
INTRODUCTION

Genetically modified mouse models allow us to better under-
stand brain functions, causes of brain diseases, and develop thera-
peutic treatments. Anatomical, biochemical, physiological, and 
behavioral analyses of genetically modified mice provide insights 
into the influences of a target gene on brain function and behavior. 
Because the final output of the nervous system is behavior, behav-
ioral measures are essential for analyzing these mice. Therefore, 
the success of genetically modified mouse models depends on a 

robust, well-replicated phenotype [1-3]. 
The behavior of rats is well characterized and there is a long and 

illustrious literature regarding the measuring of cognitive func-
tions, including learning and memory, with well-validated and 
controlled experimental design and methods [1]. However, envi-
ronmental factors and the animal handling of the experimenter 
may confound behavioral data [4, 5]. Therefore, to ensure accurate 
interpretation of cognitive phenotypes, experimental designs, in-
cluding appropriate control groups and experimental procedures, 
have been elaborated [3, 6-8] and should be implemented in future 
studies. In addition, control measures of general health, sensory 
abilities, and motor function are examined to avoid over-interpre-
tation and misinterpretation of experimental results [1, 2]. 

What is more important than these points mentioned above is 
that a researcher understands mouse behavior, along with a deep 
understanding of the research field. In particular, these comments 
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are further emphasized when studying cognitive function and dis-
eases with cognitive impairments such as Alzheimer’s disease (AD). 
Therefore, we first describe differences between mouse strains 
with respect to cognitive function and then introduce a number 
of studies that have revealed the neurobiological basis of cogni-
tive functions using genetically modified mice. Finally, cognitive 
behavioral assays for AD transgenic mice are reviewed and com-
ments regarding future directions are presented. 

COGNITIVE DIFFERENCES IN INBRED STRAINS OF MICE 

Inbred strains of mice are useful in the study of the association 
between cognitive traits and neurobiological functions [9-13]. 
Because each mouse in an inbred strain can be virtually identi-
cal in genotype, the cognitive characteristics of inbred mice can 
be related to neurobiological characteristics of the same strain of 
mice. Hence, numerous studies that show behavioral differences 
in inbred strains of mice can provide criteria in selecting a back-
ground strain for constructing genetically modified mice and in 
evaluating these behavioral results. For example, these studies can 
be informative in analyses of a hippocampal phenotype that dif-
fers between the comparison strains. Specifically, because DBA/2 
mice show a specific behavioral profile, together with a deficiency 
in synaptic plasticity and a signaling pathway in the hippocampus 
[14-21], this strain may be a suitable model for the study of mutant 
mice with the goal of enhancing hippocampal-dependent learning 
and memory [22, 23]. On the other hand, these studies indicate 
that, compared with other inbred strains including DBA/2 mice, 
C57BL/6 mice may be the strain with a superior background for 
the genetic analysis of the molecular/cellular mechanisms un-
derlying hippocampus-dependent learning and memory [8, 11, 
12, 19, 20, 24, 25]. Therefore, in this section of the present review, 
behavioral differences between C57BL/6 and DBA/2 mice, which 
have been used for developing transgenic or knock-out mouse 
models, are presented focusing on behavioral tasks that measure 
hippocampus-dependent learning and memory. 

Spatial version of the morris water maze

The C57BL/6 and DBA/2 strains have been shown to have rela-
tively similar performances in some behavioral assessments using 
the water maze [26-29]. However, other studies have reported that 
C57BL/6 and DBA/2 mice differed in their performance on tasks 
that required hippocampal integrity. C57BL/6 mice performed 
significantly better than DBA/2 mice on a stationary hidden plat-
form version of the water maze task (place training) [25] and con-
text fear conditioning [19].

Despite these discrepancies in behavioral reports, two strain 

differences in the neurobiological mechanisms support the be-
havioral superiority of C57BL/6 mice in hippocampus-dependent 
tasks over DBA/2 mice. For example, C57BL/6 mice show greater 
long-term potentiation and higher expression levels of protein 
kinase C in the hippocampus than DBA/2 mice [16, 18, 30]. Inter-
estingly, even though both C57BL/6 and DBA/2 mice performed 
with similar accuracy in either the place or visible platform train-
ing (cued training), hippocampal phosphorylated cAMP response 
element-binding protein (pCREB) levels were higher in C57BL/6 
than in DBA/2 mice after place training, while no differences in 
hippocampal pCREB levels were reported between the two inbred 
mice strains after cued training [8, 31]. These findings indicate that 
the hippocampus is better engaged in place training in C57BL/6 
mice than in DBA/2 mice. 

Additional evidence that C57BL/6 mice are better place learners 
or use better place strategy compared to DBA/2 mice comes from 
studies using a different maze task or a modified water maze task. 
First, C57BL/6 mice have been shown to choose a better place 
strategy in a plus maze task compared to DBA/2 mice [24]. Fur-
thermore, strategy preferences of C57BL/6 and DBA/2 mice were 
assessed in a redundant place/cued version of the water maze task, 
which was developed in a study by McDonald and White [32]. In 
the modified task, mice received training using a stationary vis-
ible platform for 2 days and then using a stationary submerged 
platform for 2 days. The 4-day sequence was repeated twice. On 
the final (competition) day, a visible platform was positioned in 
the quadrant opposite to where it had been located throughout 
training (see Fig. 1A). Mice were released at starting points equi-
distant from the training platform and the newly located, visible 
platform to assess place/cued strategies. As shown in Fig. 1B, mice 
that visited the training platform location prior to escaping to the 
visible platform were classified as “place responders,” whereas those 
swimming directly to the visible (cued) platform were classified as 
“cued responders.” The number of place responders was higher in 
C57BL/6 than in DBA/2 mice [8].

It is notable that in the strategy preference task, as the cued and 
subsequent place training progressed, C57BL/6 mice performed 
better than DBA/2 mice on the third place learning task [8]. 
Therefore, a subsequent experiment was conducted to examine 
how prior learning affected subsequent learning. Training in the 
water maze consisted either of cued training followed by place 
training or the reverse order (i.e., place training followed by cued 
training) (Fig. 2). Both strains of mice showed equivalent perfor-
mance in the initial cued or place training (Fig. 2B and 2C). How-
ever, C57BL/6 mice performed significantly better than DBA/2 
mice, both in place training followed by cued training and in cued 
training followed by place training (Fig. 2B) [6, 33]. These findings 
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indicate not only differences between the two inbred strains in the 
flexibility of C57BL/6 and DBA/2 mice to switch their learning 
strategies, but also suggest the importance of designs and training 
procedures to demonstrate experimental hypotheses.

Fear conditioning

Pavlovian fear conditioning is a form of associative learning in 
which an initially neutral stimulus, such as a tone (conditioned 
stimulus; CS), is paired with the presentation of a stimulus with 
aversive properties, such as a foot-shock (unconditioned stimulus; 
US). Freezing responses, an expression of associative fear learning, 
are elicited by CS presentation or by environment/context cues 
where the pairing occurred. Several types of fear conditioning have 
been used in animal studies (Fig. 3). Delay conditioning, in which 
discrete CS and US co-terminate, is dependent upon the amygdala 
[34, 35], while contextual conditioning, in which the environment 
serves as the CS, is dependent upon the hippocampus [36, 37]. An-
other hippocampus-dependent type of fear conditioning is trace 
conditioning, in which the CS and US are separated by a stimulus-
free trace interval [38], and which has been used in numerous 
studies with genetically modified and inbred mice, along with 
context conditioning [14, 15, 19, 29, 30, 39-45].

While there are many training procedures in the literature that 
have examined trace fear, a training procedure to minimize non-
associative effects was developed and performed by Smith et al. 
(2007) to demonstrate strain differences in performance in trace 

fear conditioning in mice. Subsequent studies using the same 
training procedure of trace fear conditioning compared differ-
ences in freezing responses between C57BL/6 and DBA/2 mice. 
The C57BL/6 mice displayed higher freezing responses to the 
tone-CS during testing than DBA/2 mice. Hippocampal levels of 
pCREB measured after conditioning were higher in C57BL/6 than 
in DBA/2 mice [17]. These findings provide additional evidence 
for the superiority of C57BL/6 mice over DBA/2 mice in hippo-
campus-dependent tasks. 

Novel object recognition task

The novel object recognition task has emerged as one of most 

Fig. 1. Procedure for a redundant place/cued version of the water maze 
task. The platform is visible on days 1, 2, 5, 6, 9, and 10 and hidden on 
days 3, 4, 7, 8, 11, and 12 (A). On the competition test (day 13), swim paths 
from a representative mouse that swam directly to the visible platform in 
its new location (left, i.e., cued responder) and a representative mouse that 
crossed the annulus where the escape platform had been during the previ-
ous 12 d of training (right, i.e., place responder) (B). 

Fig. 2. Cued training (left) and place training (right) in the learning 
strategy-switching task (A). In a recent experiment [6], both C57BL/6 and 
DBA/2 mice received cued training for 4 days and then place training for 
4 days. In the switched place training, C57BL/6 mice performed better 
than DBA/2 mice (B). A different cohort of C57BL/6 and DBA/2 mice re-
ceived place training first, followed by cued training. In the switched cued 
training from place training, C57BL/6 mice also performed better than 
DBA/2 mice (C).
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used tasks for examining cognitive status in genetically modified 
mice, including AD mice [45, 46]. The task was used for the first 
time to measure recognition memory in the rat, based on the rat’s 
behavior to explore a novel object more than a familiar one [47]. 
Although there is considerable variation in novel object recogni-
tion task procedures, this task is typically conducted in a familiar 
square or rectangular high-walled arena lacking evident spatial 
cues (Fig. 4). After habituation to the arena, the rats are exposed to 
two identical objects. After a delay, rats are exposed to a familiar 
and a new object. Rats typically spend more time exploring the 
new object than the familiar one.

Rats with hippocampal lesions exhibited impairments in the 
novel object recognition task [48, 49]. The status of recognition 

memory with different delays has been examined in several inbred 
mice. Inbred strain differences have been observed in some stud-
ies but not others [27, 50]. It was reported that DBA/2 mice per-
formed worse than C57BL/6 mice in this task [51]. However, it is 
difficult to compare between studies because there are numerous 
potential variations of this task, such as the delay interval, size of 
arena, and scoring methods used.

Assessment of memory using retention of exposure to novel 

olfactory/gustatory information

Rodents, including mice, tend to avoid the ingestion of novel 
foods. This initial neophobia is decreased with repeated exposure 
to the novel food. Our laboratory examined differences in reten-

Fig. 3. Schematic diagram of 
delay (A), contextual (B), and 
trace (C) fear conditioning. 
In delay conditioning (A), the 
conditioned stimulus (CS), e.g., 
a tone precedes and overlaps 
with the unconditioned stimulus 
(US), e.g., foot shock. In contex-
tual conditioning (B), the US is 
administered in a conditioning 
context. In trace fear condition-
ing (C), the CS and US are sepa-
rated by a stimulus-free “trace 
interval” (dashed line).
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tion of exposure to novel olfactory/gustatory information in two 
inbred mouse strains. Consumption levels of C57BL/6 mice were 
significantly increased compared to those of DBA/2 mice (Fig. 5). 
It could be interpreted that C57BL/6 mice remembered and rec-
ognized the novel food that they were previously exposed to better 
than DBA/2 mice.

PAVLOVIAN APPETITIVE CONDITIONING IN GENETICALLY 
MODIFIED MICE

Pavlovian conditioning is one of the most systematically studied 
subjects by psychologists [52]. In order to reveal the cognitive phe-
notype of genetically modified mice, Pavlovian aversive condition-
ing, an association of CS with aversive US, has been extensively 
used, while Pavlovian appetitive conditioning with an appetitive 
US, such as food or water, is not prevalent. The principle of asso-
ciative learning and its neural mechanisms have been studied and 
revealed mostly by Pavlovian appetitive conditioning using rats as 
subjects. A number of studies that have identified a specific cogni-
tive function with Pavlovian appetitive conditioning have been 
introduced. 

The traditional view of conditioning is that it is a passive and 
automatic process, but it is now clear that conditioning is affected 
by predictive and informational relationships between CS and US 
[53]. The establishment of a predictive relationship between a CS 
and a motivationally significant US through Pavlovian condition-
ing can endow the CS with motivational and emotional power. 
For example, a neutral CS (e.g., light or tone) paired with food de-
livery acquires incentive motivation. Therefore, this CS reinforces 
later the Pavlovian conditioning or instrumental conditioning 
and modulates the performance of other learned or unlearned 
responses (e.g., lever pressing for food; eating food) [54, 55]. Al-
though the neural mechanisms and circuitry for cognitive func-
tion, including attention and reward expectancy, have been studied 
in rats and monkeys, mouse models are valuable for understand-

ing the cellular and molecular mechanism of these cognitive func-
tions. A mouse-based paradigm to examine Pavlovian influences 
on instrumental conditioning has been developed (Fig. 6) [56].

Genetically modified mice targeting molecular and cellular 
mechanisms underlying synaptic plasticity and learning and 
memory development have been used to reveal the involvement 
of genes in appetitive incentive learning. For example, mice with 
knock-in mutations in the phosphorylation sites of alpha-amino-
3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor 
subunit GluR1 exhibited impairments of synaptic plasticity and 
memory retention [57]. These phosphomutants also exhibited 
impairment in appetitive incentive learning [56, 58]. Deletion of 
pentraxin, which is regulated by neuronal activity and co-clustered 

Fig. 4. Schematic diagram of the 
novel object recognition task. A 
mouse is habituated to the arena 
(left) and familiarized with two 
identical objects. After a specific 
interval, a novel object is pre-
sented to a mouse. 

Fig. 5. (A) Behavioral procedure for neophobia. The initial lemon-
scented diet was given to mice after habituation to a plain liquid diet. The 
second lemon-scented diet was given 3 days later. (B) Suppression ratios 
of mice on exposure to the baseline liquid diet, when a non-nutritive fla-
vor was added. Suppression ratio = Lemon-scented diet/(lemon-scented 
diet + baseline diet). Male C57BL/6 (n=10) and DBA/2 (n=10) mice 
exhibited suppressed consumption at the initial exposure and retained 
that experience later, as indicated by the absence of suppression relative 
to baseline. There was a significant difference in the consumption ratio 
between C57BL/6 and DBA/2 mice (F[1,18]=4.40, p<0.05). These data are 
from unpublished work in our laboratory.
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with AMPA receptors, affected the processing of sensory-specific 
incentive value [59]. It has been reported that the BDNF receptor, 
TrkB, known to play a key role in neural development and plastic-
ity, is critical for the acquisition of appetitive incentive learning [60]. 
Motivational function, as measured using appetitive incentive 
learning, was impoverished in transgenic mice expressing a puta-
tive dominant-negative disrupted in schizophrenia 1 [61].

COGNITIVE TESTS IN AD MICE

AD is a neurodegenerative disorder characterized by progres-

sive decline of cognitive function [62]. Mouse AD models are es-
sential for understanding the basic underlying biology of AD and 
developing therapeutic drugs. Three mouse models of AD and 
three cognitive assays that are frequently used are summarized in 
Table 1 (also reviewed in [63, 64]). Some AD studies using animals 
have used only female mice. This is due to reports showing that ac-
cumulated levels of amyloid beta and plaque in female mice were 
higher than those in male mice in some AD mouse models [65-68]. 
However, sex differences in AD pathology in AD mouse models is 
still controversial (reviewed in [69]). Furthermore, because the fre-
quency and length of the estrous cycle changes with age [70], and 

Fig. 6. Schematic diagram of a 
Pavlovian-instrumental transfer. 
A mouse receives Pavlovian pair-
ings of a conditioned stimulus, 
such as a light with a reward (A), 
and then instrumental condi-
tioning with sucrose pellets (B). 
The ability of the CS to serve as 
a conditioned reinforcer is as-
sessed (C).
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Table 1. Transgenic mouse models of Alzheimer’s diseases and typical cognitive assays

Behavioral 
Task

Test Age Description
Refer-
ences

Tg2576
    Morris water 

maze
Hidden platform and visible plat-
form test

2~3, 6, 9~10 months Tg2576 mice aged 9~10 months showed spatial 
memory impairment

[76]

Hidden platform and visible plat-
form test

4~5, 6~11, 12~18, 
20~25 months

Tg2576 mice aged 12~18 and 20~25 months showed 
spatial memory impairment

[77]

Hidden platform test 6 and 12 months 
(female)

Tg2576 mice aged 6 and 12 months showed spatial 
memory impairment

[78]

Hidden platform test 16 and 17 months 
(female)

Tg2576 mice showed spatial memory impairment [79,  80] 

    Fear condi-
tioning

Trace fear conditioning and delay 
fear conditioning 

5~6 months Tg2576 mice exhibited deficit in only trace fear condi-
tioning

[81]

Contextual fear conditioning and 
cued fear conditioning

5 and 9 months Tg2576 mice showed memory impairment in contextu-
al fear conditioning, but not in cued fear conditioning, 
at both aged 5 and 9 months

[82]

Contextual fear conditioning 8 months (female) Tg2576 mice showed memory impairment in contex-
tual fear conditioning

[83]

Contextual fear conditioning and 
cued fear conditioning

17 months (female) Tg2576 mice (B6SJL background) showed memory 
impairment in contextual fear conditioning, but not in 
cued fear conditioning

[80]

    Novel object 
recognition

Delay 24 hrs 3, 6, 12 months 
(female)

Tg2576 mice aged 6 and 12 months showed deficit 
recognition memory

[78]

Delay 2 min, 4 hrs and 24 hrs 5 months Tg2576 mice exhibit a deficit in test with 4hrs and 24 
hrs delay

[84]

Delay 1 hr 8 months (female) Tg2576 mice showed recognition memory impairment [83]
Delay 1 hr and 24 hrs 16 months (female) Tg2576 mice showed recognition memory impairment 

in both 1hr and 24 hrs delay in test
[79]

APP/PS1 (ΔE9)
    Morris water 

maze
Hidden platform test 7 months APP/PS1 mice showed a learning deficit [85, 86]

Hidden platform test 9 months APP/PS1 mice showed spatial memory impairment in 
retention probe test

[87]

Hidden platform and
Visible platform test

10~12 months APP/PS1 mice showed spatial memory impairment. No 
differences during the visible platform test

[88-90]

    Fear condi-
tioning

Contextual fear conditioning 6, 9, 11 months APP/PS1 mice showed cognitive impairment [87]

Contextual fear conditioning and 
cued fear conditioning

10~12 months APP/PS1 mice showed memory impairment in both 
cued and contextual fear conditioning

[88]

Cued fear conditioning 12~14 months APP/PS1 mice showed memory impairment in cued 
fear conditioning

[91]

    Novel object 
recognition

Delay 1 hr 7 months APP/PS1 mice showed impairment of cognitive  
function

[92]

Delay 4 hrs 10 months (female) APP/PS1 mice showed impairment of cognitive  
function

[93]

Delay 24 hrs 6 and 12 months 
(male)

Behavioral deficit was only observed in APP/PS1 mice 
at 12 months old

[94]

5XFAD
    Morris water 

maze
Hidden platform test 3, 6, 9 months 

(Male)
5XFAD mice aged 9 months showed spatial reference 
memory impairment

[95]

Hidden platform test 5~6 months 5XFAD mice showed spatial reference memory impair-
ment

[81]

Hidden platform test 7~9 months 5XFAD mice showed spatial reference memory impair-
ment

[96]

l 
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neuroplasticity is affected by levels of estrogen [71], a measure-
ment of cognitive status of AD mice should be carefully conducted 
[72, 73]. 

The present review introduces interesting findings regarding 
the decline of cognitive flexibility in aged mice or AD mice using 
a behavioral task based on the modified behavioral protocol of a 
redundant place/cue version of the water maze task described ear-
lier (Fig. 1). Twenty-three-month-old aged mice and 12-month-
old adult mice were serially trained in cued and place versions of 
the water maze task and then underwent a strategy preference test 
(Fig. 2). Aged and adult mice showed no differences in cued and 
place training, but, on the preference test, the aged mice chose a 
cued strategy more frequently than the adult mice [74]. We also 
examined the learning strategy preferences of 5XFAD mice using 
this same training protocol. No differences between 5XFAD and 
non-transgenic control mice were observed in cued and place 
training. However, in the strategy preference test, the 5XFAD mice 
preferred more often a cued strategy than control mice [75].

CONCLUSIONS

Numerous researchers have raised the question of how many be-
havioral tests are necessary and what tests are key in revealing the 
phenotype of their genetically modified mice. There is no single 
answer to this question. When using an experimental design with 
appropriate control groups and comparison conditions, the choice 
of a cognitive test should be optimized to address the investigator’s 
hypotheses based on anatomical and neurophysiological results. 

 Behavioral and neurobiological findings regarding cognitive 
function have largely come from studies of mice, rats, and pri-
mates. However, researchers have tried to apply parameters and 

behavioral protocols used in studies with rats to mouse studies, 
without considering behavioral and physiological differences be-
tween rats and mice. As a result, although it takes a lot of time and 
effort, a study is sometimes not successful. Therefore, parameters 
and behavioral protocols appropriate for a mouse study might be 
useful for studying cognitive functions in AD transgenic mice, or 
in mice with conditional gene targeting using Cre-LoxP recombi-
nation. 
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