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Abstract

A one-on-one mapping of protein functionality across different species is a critical component of comparative analysis. This
paper presents a heuristic algorithm for discovering the Most Likely Functional Counterparts (MoLFunCs) of a protein, based
on simple concepts from network theory. A key feature of our algorithm is utilization of the user’s knowledge to assign high
confidence to selected functional identification. We show use of the algorithm to retrieve functional equivalents for 7
membrane proteins, from an exploration of almost 40 genomes form multiple online resources. We verify the functional
equivalency of our dataset through a series of tests that include sequence, structure and function comparisons. Comparison
is made to the OMA methodology, which also identifies one-on-one mapping between proteins from different species.
Based on that comparison, we believe that incorporation of user’s knowledge as a key aspect of the technique adds value to
purely statistical formal methods.

Citation: Natarajan S, Jakobsson E (2009) Functional Equivalency Inferred from ‘‘Authoritative Sources’’ in Networks of Homologous Proteins. PLoS ONE 4(6):
e5898. doi:10.1371/journal.pone.0005898

Editor: Olaf Sporns, Indiana University, United States of America

Received July 9, 2008; Accepted April 29, 2009; Published June 12, 2009

Copyright: � 2009 Natarajan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding by the National Science Foundation and the University of Illinois. The sponsors had no role in the design and conduct of the study, in the
collection, analysis, and interpretation of the data, and in the preparation, review, or approval of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jake@ncsa.uiuc.edu

¤ Current address: Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America

Introduction

The current spate of genome sequencing projects [1] has

resulted in large amounts of sequence information from all

kingdoms of life. Experimental techniques to characterize and

annotate these sequences have not yet kept pace with the

generation of data, and it is not foreseeable that they ever will,

because sequencing is inherently faster than all present or

foreseeable methods of experimental functional determination.

Therefore, comparative genomic analysis is being increasingly

employed for functional annotation. The basis of most compar-

ative techniques is the notion of homology or common

evolutionary origin of the gene/protein sets being investigated.

The multiplicity of evolutionary scenarios necessitates a more

fine-grained description of homology in terms of orthologs, in-

paralogs and out-paralogs [2]. Orthologs are genes from different

species that have a common ancestor. Traditionally, orthologous

genes from different species were thought of as having similar

functions. However, gene duplication can result in functional

divergence within a species and give rise to paralogs. In-paralogs

and out-paralogs are defined based on the relative order of

duplication and speciation events. Depending on the degree of

divergence, paralogs can retain a significant portion of the

sequence features of the original gene. Since duplication of a gene

can still satisfy the constraint of common ancestor with genes

from other species, multiple pairs of orthologous genes in two

species can have arisen from a single ancestor prior to the

duplication.

Our explorations were motivated by a desire to predict protein

interaction networks using the evolutionary correlation method

[3]. This method is based on the premise that proteins that interact

would have correlated substitution patterns across species.

Application of the evolutionary correlation method requires a

protocol to identify corresponding proteins for the comparison. It

is desirable that the full repertoire of functional capabilities of each

protein - both in terms of its physiological roles, as well as the

mechanisms of regulation - be as similar as possible across the

species set considered. Imposing this constraint will also likely

ensure that the protein pair from each species interacts with each

other. In the absence of prior knowledge on the multiplicity of

pairings between the two protein sets, it is necessary that the

protein representatives be unique for each species. In our work, we

refer to such a sample as the most likely functional
counterpart (MoLFunC) of each other.

A pair of ‘‘MoLFunCs’’ is similar to a pair of orthologous

proteins, but the concept is slightly different. The strict definition

of orthology is in terms of descent. The root definition of orthology

is in terms of genes, and the application to proteins is derived from

the application to genes. The definition of ‘‘MoLFunC’’ is specific

to proteins, and implies an attribution of a common function. Note

that in the definition of MoLFunCs, different splice variants of

orthologous genes may not be MoLFunCs of each other.

The most common tool used for sequence similarity is BLAST –

Basic Local Alignment Search Tool [4]. It often happens that the

result of bi-directional BLAST searches between two genomes is

asymmetric. If protein PA in species A picks up protein PB in
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species B as the most significant hit, it is not necessary that protein

PB pick up PA in species A. This asymmetry could be used to

restrict the orthology requirement to symmetric best-best hits [5].

By comparing all genomes to all other genomes, the best-best hits

could be daisy-chained until they ended in a closed loop. However,

this criterion may in some cases be unduly restrictive and one may

begin with a large number of species and end up with very few

species having the ‘‘true’’ ortholog of the protein being

investigated. The problem is in the requirement that symmetrical

best hits are required for all organism pairs, so that any one failure

of this requirement breaks the daisy chain.

There have been several efforts to systematically catalog

orthologous genes/proteins from several species [6–11]. Most

techniques have employed whole genome comparisons with

clustering algorithms and/or clique finding, to group similar

genes based on their similarity scores. Large-scale genome

comparisons are highly resource-intensive and therefore databases

containing orthologous groups are updated slowly. Moreover,

many of the orthologous groups have multiple representatives

from each species, possibly due to the allowance of asymmetry in

reciprocal BLAST hits. This scenario is further complicated in

higher organisms where a significant portion of functional diversity

is also achieved through alternative splicing.

Although all previous efforts have used rigorous criteria in

defining orthologs, it was not intuitively clear as to how we could

extract MoLFunCs from these datasets. Several techniques have

been proposed that attempt to filter out paralogs; but it was

difficult to both define and ascertain the level of consistency that

these filtering techniques would have with the original clustering

based methods. More recently, efforts were made to identify

ortholog groups with single representatives from each species [11].

However, in spite of the overall broad coverage of species, a

preliminary examination of some of the proteins revealed a sample

that did not include species that we predicted would contain the

proteins. In such cases and in the case of most existing resources, it

was not apparent as to how user confidence or expectations could

be included in the MoLFunC identification process seamlessly,

consistently and efficiently with the existing dataset. A related

problem is that of adding newly identified or curated sequence sets

for an existing species, or a new species set, and reconstructing the

MoLFunCs to reflect the updated knowledge.

Large-scale ortholog identification efforts are very useful in

revealing global statistical patterns of protein evolution, and are

especially valuable in guiding genome-wide experimental efforts

and analysis. However, focused biophysical explorations that seek

to study thoroughly a few proteins, would benefit from a flexible,

yet rigorous platform to identify MoLFunCs for comparative

analysis of those proteins and related ones. As a first step toward

building a tool that can be guided by user knowledge, we

developed a method that relies on the simplest of such cases, viz.,

high-confidence functional annotation of the proteins being

investigated. We have attempted to retain the rigorous techniques

espoused by former approaches, while also identifying a common

theme that can be consistently applied at every step of our

algorithm. Since experimental validation of the functional

equivalency of each protein in the dataset is a difficult task [12],

we provide verification in the form of necessary, if not sufficient,

conditions that the MoLFunC set should satisfy.

Our initial test bed was Kv1.2, a voltage gated potassium

channel from rat, whose 3D structure was recently solved by

Mackinnon et.al [13]. Kv1.2 was chosen due to the wealth of

information available for voltage gated K+ channels. Voltage

gated potassium channels are a diverse family of ion channels that

allow selective permeation of K+ ions at specific transmembrane

voltages [14]. There are a large number of genes encoding

potassium channels in eukaryotes, in addition to their wide

distribution in microbial species. In excitable cells such as neurons,

potassium channels are an important contributor to the resting

membrane potentials and action potentials. They are also

important pharmaceutically and are the targets of several toxins

that bind specific regions of these channels with high affinity.

Kv1.2 is a Shaker-like potassium channel, named after the initial

identification of the Shaker gene in the fruit fly [15]. The Kv1.2

channel is a homo-tetramer, with each monomer consisting of 6

transmembrane helices, S1–S6. S1–S4 serves to sense voltage

changes across the membrane, while S5–S6 form the pore region

that facilitates K+ permeation. The channel can open or close

depending on the transmembrane potential, and the part of the

pore that widens on opening is the portion of S6 near the

intracellular side. It is known that potassium channel function is

modulated by auxiliary Beta subunits that are homologous to the

oxidoreductase family of proteins [16]. The 3D structure of Kv1.2

includes the Beta2 subunit from rat [13]. Since this channel has

S1, S4, S5–S6 and the beta subunit, it provides the structural

counterpart of many aspects of the full functionality of the channel

protein and, together with the large amount of functional data,

serves as an indicator for the reliability of functional annotation. In

addition, we tested our technique on 6 other membrane proteins

(Table 2), for which topological analysis is available in literature

and for which specific residues/motifs have been identified as

important for function.

Methods

Theory
An inspiration for our approach was drawn from an analogy

between the network of protein homologies and network structures

in other domains of knowledge such as social networks and the

World Wide Web (WWW). Most of these networks have directed

edges between nodes. In the case of the WWW, the direction

indicates a link from one website to another, while in social

networks, the direction could indicate flow of rumor or gossip. In

the case of the protein homology network, the direction indicates

the direction of BLAST search, and the edges can carry weights

proportional to the score, e-value, percent identity or rank. Early

research on the management of information on the WWW [17]

sought to exploit the link structure of the Internet to improve

search engine performance and accuracy. One hallmark of these

efforts was the definition of authorities and hubs. Authorities are

websites that can have a high degree of incoming links, while hubs

have a high degree of outgoing links, primarily to authorities.

Analysis of the equilibrium between different types of nodes helped

fashion a search algorithm that could identify relevant websites to

user queries. The twin ideas of ‘‘authority’’ and ‘‘incoming links’’

served as appropriate metaphors to map into our own problem

domain.

Since in our case, the function of the protein is well known and

enjoys a high level of confidence, the protein is authoritatively

annotated. We refer to the species containing the most authorita-

tively annotated protein as the authority species and the protein itself

as the authority. An inbound link to protein B from protein A in the

protein homology network refers to protein B being the best hit in

a homology search with protein A as the query against the genome

of protein B. The concepts of authority and incoming links can thus be

applied to whole genome searches by stipulating that any protein

which is functionally equivalent to an authority should necessarily

pick up the authority as the best hit when searching against the

genome of the authority species.

Homologous Proteins
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We now introduce an analogy to social networks to extend our

strategy. Authoritative annotation can be viewed as a factoid or a rumor

or a piece of gossip (although in this case we believe the gossip to be

true). The problem of identifying MoLFunCs can be viewed as

diffusion of gossip (annotation information) among other proteins

in all species. Gossip starts from a single source, presumed to be an

authority on the subject of the gossip. The source may share the

information with many others (analogous to the authority picking

best hits form another genome): however the gossip spreads further

only by those receivers who believe in the gossip (analogous to

picking up the authority as the best hit). This belief is expressed as

the incoming link to an authority from another node. Each of

these nodes thus becomes the authority seed to identify the next

generation of gossip believers. Note that we retain the flavor of

consensus agreements included in previous approaches by

demanding that every protein other than the original authority

needs to have a degree of authoritativeness (but a lower degree than

the original authority). The high degree of confidence in the

functional annotation of the protein used to start the algorithm is

treated as ‘‘prior knowledge supplied by the user’’. Since the

method depends on the starting point, the identification of the

authority protein is the ‘‘user input’’. We now outline our specific

methodology that was based on the above theoretical consider-

ations.

Algorithm
Since the reciprocal homology search technique is a necessary

precursor to most of the ortholog prediction methods, we based

our strategy on similar grounds but with slight modifications. As

the reciprocal best hits technique could result in a very low sample

size, we bias the requirement of ‘‘best hit’’ in an appropriate

direction and also relax the definition of ‘‘best hit’’ vis-à-vis the

‘‘top hit’’. This allows a larger sample to be accrued, but with

several species contributing more than one MoLFunC. We then

exhaustively and iteratively refine the putative list of MoLFunCs

using profile analysis tools like HMMER [18] to arrive at a unique

protein for each species. Figure 1 details the overall workflow.

Phase I - exhaustive identification of MoLFunCs
This phase involves repeatedly running BLAST searches and

arriving at a list of possible MoLFunCs from all species. For

convenience, we refer to a BLAST search initiated by the

authority or an authority seed as the forward-BLAST, the hits

obtained from the forward-BLAST as the reverse-query, and the

Figure 1. Overall workflow for finding MoLFunCs.
doi:10.1371/journal.pone.0005898.g001
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BLAST of the reverse query with the genome of the authority or

an authority seed, as the reverse BLAST.

Establishing new authority seeds. We start by doing a

BLAST search on every relevant genome, both complete and

incomplete (possible errors from incomplete genomes will be

filtered out at a later stage of the workflow), using the authority

protein as the query. For each BLAST result, we go through each

hit in ascending order of e-value and perform a reverse BLAST

search of the hit against the query genome. The first hit sequence

that retrieves the original authority protein in the reverse blast as

its best hit is designated as a putative MoLFunC. Thus we bias the

bi-directional BLAST hits procedure in the direction of the

authority. At the end of the first iteration, we have a list of proteins

from many species, each of which pick up the authority as the best

hit.

Authority Propagation. Each of the sequences obtained in

the first iteration is used as an authority seed for a further iteration of

BLAST searches against all the genomes. After the first iteration,

every reverse-query obtained by an authority seed is also searched

against the original authority genome with the constraint that it

should pick up the original authority as the best hit. Thus every

MoLFunc at the end of the code execution would have picked up

the authority as the best hit. We refer to this as authority acceptance. If

there is complete consensus, the second iteration should still result

in the same set of putative MoLFunCs from other species as was

obtained in the first iteration. However, we often find that

subsequent iterations pick up new sequences from other genomes

that are in turn, seeds for further iterations. Iterations are repeated

until no new sequences can be found. At this point it may be that

there has been accepted more than one protein per genome.

Heuristics
The computations above were fairly compute-intensive, due to

the large number of BLAST searches. Since we examine each hit

in the forward BLAST until we find one that picks the query as

best hit in the reverse BLAST, we could end up parsing a large

number of hits making the algorithm very time-consuming.

Therefore we decided to introduce some heuristics to aid in

convergence, as described below.

Threshold. For all BLAST searches, we only considered hits

that had an e-value of less than 1e-10. While processing the

results of a forward BLAST, we process only up to 10 hits. Both

these cutoffs limit the accrual of false positives and help reduce the

time taken to run the algorithm.

Best hit vs. Top hit. We allowed for the possibility that the

top hit is not necessarily the best hit. We allowed for a margin of

error, i.e., variability, to be included in the form of a bit difference

threshold. One possible source of variability is choice of the

specific substitution matrix that is used for the BLAST. And

further, as databases are continually curated and updated, the

exact sequences returned may vary. Thus it is possible that the

second hit is almost as good as the top hit except for a difference of

a few bits (based on the Bit score reported) while being as

significant as the top hit. Although the actual sequences of the two

hits may differ from each other in more than a couple of positions,

from the perspective of the query, the two sequences are almost

alike. Thus, allowing for a margin of error, it would be acceptable

to choose a hit with lower bit similarity over the top hit. We

constrain the bit difference to be no more than 10 bits, which was

arrived at by trial-and-error.

We use this constraint in situations where a hit representing a

new putative MoLFunC is only slightly better than a hit

representing a previously identified authority or putative MoL-

FunC. In these cases, we discard the new hit. This can occur in

two places in the workflow; in the reverse BLAST searchers

against the authority or authority seeds, and in the forward

BLAST, to search for hits that are below the top hit, but might

already be obtained as a putative MoLFunC in an earlier iteration

or from the result of starting from another authority seed. The

reverse BLAST constraint also respects the limit of 10 hits.

End of Phase I of the Workflow. The end result of this

analysis is a binary matrix with identical row and column indices

consisting of all possible MoLFunCs (Figure 2). Each cell is a ‘‘1’’

or a ‘‘0’’ indicating that the column sequence was found as a

putative MoLFunC when starting the BLAST search from the row

sequence (i.e. authority or an authority seed). We refer to this

matrix as the MoLFunC Matrix. There can be more than one

protein per species and we need to filter out the true MoLFunCs to

arrive at one protein from each species.

Phase II - Refinement for unique MoLFunCs
In the refinement step, we continue to use the concept of

authority in constructing profiles and searching relevant genomes

using HMMER [18]. The procedure builds on the idea of

authority by first constructing an authoritative core (to be defined and

described below) from the MoLFunC matrix and then using this

core to resolve uncertainties among the non-core sequences.

Uncertainties are categorized into two types – duplicates and

ambiguous sequences. Any species having two or more representa-

tive sequences is termed duplicate. Each row vector in the

MoLFunC matrix gives an indication (described above) of how

authoritative the row sequence is. In order to determine the core

set, we compare the row vectors of all non-duplicate species with

that of the authority. The species and the corresponding sequences

that match the authority are included in the core set. The

argument here is that while calculating MoLFunCs, the author-

itativeness was checked with respect to the entire genome, whereas

in the refinement step, the authoritativeness is checked with

respect to all the MoLFunCs. So the matching of the row vectors

suggests that the sequence with that vector is as authoritative as the

initial authority, with respect to the rest of the MoLFunCs. Any

species with unique representatives, but having a different bit

vector than the authority (the initial probe), is termed ambiguous.

The core determination is a form of authority expansion, as the

information content of the original authority is augmented with

newer authoritative sequences, while the resolution of ambiguities

and duplicates is a form of authority driven verification.

Authority Expansion. We align the core set sequences using

MUSCLE [19] and, using HMMER (hmmbuild command), build

the core profile. The profile is in the form of a numerical matrix

that seeks to capture the average information content in the

sequences. We use this profile to search species that contain

ambiguous or duplicate sequences. If the core set consists of only

the original authority, then there is no need to construct an

alignment or a profile.

Duplicate resolution. For each species with multiple

MoLFunCs, we use HMMER (hmmsearch command) to search

the genome of the species with the core profile. We use a bit

difference threshold of 10 bits to allow including hits that might be

already in the MoLFunC matrix but not the very top hit of the

HMMER search result. In case we find a hit that is not already

included and no other MoLFunC sequence is within 10 bits, we

exclude the species from the MoLFunC matrix. If the core set

consists of only the original authority, then the protein that was

picked up by the authority in the first step is chosen. If none of the

proteins were chosen in the first round, then the species is removed

from the MoLFunC matrix.

Homologous Proteins
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Authority Re-expansion. After removing the appropriate

duplicates from the initial MoLFunC matrix, we now have a

reduced MoLFunC matrix with unique proteins from each species. We

repeat the core calculation process and construct a profile from the

new core set. Again, if the core consists of only one sequence, there

is no need to align or construct a profile; the next two steps are

skipped and the reduced MoLFunC matrix is treated as the final

MoLFunC matrix.

Filtering by Vote. In the next stage of the workflow, we filter

out some of the ambiguities, before performing a costly profile

search. For this purpose, we extract a subset of the reduced

MoLFunC matrix, with the rows corresponding to the most recent

non-core sequences, and the columns corresponding to the most

recent core set (see Figure 3) The row components found the

column components as one of the top ten hits in that species. The

value in each matrix element is 1 if the column found the row as

the best hit, and 0 otherwise. The sum of each row is

interpreted as a measure of how authoritative all the non-core

species are with respect to the new core set. For any row whose

sum is less than half the maximum; i.e. less than half the number of

columns, the sequence corresponding to that row is removed from

any further analysis. Figure 3 shows an example of this filtering.

Ambiguous sequence resolution. The rest of the

ambiguous species are resolved in a similar fashion as the

duplicates, by searching the species genome with the new core

profile and extracting the relevant hit, if any. Again, if we find a

best hit that is not included and no other MoLFunc sequence is

within 10 bits, we exclude the species from our analysis.

End of Phase II. The final result is a MoLFunC matrix with

one representative per species. Note that the refinement procedure

allows the core authority to pick the ‘‘best hit’’ from the HMMER

result as opposed to the core being selected by the ‘‘best hit’’

  A B C D D D D E F G H I  J K  K  L M  

  a1 b2 c3 d4 d5 d6 d7 e8 f9 g10 h11 i12 j13 k14 k15 l16 m17

A a1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 

B b2 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 

C c3 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 1 1 

D d4 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 

D d5 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

D d6 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 

D d7 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 

E e8 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 

F f9 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1 1 

G g10 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 

H  h11 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 

I  i12 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 1 

J j13 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 1 

K  k14 1 1 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 

K  k15 1 1 1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 

L  l16 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 

M  m17 1 1 1 1 0 1 0 1 1 1 1 1 0 1

Figure 2. A sample MoLFunC Matrix at the end of Phase 1 in the Workflow (Figure 1). The first row and column contains species symbols
and the second row and column contains corresponding proteins. Each matrix element is binary; ‘‘1’’ indicates the column protein picked the row
protein as best hit in the reverse BLAST, ‘‘0’’ indicates that there is no orthology relation discovered between the row and column proteins at this
stage of the workflow. Species are color-coded to fit in four categories—pink is the species containing the original authority protein (Figure 1); yellow
are species for which one MoLFunc was unambiguously established, by complete agreement with the origin authority species; green are species for
which one MoLFunC was determined, but there is not agreement with the original authority species, and blue are species for which multiple proteins
survived the Phase 1 process as putative MoLFunCs. Matrix elements that define the ambiguous species by virtue of difference from the original
authority species are colored in white and their values are underlined and in bold. For the green and blue species, final MoLFunC determination
occurs in Phase 2 of the workflow.
doi:10.1371/journal.pone.0005898.g002
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(which was used in Phase I for authority propagation). We can do

this because we are now pruning existing MoLFunCs rather than

discovering new ones and there is only one profile to search

against, rather than an entire genome.

Summary of Workflow
A simple analogy can aid in understanding the overall process.

Our goal is to construct a council of authoritative members

(proteins) who best represent their respective constituencies

(proteomes). It is important that all council members are able to

work with each other as well as with the chief authority that

initiates the selection process. The very first step is for the chief

authority to identify candidates in each proteome (forward

BLAST) and selecting the representative who fully acknowledges

the chief’s authority (chooses the chief authority as the best hit in a

reverse BLAST). Once the representatives have been identified,

the next step is to acknowledge each other’s authority and build

respect and cooperation. This is carried out in the authority

expansion step, in which new representatives may be nominated

from some of the proteomes as being more compatible with some

of the existing members. This process is repeated until we have a

putative council consisting of disagreements between some of the

members (cells that have a 0 in the MoLFunC matrix) as well as

multiple representatives from some proteomes.

The refinement step builds a set of core representatives by

comparing the authority profiles of all members (except members

from proteomes with multiple representatives) with the chief

authority. This builds a circle of trust and their consensus view is

represented by a profile (using HMMER). Those members that

are outside this circle, but uniquely represent their proteome are

called the non-core proteins. The consensus profile is used to

search the proteomes with multiple entries to decide on which

representative to retain (best hit in HMMER search). If none

prove to be trustworthy, that proteome is excluded from

representation. The filtering by vote strategy checks if most

members of the core individually accepted the authority of the

non-core proteins. If the degree of acceptance is very low, they are

culled from the list. The remaining non-core proteins are then

confirmed using the consensus profile search against the respective

proteome. One problem that can arise in the refinement step is

that the core may end up consisting of only the original authority.

In this case, simply choosing the protein that featured in the very

first search from the authority solves the multiple-representative

problem. The rest of the disagreements between members are left

  C1 C2 C3 C4 C5 C6 C7  

  P_C1 P_C2 P_C3 P_C4 P_C5 P_C6 P_C7 SUM 

NC1 P_NC1 1 1 1 1 0 1 1 6 

NC2 P_NC2 1 1 1 1 0 1 1 6 

NC3 P_NC3 1 1 1 1 0 1 1 6 

NC4 P_NC4 0 0 0 0 0 0 0 0 

NC5 P_NC5 1 1 1 1 0 1 1 6 

NC6 P_NC6 1 1 1 1 0 1 1 6 

NC7 P_NC7 1 1 1 1 0 1 1 6 

NC8 P_NC8 0 0 0 0 0 0 0 0 

NC9 P_NC9 1 1 1 1 0 1 1 6 

NC10 P_NC10 1 1 1 1 0 1 1 6 

NC11 P_NC11 1 1 1 1 0 1 1 6 

NC12 P_NC12 0 1 1 1 0 0 1 4 

NC13 P_NC13 0 0 0 0 0 0 0 0 

NC14 P_NC14 0 0 0 0 0 0 0 0 

Figure 3. Subset sample of the reduced MoLFunC matrix after duplicate resolution and Authority Re-Expansion (see workflow in
Figure 2). This figure represents filtering by vote and final resolution of ambiguities by HMMSearch. The first row and column are species names and
the second row and column represent protein ids. The column headings represent fully resolved ‘‘core’’ MoLFuncs; i.e. yellow species from Figure 3
plus those green species whose ambiguity was removed and the blue species whose multiple candidates were successfully eliminated by the first
three steps in Phase 2 of the workflow. The row indices indicate species and proteins that are questionable because of still-unresolved disagreements
with the authority species. The white matrix elements indicate rows that agree with the core MoLFuncs, and are therefore accepted as MoLFuncs. The
blue cells indicate that there was residual ambiguity that was resolved by being best hit from HMMSearch. All the species/proteins whose row sum
was 6 (gray cells) were accepted into the final set. Beige cells indicate substantial disagreement with the core MoLFuncs; these species/proteins are
discarded and do not appear in the final set. The species with the green cells had intermediate level of agreement with the core MoLFunCs, and the
ambiguities were not picked as best hit by HMMSearch; this species and protein were thus discarded. The column with all entries as zeros is the
original authority; the cells are zero because we never do a reverse BLAST starting from the original authority as the query.
doi:10.1371/journal.pone.0005898.g003
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as an unresolved issue at this time. In our discussion section, we

have outlined a possible strategy to further refine our dataset.

Implementation
The Kv1.2 sequence from Rat was chosen as the authority for

the Kv1.2 calculations because the 3D structure was determined

for the Rat sequence. For the rest of the proteins, we identified

authorities on the basis of their record in the TCDB [20]. The

sequences extracted from these records were then compared (using

BLAST) with the RefSeq [21] database for the corresponding

species and the top hit chosen as the authority sequence that was

fed into the algorithm.

We included all possible metazoan genomes from the Refseq

[21] database at NCBI (downloaded on 09/07/07) and the

ENSEMBL [22] database at EBI (Release 46). We decided to

search through both sets of databases, as we were unsure of the

overlap between the two. Table 1 shows the initial species set

considered from both databases. Initially we determined two sets

of MoLFunCs, one from each database. We then merged the sets

of MoLFunCs in the following fashion:

Since we started with the Refseq sequences, we decided to

take the Refseq entry if the ENSEMBL entry picked it up as the

best hit. In case there was ambiguity in the BLAST hit of

ENSEMBL sequence vs. the Refseq database for that species, we

did a pairwise global alignment of the original probe with each

of the NCBI and ENSEMBL sequences and calculated the

distance matrix for the alignment using CLUSTALW. The

sequence that was closer to the original probe was taken as the

MoLFunC. For example, in the Kv1.2 calculation, the only

ambiguity was in the case of Drosophila; the ENSEMBL version

was finally chosen, as it was closer to the original probe.

Topological Congruence
We used TMHMM v2.0 [23] to determine the transmem-

brane topology of the MoLFunCs. One weakness of TMHMM

that applies to voltage-gated channels is that it may not predict

the pore helix and/or the S4 region in some proteins. We

observed that the reason for this is that in many voltage-gated

channels, these regions fall below the threshold for TM

probability. We wrote a Perl script to reparse the raw TMHMM

output using heuristics to eliminate local (less than 7 residues

from one peak to start of next and less than 3 residues from start

of current TM to its peak) maxima. This permitted us to use a

threshold of 0.2 for TM probability for the voltage-gated

channels (compared to 0.4 standard for TMHMM). For the rest

of the proteins, we used the standard TMHMM prediction.

Each of the MoLFunCs was aligned globally to the correspond-

ing authority protein using MUSCLE [19] and the residue

mapping between the two sequences was extracted from the

alignment. In order to examine topological congruence, we

constructed a dot matrix from the residue mapping, using

MATLAB. We then parsed out the TM profiles for the authority

protein and the aligned MoLFunC, and visually superimposed

them on the plot so we could see the alignment in the context of

the topologies.

Table 1. List of species covered using NCBI and ENSEMBL.

SPECIES NCBI ENSEMBL

Aedes aegypti X

Anopheles gambiae X X

Apis mellifera X

Bos taurus X X

Caenorhabditis elegans X X

Canis familiaris X X

Cavia porcellus X X

Ciona intestinalis X X

Ciona savignyi X X

Danio rerio X X

Dasypus novemcinctus X X

Drosophila melanogaster X X

Drosophila pseudoobscura X

Echinops telfairi X X

Equus caballus X

Erinaceus europaeus X X

Gallus gallus X X

Gasterosteus aculeatus X X

Homo sapiens X X

Loxodonta africana X X

Macaca mulatta X X

Monodelphis domestica X X

Mus musculus X X

Myotis lucifugus X

Ornithorhynchus anatinus X X

Oryctolagus cuniculus X X

Oryzias latipes X X

Otolemur garnettii X

Pan troglodytes X X

Rattus norvegicus X X

Sorex araneus X

Spermophilus tridecenlineatus X

Strongylocentrotus purpuratus X

Takifugu rubripes X X

Tetraodon nigroviridis X X

Tribolium castaneum X

Tupaia belangeri X X

Xenopus laevis X

Xenopus tropicalis X X

Sus scrofa X

doi:10.1371/journal.pone.0005898.t001

Table 2. List of proteins studied and the species with the
authoritative annotation.

Protein Authority Species

Kv1.2 (NP_037102.1) Rat

HCN1 (NP_034538.1) Mouse

Trpv1 (NP_114188.1) Rat

Glur (NP_113796.1) Rat

Cng1 (NP_000078.2) Human

Kir7.1 (NP_002233.1) Human

Gamma6 (NP_542425.1) Rat

doi:10.1371/journal.pone.0005898.t002
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Conserved Motif Analysis
A multiple sequence alignment was carried out using MUSCLE

[19] and the conservation patterns of the relevant motifs were

inferred from the alignment. This step was carried out after the

check for topological congruence to avoid including incorrect

MoLFunCs that might perturb the overall alignment.

Self-Consistency
A HMM profile was created using the HMMER program for all

the MoLFunCs (including the authority protein) and used as query

to search the genomes of species corresponding to the MoLFunCs.

A threshold of 10 bits was allowed to check if the original

MoLFunC within each species (that is already in the profile) could

be found as the best hit in the search results for that species.

Tools used
BLAST version 2.2.15 was used for the MoLFunC identifica-

tion process. The BLAST searches were carried out at the level of

proteins using the blastp option. HMMER version 2.3.2 was used

for the refinement and the consistency checks. Both tools are

widely used for detecting homologies. In order to determine which

multiple sequence alignment algorithm to use, we did a BLAST

search of the non-redundant database using Kv1.2 as probe. We

picked the least significant hit that had very low percent identity

with the probe and aligned it with the probe using CLUSTALW

[24] and MUSCLE [19]. MUSCLE outperformed CLUSTALW

in aligning the voltage sensor and the selectivity filter. Since these

are critical regions for determining functional equivalence, we

adopted MUSCLE to align our sequences. The CLUSTALW

version used was 1.83 and the MUSCLE version was 3.6. Phase I

of the MoLFunC identification process was implemented using

Perl scripts. The refinement phase was carried out using HMMER

and Excel spreadsheets. Spreadsheets S1, S2 (Supporting infor-

mation) show the output of our algorithm as applied to Kv1.2, at

the end of Phase I (the MoLFunC matrix) and each step of Phase

II, for both NCBI (Spreadsheet S1) and Ensembl (Spreadsheet S2)

searches.

Results

Tables 3–6 summarize the number of MoLFunCs obtained

using our algorithm and number of orthologs obtained from OMA

for each protein. Table 3 shows the comparison across all species

that were used as input in either technique. Table 4 is the subset of

Table 3 that passed the topology comparison test (described in

Methods). Table 5 shows comparison between MoLFunCs and

OMA for species that are common (in the input set) to both

methods. Table 6 is a subset of Table 5 based on the topology

comparison test. In order to achieve a high degree of confidence in

functional equivalency within our dataset, we carried out a series

of tests, the results of which are outlined below.

Table 3. Count of MoLFunCs/orthologs.

Number of Functional Equivalents in species that are present in
results of both methods

Number of Functional Equivalents in species that are present
in results of one technique only

MoLFunC UniqueOMA MultipleOMA MoLFunC UniqueOMA MultipleOMA

HCN1 19 19 0 5 6 0

Gamma6 14 13 1 6 1 0

Kv1.2 21 17 4 9 5 2

Glur 24 23 1 3 10 4

Cng1 18 18 0 1 16 0

Kir7.1 27 26 1 1 15 1

Trpv1 17 17 0 4 12 3

This includes all species that were in input of each method but not necessarily in both. Therefore the numbers of hits that are found in one but not the other do not
necessarily represent disagreement. The results represent counts before topology verification.
doi:10.1371/journal.pone.0005898.t003

Table 4. Count of MoLFunCs/orthologs.

Number of Functional Equivalents in species that are present in
results of both methods

Number of Functional Equivalents in species that are present in
results of one technique only

MoLFunC UniqueOMA MultipleOMA MoLFunC UniqueOMA MultipleOMA

HCN1 16 15 0 1 3 0

Gamma6 12 10 1 0 0 0

Kv1.2 22 16 4 9 5 2

Glur 21 19 1 3 8 4

Cng1 16 17 0 1 9 0

Kir7.1 25 25 1 0 8 1

Trpv1 8 7 0 1 3 0

This includes all species that were in input of each method but not necessarily in both. The results represent counts AFTER topology verification of the results in Table 3.
doi:10.1371/journal.pone.0005898.t004
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Topological Congruence
Structural similarity of the MoLFunC set with the authority

protein would be a strong indicator of functional equivalence.

However, since structure prediction is a difficult task, we rely on

congruence of TM topology, as determined by TMHMM. We

establish congruence visually as shown in Figure 4. The blue

region indicates intracellular side, the green indicates TM regions

and the red indicates extracellular side. The plot is the Dot plot of

similarities between Kv1.2 and one of the MoLFunCs (platypus).

Almost all the MoLFunCs show good topological congruence with

Kv1.2. For voltage-gated channels, some of the proteins had the

S4 missing based on TMHMM in spite of our thresholds, but

aligned relatively well in that region; so we included them in our

analysis. Spreadsheets S3, S4, S5, S6, S7, S8 and S9 (Supporting

information) have a column showing the results of the topology

filtering for both the MoLFunCs and the OMA results. For

example, the honeybee MoLFunC from our methodology for

Kv1.2 had all TMs, while the honeybee ortholog that was

predicted by the OMA browser is missing the S6 segment and

hence may not be able to replicate the full functionality of the

channel.

Self-Consistency
We checked for self-consistency of the MoLFunC set, based on

the following premise: A HMMER profile of all the MoLFunCs,

when used as a probe against each of the genomes, should pick up

as best hit the representative MoLFunC that is already in the

profile. Spreadsheets S3, S4, S5, S6, S7, S8 and S9 (Supporting

information) have a column describing the results for the self-

consistency tests for the MoLFunC datasets. On an average, we

conclude that the MoLFunC set is 93% self-consistent. The 93%

figure puts a number on the phrase ‘‘Most likely’’ in MoLFunCs;

i.e., we conclude that each MoLFunC identified is over 90% likely

to be the correct one, relative to rest of the set. We did not test the

OMA results for self-consistency, because we do not have detailed

access to the complete OMA algorithm.

Conserved Motif Analysis
We examine the conservation patterns of residues/motifs for

each MoLFunC set, based on experimental evidence of their

importance for specific functional characteristics that all proteins

in that set should display. Note that this is a test satisfying necessity

constraint, but not sufficiency, since it is limited by the amount of

experimental evidence. Therefore, we have not included this in the

histogram analysis. The analysis represents one more line of

evidence to help ascertain the level of confidence we can place in

the functional equivalency of our dataset. Spreadsheets S3, S4, S5,

S6, S7, S8 and S9 (Supporting information) have columns

detailing the results of the conserved motif analysis. A description

of the color codes and columns for these spreadsheets is provided

Table 5. Count of MoLFunCs/orthologs.

Number of Functional Equivalents in species that are present
in results of both methods

Number of Functional Equivalents in species that are present in
results of one technique only

Mf UniqueOMA MultipleOMA Mf UniqueOMA MultipleOMA

HCN1 19 19 0 4 4 0

Gamma6 14 13 1 6 0 0

Kv1.2 21 17 4 6 1 0

Glur 24 23 1 3 4 0

Cng1 18 18 0 0 10 0

Kir7.1 27 26 1 1 1 0

Trpv1 17 17 0 4 8 1

This includes all species that were in input of BOTH methods. The results represent counts BEFORE topology verification.
doi:10.1371/journal.pone.0005898.t005

Table 6. Count of MoLFunCs/orthologs.

Number of Functional Equivalents in species that are present
in results of both methods

Number of Functional Equivalents in species that are present in
results of one technique only

Mf UniqueOMA MultipleOMA Mf UniqueOMA MultipleOMA

HCN1 16 15 0 1 1 0

Gamma6 12 10 1 0 0 0

Kv1.2 21 16 4 6 1 0

Glur 21 19 1 3 4 0

Cng1 16 17 0 0 4 0

Kir7.1 25 25 1 0 1 0

Trpv1 8 7 0 1 1 0

This includes all species that were in input of BOTH methods. The results represent counts AFTER topology verification. Comparison of Table 5 and 6 shows that most
differences between OMA and MoLFunCs are removed by verification that the topology of the hit is the same as the topology of the authority.
doi:10.1371/journal.pone.0005898.t006
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in the document – SuppInfoDescription S1 (Supporting informa-

tion). Following are the motifs that were considered for each

protein:

Kv1.2 (Spreadsheet S3). The voltage sensor in S4 for Kv1.2

has a typical (R/K) pattern every third position. This pattern

repeats 7 times. The actual number of repeats could be important;

the positively charged residues are thought to be important for the

channel’s response to voltage changes; the nature of response

might depend on the number of these repeats, as by site-directed

mutagenesis experiments [25]. Therefore to be consistent with

Kv1.2’s voltage sensing properties, we imposed the constraint of

having the same pattern 7 times in all the MoLFunCs. The only

protein that did not satisfy this constraint was from C.elegans, which

had 6 repeats. The selectivity filter motif TTVGYG is also central to

the channel function. This motif is conserved in all the species.

The last motif that is relevant to gating is G(10x)G(6x)PVP in the

S6 inner helix [13,26] , where x denotes any residue. This motif is

conserved in all species except the sea urchin, which has an Alanine

instead of the first Glycine. However, on closer inspection, we note

that there is a Glycine immediately preceding it (an added feature

of many of the proteins in this set). This could be a case of

reciprocal mutation and thus we can assume that the sequence is

at least partially correct. Overall, the motif conservation constraint

is a validation step rather than an additional constraint, since all

the MoLFunCs determined by the other steps displayed all

expected motifs.

Trpv1 (Spreadsheet S4). Trpv1 channels are sensitive to a

variety of stimuli. One of the residues critical for capsaicin

sensitivity is S512 [27]. We see that this residue is conserved in all

but 3 of the MoLFunCs. D647 is important for preserving pore

properties and mutations in this region affect permeation of Ca2+
and Mg2+ [28]. This residue is completely conserved in all except

one in which it is missing.

CNG1 (Spreadsheet S5). These channels are nonselective

cation channels that are gated by cAMP or cGMP. Residue E365

in human CNG1 (corresponding to E363 in bovine) was identified

as a critical binding site for Ca2+ ions that can reduce selectivity

for monovalent cations in a voltage dependent fashion [29–31].
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Figure 4. Topological comparison matrix of Kv1.2 (X-axis) versus the MoLFunC from platypus (Y-axis). The central plot gives the
alignment dotplot, the grid lines on this plot are the boundaries of TMs. The colored bars near the X and Y-axes are TM profiles derived from TMHMM
[2]. Blue indicates intracellular, green – TM regions and red – extracellular regions.
doi:10.1371/journal.pone.0005898.g004
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This residue is completely conserved among the MoLFunCs.

Residue N329 in human (corresponding to N327 in bovine) was

identified [32] as a N-glycosylation site that can affect channel’s

electrostatic profile. This residue is also completely conserved

among all the MoLFunCs.

HCN1 (Spreadsheet S6). HCN1 channels that contribute to

the hyperpolarization activated pacemaker current are sensitive to

external Cl ions, the characteristics of which depend on residue

A352 [33]. This is conserved in all except 3 species. Residue A354

which was shown to be very important for gating is also conserved

in all but 2 species [34]. The selectivity filter signature sequence

CIGYG [35] is conserved in all but 3 species. R286 at the end of

the S4–S5 linker [36] is important for regulation by voltage and

this is conserved in all but one species.

Glur (Spreadsheet S7). Glutamate receptor channels are

thought to have structural similarities with K+ channels. Studies

aimed at identifying motifs relevant to specific channel properties

[37] identified the profile: [WFLVIM]-[WFY]-[WFYL]-X(6)-

[STNQ]-X-G-X(1,3)-[ED]-X(1,2)-P. This profile is matched in all

but one of the MoLFunCs. Another commonly conserved motif

SYTAANLAAF in glutamate receptors [38,39] is conserved in all

but one of the MoLFunCs.

Gamma6 (Spreadsheet S8). It was recently reported the

TM1 of gamma6 was critical to its regulation of Cav3.1 channels.

A motif GXXXA was identified as important in this region [40].

The G42 and A46 were important in terms of their being small in

size as mutations that increased the size of residues at these

positions interfered with current regulation. In our alignment, we

see that at position 42, there are mostly small residues including

G,A and V. 5 of the species are missing this motif completely. In

place of A49, some of these have serine, which is allowable, and

one has a threonine, which is chemically similar to serine.

Kir7.1 (Spreadsheet S9). Kir7.1 belongs to a class of inward

rectifying channels that are pH sensitive. H26 has been shown to

be critical for this sensitivity [41]. In our MoLFunC set, all but 2 of

the MoLFunCs have this residue conserved. The same trend can

be seen for the rest of the residues/motifs. These include the

selectivity filter signature [42] – G(F/Y)G, 3 mutations that were

important for K+ conductance [42] - L118, T116 and F156, and a

residue that is characteristic of Kir 7.1 among the Kir family –

M125 [43,44].

Discussion

We have demonstrated a technique based on authoritatively

annotated sequences and BLAST score relaxation to extract

MoLFunCs (Most Likely Functional Counterparts) from a set of

species. We pooled the NCBI and Ensembl databases in order to

extract the largest possible sequence set for analysis. Based on our

internal consistency checks, we believe that our identification of

MoLFunCs is over 90% accurate. The inclusion of an error

margin in BLAST score rankings suggests that the set of

MoLFunCs will be relatively stable to isolated changes in the

databases due to updates, and to BLAST program versions or

choices of substitution matrices that might shuffle the top hits

based on their scores/e-values.

Since our method is based on similarity of protein sequences

rather than inference of patterns of gene descent, it does not

explicitly address the issue of in-paralogs and out-paralogs that

have been explored by several ortholog prediction approaches

[6,10] and filtering algorithms [45]. However, it seems likely that

MoLFunCs would be coded for by orthologous genes. This is due

to the refinement step, which implicitly incorporates filtering to

arrive at unique representatives. From a comparison with the

OMA results, we find that in some cases our MoLFunCs are not

found by OMA, and in other cases we find a 1-1 correspondence

where OMA finds 1-many. On the other hand, we find some cases

where OMA has uncovered a correspondence that MoLFunCs

has not, and the OMA correlate passes through our filters.

Therefore the two techniques can complement each other to find

the most complete sets of corresponding proteins. An exhaustive

comparison is presently beyond the scope of this study.

Our technique attempts to integrate knowledge the user brings

to the problem with methods of statistical inference. This strategy

is independent of the use of any specific tools such as BLAST and

HMMER and can incorporate more stringent or permissive

algorithms if needed. We believe that this strategy is amenable to

newer definitions of authority. In the examples in this paper

authority is identified by our knowledge of experiments that

definitively characterized the topology and function of the

prototypical sequence in each class. One could imagine authority

identification using automated information mining from various

resources related to the proteins of interest. A concept-based

strategy (the concept in this case being that of authority) provides

an ontological scaffold to analyze the global network of protein

homologies. We envisage that a similar strategy could be applied

to analysis of protein interaction networks as well. Although we

have applied user knowledge only at the initial stage in our

strategy, we can refactor the code to allow for user input at

different checkpoints within the algorithm. As a prelude to this

goal, our software computes Phase I (preliminary identification)

and Phase II (refinement) separately. Therefore, a MoLFunC

matrix that is not yet refined can be enhanced for a new species or

recomputed for an existing species with new data, by simply

removing the entries for that species from the rows and columns of

the MoLFunC matrix and restarting Phase I. Our code is designed

to take as input an existing MoLFunC matrix and enhance it with

new MoLFunCs. The MoLFunC matrix thus provides a visually

intuitive hook to incorporate user input and could be manipulated

manually if necessary, for the problem at hand, to reflect the user’s

judgment about functional equivalence.

The notion of authority in our case is analogous to 100%

confidence in its annotation. We also defined our sample set to be

the ‘‘most likely’’ functional equivalent. These definitions open the

doors for probabilistic modeling of the MoLFunC construction

process, wherein the authorities are represented by a certain

degree of confidence and the identification of MoLFunCs is

essentially a problem in belief propagation, algorithms for which

have been explored in the context of other research problems. Our

confidence in functional equivalence is partly qualitative; since the

reliance on similarity scores makes quantitative considerations

implicit adjuncts to our judgment, belief propagation could be

used to assign probability values to the degree of functional

equivalence. A related issue is the different ontological dimensions

that define the ‘‘function’’ of the protein. Functional equivalence

could be for a subset of these dimensions and the resulting

MoLFunC set should be examined for presence of the relevant

dimension. For example, if voltage-sensing apparatus is an aspect

of the protein ontology that we are interested in, the MoLFunC set

should necessarily contain this aspect. Since motifs and domains

map to these dimensions in sequence/structure space, motif/

domain based overlap could be used as a check for functional

equivalence.

We attempted to retain the consensus agreement strategy used

by earlier approaches to comprehensively assign orthologs. The

consensus agreement approach could suffer from dissimilarities

that arise due to evolutionary divergence of the species pair being

investigated. Therefore, a weakly significant score would point to
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lesser agreements between proteins. Use of PSI-BLAST and/or

substitution matrices that take divergence into account, such as

implemented in the OMA project using PAM matrices, could help

eliminate these effects. As a corollary to this observation, we

propose that genome sequencing projects should focus on closing

the gaps in phylogenetic space, as it would provide as with a more

continuously varying evolutionary landscape to arrive at high-

confidence substitution matrices. We limited our analysis to

metazoan species; future efforts to find MoLFunCs across all the

kingdoms of life would benefit from more sensitive homology

detection techniques. One path to do that is to search for similar

functional domains, as opposed to searching for similar overall

proteins [46].

One situation that can arise in some contexts is the problem of

multiple authorities. This can arise when we can authoritatively

annotate proteins with the same functional description in more

than one species. Thus, multiple authorities give us multiple start

points but could also present different MoLFunC matrices in the

end. A sound strategy to deal with this issue would be to first

BLAST all authorities against each other’s genomes. Upon

examining the output, either manually or using a machine

learning technique, we could derive rules for heuristics such as

Bit difference tolerance, relaxation criteria etc. Using these rules

we could derive MoLFunCs starting from each of the authorities.

We could then extract the common MoLFunCs, create a profile

along with the original authorities and search the ambiguous

genomes with HMMER profile search.

In an effort to be thorough, we explored incompletely

sequenced genomes (and/or those whose proteomes were not

complete) in our analysis. If an authority is identified in such a

genome, then it is possible that there are very few authority-like

proteins in that genome. For example, since voltage gated

potassium channels are diverse, if the rat proteome did not

contain enough representatives of these channels other than

Kv1.2, any protein from another species that is only approxi-

mately similar to Kv1.2 and much more similar to some other

potassium channel, would still only pick Kv1.2 as the best hit. This

could result in spurious MoLFunCs being collected. A solution to

this problem is to ensure that the authority genome has sufficient

number of sequences and possibly include a significant number of

proteins related to the authority (if the authority is part of a large

family). In cases when the authority genome is sparse, the best

strategy is to find a high-confidence MoLFunC in another genome

with sufficient sequence samples and then use that MoLFunC as a

pseudo-authority. In our case, the rat genome has sufficient

representation in the potassium channel family and could serve as

the authority genome.

We hope to extend our strategies to genome-wide studies, especially

in the context of inferring interaction networks through evolutionary

correlation analysis, and also consider MoLFunCs across a larger set

of species that includes microbes and other domains of life. Our

current implementation runs on a single processor and it would need

days or months to run a larger set of proteins on a larger set of

genomes. We are working on developing a parallel implementation of

the code to assist in scaling up the analysis.

The scaling up of the analysis to the universe of BLAST results

between all genomes can give rise to two issues 1) multiple

authorities, that can be dealt with as outlined previously and 2)

overlapping hubs. Both problems can arise from emergent

properties of the network. The situation here will be very similar

to the World Wide Web, where many pages are pointing to more

than one authoritative resource. For example, any two websites on

a specific topic with large number of inbound links could be

considered authoritative on those topics. It is also likely that some

of the inbound links to both these authorities arise from the same

referring site. By analogy, in the homology network of all

proteomes, there is likely to be a set of nodes from different

species that are similar in function and have large number of

inbound links from proteins in other species. In such cases, even in

the absence of authoritative annotations, from a network

perspective - these nodes could be considered authorities for that

specific function. Overlapping hubs are essentially MoLFunCs

picked up by authorities that have different functions. We could

use techniques similar to the one we used for resolving NCBI and

ENSEMBL conflicts, or develop more stringent criteria based on

the authority concept.

In conclusion, we believe MoLFunCs determination can

contribute to standardized datasets for comparative genomic

analysis. Our method in its current form can be used in conjunction

with existing efforts to catalog orthologous groups, especially in cases

where functional equivalence is the desired output.
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