increased eIF2a
phosphorylation (Figure 4A), that most likely would account
for the inhibition of total protein synthesis and the initiation
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of protein translation that we see in Figures 1 and 2.48,62,97

This phosphorylation reduces the levels of the active form of
eIF2 (eIF2-guanosine triphosphate) that binds the initiator
methionyl–transfer RNA (with the AUG codon)
(Met–transfer RNAi) to the 40S ribosomal subunit and forms
the ternary complex that starts translation, and inhibits the
activity of the guanine nucleotide exchange factor
eIF2B62,98,99; inhibition that we also see in our results
(Figure 5A). eIF2B activity also can be regulated by
GSK3.48,62,96,100 GSK3 phosphorylates the ε subunit of eIF2B
(eIF2Bε) on Ser-540, inhibiting it.101 When GSK3 gets
phosphorylated becomes inactive.96,98 This way, a stimula-
tory signal by insulin, for example, would phosphorylate
GSK3, rendering it inactive, meaning that eIF2Bε would not
get phosphorylated and be active.101 Based on these pre-
mises, our results indicate that the inhibition of eIF2B ac-
tivity that we see in the No Leu group (Figure 5A) also
could be explained by the reduction of GSK3 phosphoryla-
tion (Figure 5B), in addition to the phosphorylation of
eIF2a.

As mentioned earlier, leucine stimulates insulin secre-
tion, and because we have shown that insulin stimulates
pancreatic protein synthesis,102 it also can be argued that
the inhibition of pancreatic protein synthesis seen by
removing leucine from the diet also could be the result of a
reduction of postprandial insulin release (Figure 7B). Un-
published results from our laboratory have indicated that
very low insulin levels during experimental diabetes inhibit
pancreatic digestive enzyme synthesis and reduce Akt, S6,
and eIF2a phosphorylation after a 2-hour refeeding
compared with control refed mice with standard chow
(20% Prot). Pancreatic acinar cell insulin receptor condi-
tional knockout mice with normal plasma insulin levels but
no insulin signaling to pancreatic acinar cells show a
decrease on Akt and S6 phosphorylation, but an increase on
eIF2a phosphorylation after a 2-hour normal chow refeed-
ing (20% Prot).102 This discordance on the effects of no
insulin signal to acinar cells on eIF2a warrants continued
study. In summary, our own results on this topic indicate
that insulin is involved in the stimulation of protein syn-
thesis in the exocrine pancreas through the Akt/mTORC1
pathway, and the lack of insulin signaling during diabetes
can lead to pancreatic insufficiency. The results from the
current study indicate that insulin levels in the No Leu
refeeding group are higher than the ones during diabetes,
and they most likely contribute to stimulation (rather than
to inhibition) of the synthetic machinery of the exocrine
pancreas. In this case, a reduction on mTORC1 pathway
stimulation also would be expected,103 but this was not
observed (Figure 3). We therefore conclude that the inhi-
bition of pancreatic protein synthesis seen in the No Leu
group most likely is owing to the activation of GCN2 and
phosphorylation of eIF2a, induced by accumulation of most
of the amino acids in the pancreas, which creates an amino
acid imbalance94 (Figure 6, and Table 2), and by the inhi-
bition of GSK3 (Figure 5B) similar to other studies per-
formed in the liver.104,105

Removing all the AAs from the diet (0% Prot Group)
inhibited eIF2B activity in the pancreas (Figure 5A), but this
reduction has to be induced by a mechanism other than
eIF2a phosphorylation or GSK3 dephosphorylation. It could
be argued that glucose or insulin levels could account for
this inhibition, but these parameters do not change in the
0% Prot group (Figure 7), making this option less likely to
happen. In this case, the inhibition of protein synthesis also
could be explained by the lack of the building blocks for
making more protein in plasma, specifically methionine
(Tables 1 and 2), because it can be the main limiting one to
start all translation processes, but it also can act through a
mechanism independent of the Met–transfer RNA charging,
the activation of a transcriptionally regulated mechanism
via the activating transcription factor-4.106–108 It is worth
noting that when all the AAs from the diet were removed,
insulin levels were not affected (Figure 7). The amino acid
imbalance created by the No Leu diet seems to be the main
event that triggers the inhibition of digestive enzyme syn-
thesis after feeding the No Leu diet, and not the lower in-
sulin levels.

The analysis of the individual concentrations of AAs in
plasma and pancreas shows their metabolic profiles and
allows the assessment of their anabolic and catabolic states
for each group. In addition, it suggests that changes in di-
etary composition induce selective adaptive responses in
the transport of the different AAs to the pancreas, as has
been described previously.109–115 Interestingly, glycine
levels increase (approximately double) in the 0% Prot and
No Leu groups (Table 2).

In the pancreas, EAA and NEAA levels are not reduced in
the groups in which protein synthesis is inhibited, compared
with the 20% Prot group (Figure 6C and D). In fact, in the No
Leu group, it shows the highest amount of both types of AAs,
compared with all the other groups (Figure 6C and D).

Glycine transport to the pancreas has been shown to be
increased after refeeding because its levels seem to be
limiting for AA incorporation into protein.116 In our study,
the high Gly levels in the pancreas of these 2 groups (in
which pancreatic protein synthesis is inhibited) are difficult
to explain, but there could be associated mechanisms that
activate its transport to the pancreas through its transporter
(SLC6A5/GLYT1).117 Gly accumulation in the pancreas
potentially could be stimulated by signals triggered by
feeding, mobilizing it from other internal sources, and in-
dependent of the low amino acid content in the diet and
plasma (Figure 6 and Tables 1 and 2), or simply could be the
result of an accumulation of the AA because it is not being
used for protein synthesis. Gly is a nonessential amino acid
involved in the stimulation of insulin secretion,23,117 and its
high levels (especially in the No Leu group) could indicate a
need for a feedback mechanism that would increase post-
prandial insulin levels because of the lack of leucine in the
diet (Figure 7B). However, again, it is very interesting to
note that in the 0% Prot group, which is also without
leucine, insulin levels are similar to the 20% Prot group
ones.

Together, the results from the 0% Prot group indicate
that the inhibition of protein synthesis is not likely owing to
a reduction in the transport of EAAs and NEAAs to the
pancreas (Figure 6C and D), despite the reduction in their
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plasma levels (Figure 6A and B). The inhibition of pancreatic
protein synthesis also could be owing to a lack (or reduc-
tion) of CCK stimulation because it has been shown that
protein and AAs stimulate CCK release from the inclusion-
cells in the intestine,118 or to a reduction on cholinergic
stimulation, which potentially would affect the mTORC1
pathway and the activation of eIF2B.

In the No Leu group, the levels of EAAs and NEAAs in
plasma and pancreas are not reduced, they are actually
higher in the pancreas and this cannot account for a
reduction in their transport or availability for de novo
synthesis. The AA imbalance, created by the lack of leucine,
could trigger the stress response, which inhibits total pro-
tein synthesis through the activation of GCN2 and activating
transcription factor-4, and GCN2, in turn, also could be
responsible for the transcription of genes involved in amino
acid transport and biosynthesis of NEAAs,119 partially
explaining the increase of their overall amount in the
pancreas. The source of these AAs most likely is coming
from a stimulation of catabolic mechanisms known to be
induced by low levels of leucine.93,120,121 Of relevance, in the
No Leu group, catabolism seems to be activated because of
the high levels of AA found in the pancreas.

In summary, our results show that a meal feeding
without the ingestion of protein (AAs), or just lacking the AA
leucine in the diet, acutely inhibits the pancreatic synthetic
machinery through a partial inhibition of the mTORC1
pathway and the activation of the AA imbalance stress
response through GCN2 and eIF2a, despite the availability
of AAs in the pancreas owing to AA transport to acinar cells
from internal sources, or intracellular accumulation owing
to the inhibition of protein synthesis. This inhibition of
protein synthesis would reduce pancreatic digestive enzyme
synthesis, leading to pancreatic insufficiency, malnutrition,
and other gastrointestinal effects that could impact overall
body well-being and be very relevant in the clinical setting.
Additional studies indeed are needed to determine the ef-
fects of the individual AAs on the regulation of pancreatic
digestive enzyme synthesis and pancreatic insufficiency in
combination with other physiological stimulants (CCK, in-
sulin, muscarinic stimulation).
Materials and Methods
Materials

Phenylalanine (for the flooding-dose technique), Tri-
tonX-100, and SYBR Green were from Sigma Chemical Co
(St. Louis, MO). Goat anti-rabbit and anti-mouse IgG conju-
gated to horseradish peroxidase and Enhanced Chem-
iluminiscence reagent were from Amersham Pharmacia
Biotech (Piscataway, NJ); 10%, 15%, and 4%–20% Tris-HCl
precast gels and broad range prestained sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE)
standard markers were from Bio-Rad (Hercules, CA); and
nitrocellulose membranes were from Schleicher and Schuell
(Keene, NH). Polyclonal rabbit antibodies to Akt, phospho-
Akt (Ser-473), ribosomal protein S6 and phosphorylated
S6 (Ser-240/244), GSK3 and phosphorylated GSK3 (Ser 21/
9), eIF2 and phosphorylated eIF2 (Ser 51), and GCN2 and
phosphorylated GCN2 (Thr 898) were from Cell Signaling
(Beverly, MA). Mouse anti-eIF4E antibody was provided by
Dr S. R. Kimball (Pennsylvania State University, Hershey,
PA), and rabbit anti-eIF4G antibody was a gift from Dr R. E.
Rhoads (Louisiana State University, Shreveport, LA). [3H]
guanosine 5’-diphosphate (11.3 Ci/mmol) was from NEN
Life Science Products, Inc (Boston, MA); the scintillation
liquid Filtron-X was from National Diagnostics (Atlanta, GA);
25-mm nitrocellulose filter discs (HAWP) were from Milli-
pore (Milford, MA). Protein A–linked Sepharose beads were
obtained from Pierce Chemical (Rockford, IL). All experi-
mental diets were from Dyets, Inc (Bethlehem, PA).

Animals and Experimental Design
Male ICR mice (Harlan Sprague-Dawley, Indianapolis,

IN), 5–6 weeks old, were used, and the experiments were
approved by the University of Michigan Committee on Use
and Care of Animals. After arriving in the university facil-
ities, mice were housed in specific pathogen-free areas, fed
Purina 5001 chow (LabDiet, St. Louis, MO), and placed in a
12:12 hour light-dark cycle changing at 6:00 AM and 6:00
PM with free access to water. The day before the experi-
ment, mice were separated (3 per cage) in different groups,
as follows: (1) fed (fed ad libitum), (2) fasted (fasted for 16
h, starting at 5:00 PM), (3) refed control (20% Prot; AIN-
93G), (4) refed 0% Prot (AIN-93G [Dyets, Inc, Bethlehem,
PA] without protein; calorically replaced with carbohy-
drates), (5) refed AA (L-AA defined AIN-93G diet; the AA-
based diet, control of the Leu-deficient diet), and (6) refed
No Leu (L-AA defined AIN-93G without leucine). All the
refed groups were fasted for 16 hours and refed the specific
diets for 2 hours. The diets were isocaloric and contained
10% fat.

Evaluation of the Phosphorylation State of Akt,
Ribosomal Protein S6, GSK3, eIF2, and GCN2

The phosphorylation state of Akt, ribosomal protein S6,
GSK3, eIF2, and GCN2 was determined by the relative
amount of the protein in their phosphorylated form, quan-
titated by protein immunoblot analysis using phospho-
specific affinity-purified antibodies. Portions of the
pancreas were homogenized in lysis buffer122 and aliquots
of pancreatic homogenates or acinar lysates (from in vitro
studies) were resolved in a 10% SDS-PAGE gel, transferred
to nitrocellulose, followed by Western blot analysis using
anti-phospho Akt (Ser 473), anti-phospho S6 (Ser 240/244),
anti-phospho GSK3 (Ser 21/9), anti-phospho eIF2a (Ser 51),
anti-phospho GCN2 (Thr 898) antibodies, and detected by
Enhanced Chemiluminiscence. To ensure that total protein
was not changed by the experimental treatments the same
samples were run in parallel gels and Western blot with
polyclonal antibodies to total Akt, S6, GSK3, eIF2a, and
GCN2 at 1:500.

Measurement of Pancreatic Protein Synthesis
Pancreatic protein synthesis was determined using the

flooding-dose technique as we have described previously for
mice.61,63 Briefly, 0.4 mCi/g of L-[3H]Phe together with
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unlabeled L-Phe (1.5 mmol/g) were injected in the perito-
neal cavity. Ten minutes after L-[3H]Phe administration,
mice were euthanized and the pancreas rapidly was
removed and frozen in liquid nitrogen. Frozen pancreas
subsequently was homogenized in 10 vol of 0.6 N perchloric
acid (PCA) and processed as described previously.61 L-Phe
was measured by high-performance liquid chromatography
and protein synthesis was expressed as nanomoles of L-Phe
per milligram of protein.

Association of Eukaryotic Initiation Factors eIF4G
and eIF4E and Formation of the eIF4F Complex

To analyze the formation of the eIF4F complex, we
determined the association of eIF4E with eIF4G by quanti-
tating the amount of eIF4G bound to immunoprecipitated
eIF4E using specific anti-eIF4E antibody, as previously
described.44,63 Briefly, pancreatic samples were homoge-
nized in 2 mL of buffer, centrifuged at 10,000 � g for 10
minutes at 4�C, and the supernatant, containing microsomes
and soluble protein, was used to precipitate eIF4E from 0.5
mg of protein. The immunoprecipitates were resolved on
4%–20% gradient gel SDS-PAGE followed by Western blot
analysis using anti-eIF4G antibody (1:2000).44,63

Polysomal Fractionation
The polysomal fractionation technique85,123 used su-

crose gradient separation of pancreas homogenates in a
BIOCOMP gradient fractionator (Fredericton, Canada).
Briefly, whole pancreases were homogenized in 10 volumes
of buffer containing 40 mmol/L HEPES (pH 7.5), 100 mmol/
L KCl, and 50 mmol/L MgCl. The homogenate then was
centrifuged at 8800� g for 15 minutes at 4�C. Nine volumes
of pancreas homogenate were mixed with 1 volume of
detergent mix (10% Triton X-100, 10% sodium deoxy-
cholate) and loaded onto linear 10%–50% sucrose density
gradients. The gradients were centrifuged at 39,000 rpm in
a Beckman (Chaska, MN) SW 41 rotor for 120 minutes at
4�C and fractions were collected in the BIOCOMP gradient
fractionator with UV absorption at 254 nm continuously
recorded. On the basis of the absorption obtained the area
corresponding to the 40, 60, and 80 S ribosomal units were
designated subpolysomal. These fractions usually contain
protein, RNA, free ribosomal subunits, and monosomes. The
last fraction corresponding to disomes, trisomes, and poly-
somes of increasing number bound to (and therefore,
actively translating) mRNA was designated polysomal.

Analysis of eIF2B Activity
Determination of eIF2B activity in pancreatic tissue was

performed as described previously by measuring the rate of
exchange of [3H]Guanosine Diphosphate (GDP) present in
an exogenous eIF2-[3H]GDP complex for free non-
radiolabeled GDP in pancreatic tissue samples.62,124 The
guanine nucleotide exchange activity was measured as a
decrease in eIF2-[3H]GDP complex bound to nitrocellulose
filters and expressed as nanomoles of GDP exchanged per
minute per milligram of acinar protein or as a percentage of
the control group.62,63
Analysis of Plasma and Pancreas Individual AA
Content by Gas Chromatography

Plasma samples were precipitated 1:1 with 1.2 N PCA, and
frozen pancreas samples were homogenized with 10 volumes
of 0.6 N PCA. Both precipitates were centrifuged at 3000 rpm
for 10 minutes and the supernatants were used for AA anal-
ysis using an EZ:faast kit for free AA analysis via gas
chromatography–mass spectrometry from Phenomenex
(Torrance, CA).125 Briefly, before analysis, an internal stan-
dard (norvaline) was added to 100 mL of plasma or tissue
extract to be analyzed. AAs in the sample were concentrated
by cation exchange solid-phase extraction at an acidic pH,
were washed with a 2-propanol/water solution, and then
were eluted using an alkaline solution of sodium hydroxide in
water mixed with 2-propanol. The eluate was derivatized by
the addition of propyl chloroformate, followed by a 2-minute
reaction period at room temperature. The AA derivatives
were extracted into an organic layer containing chloroform
and isooctane. This layer was collected and the solvent
evaporated, and the residue was reconstituted in solvent for
gas chromatography–mass spectrometry analysis. Separation
and detection was performed using a Zebron ZB-AAA column
from Phenomenex on a 6890 Gas Chromatography with a
5973 Mass Selective Detector. Individual AAs were quanti-
tated based on calibration curves generated by injection of AA
standard mixtures derivatized in parallel with the samples.
This analysis was performed at the Metabolomics Core of the
Biomedical Research Core Facilities (Office of Research, Uni-
versity of Michigan Medical School).
Measurement of Plasma Insulin
The plasma insulin concentration was determined by a

standard procedure at the Michigan Diabetes Research and
Training Center with double-antibody radioimmunoassay
using a 125I-Human insulin tracer and a guinea pig anti-rat
insulin first antibody from Linco Research (St. Charles,
MO), a rat insulin standard from Novo Research Institute
(Bagsvaerd, Denmark), and a sheep anti-guinea pig gamma
globulin secondary antibody, with 3% of Polyethylene Gly-
col 6000 added, developed in the same center. The limit of
sensitivity for the assay is 1 mU/mL.
Statistical Analysis
Data from mouse experiments are represented as means

and SEM and were obtained from 3 to 4 different experi-
ments, with 4–6 animals per group studied in each, unless
otherwise indicated in the figure legend. Statistical analysis
was performed by 1-way analysis of variance and differences
with a P value less than .05 were considered significant.

All authors had access to the study data and reviewed
and approved the final manuscript.
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