
Transmembrane Signaling: An 
Model for Signal Transduction 

Ion-flux-independent 
by Complexed Fc Receptors 

LORRAINE C. PFEFFERKORN 
Department of Biological Sciences, Dartmouth College, and Department of Microbiology, Dartmouth 
Medical School, Hanover, New Hampshire 03756 

ABSTRACT Fluxes of Na+/K + that precede effector functions in stimulated phagocytes are 
thought to play a role in signal transduction. To examine this hypothesis, phagocytosis, 
phagosomal acidification, and superoxide anion generation (02-) were stimulated in media in 
which the Na + was replaced with K + or choline +. Counts of particles internalized and 
assessment of acidification of the phagosomes by acridine orange staining indicated that Na+/ 
K + fluxes were not necessary for phagocytosis or phagosomal acidification in J774.2 macro- 
phages. Phagocytosis mediated by the ionophoretic Fc receptor~2b/~l of J774.2 macrophages 
was equally independent of a Na + gradient. Na+/K + fluxes did not dictate the rate of 02- 
generation in human monocytes. Therefore, in at least these three effector functions, Na+/K + 
fluxes stimulated by Fc- and non-specific receptor binding play neither a signaling nor an 
enhancing role. An ion-flux-independent model for  transmembrane signaling by the Fc 
receptor is proposed. 

Others have shown that there is an apparent dependence on the external Na + concentration 
for 02- generation and lysosomal secretion by neutrophils. These neutrophils had been pre- 
treated with NH4 + during a routine purification step. 02- generation stimulated by opsonized 
zymosan or phorbol myristate acetate, by monocytes or monocyte-derived macrophages, and 
phagocytosis of opsonized zymosan by J774.2 macrophages, showed dependence on external 
Na + only if these cells had been pre-treated with NH4 +. Brief NH4 + pre-treatment would be 
expected to acidify the cytoplasm of the cells. The reversal of this acidification is known to 
require Na + for H + extrusion through the Na+/H + antiport, thus explaining the apparent Na ÷ 
dependence. 

Mononuclear (monocytes, macrophages) and polymorpho- 
nuclear phagocytes (neutrophils) share certain functions. The 
binding of particulate or soluble ligands to surface receptors 
induces the production of microbicidal oxygen radicals, phag- 
ocytosis of particulate ligands, and lysosomal secretion, first 
to the outside of the cell and then into the phagosomal 
vacuole. Some of the surface receptors that are involved in 
initiating these pleiotypic responses, collectively called phag- 
ocyte effector functions, have been studied to determine how 
receptors signal these functions. It is known that internaliza- 
tion of ligand is not necessary for signaling. Immobilization 
of ligands on a non-phagocytosable surface (1) or treatment 
of phagocytes with cytochalasin B, an inhibitor ofendocytosis, 
does not reduce inflammatory responses after receptor stim- 
ulation (2). Thus, stimulus-response coupling between a li- 
gand-bound receptor and cytoplasmic effector functions is 
apparently a surface phenomenon. 

Evidence, much of it indirect, suggests that the signal for 
phagocyte effector function is Na + influx. Stimulatory ligand- 
receptor interaction of phagocytic cells increases the permea- 
bility of their plasma membranes to Na + (3). This increased 
ion permeability results in a change in membrane potential 
(4) that is dependent on Na+/K + fluxes (4-6). The membrane 
potential change always precedes ligand-stimulated inflam- 
matory responses (2, 7-12). Membrane permeability to other 
ions, such as Ca 2+ (3, 13), also increases, but Ca 2+ influx does 
not account for the membrane potential changes (2), nor is it 
necessary for the stimulation of inflammatory responses (14). 
Membrane potential changes that are dependent on Na+/K + 
fluxes have been recorded by microelectrode (5, 6, 12) and 
estimated by the distribution of the lipophilic cations (2, 4, 7, 
9, 11) across the membrane in several cell types after the 
addition of stimulatory ligand. In a manner resembling the 
response of the postsynaptic membrane of muscle to Na + 
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influx, action potentials in macrophages can be elicited by 
microelectrode stimulation to an apparent threshold potential 
(15). Furthermore, a murine macrophage receptor that binds 
IgG2b and IgG1 immune complexes (16) and that triggers 
phagocytosis and release of various mediators of inflamma- 
tion (17) forms a ligand-dependent ion channel (18). When 
incorporated into a planar lipid bilayer, this receptor shows 
ion channel activity selective for Na ÷ and K ÷ (19). The 
increase in ion conductance is dependent on addition of 
specific ligand. Antigen-antibody complexes that bind to this 
receptor stimulate Na÷/K ÷ fluxes both in the intact cell and 
in the lipid bilayer or liposomes containing the isolated and 
reconstituted Fc receptor (FcR) l (17, 19, 20). A monoclonal 
antibody specific for this particular receptor induces cellular 
hyperpolarization that is dependent on Na+/K ÷ flux and also 
induces K ÷ efflux from liposomes with the reconstituted 
receptor (19). Thus, there is little doubt that the increased 
conductance involves a ligand-binding dependent change in 
the FcR. The ionophoretic activity resulting in an increased 
Na ÷ influx into the cell could be the transducing mechanism 
that signals phagocyte effector functions. 

In an effort to directly link Na ÷ influx to phagocyte effector 
functions, the dependence of these functions on external Na ÷ 
has been studied in human neutrophils (7, 8). Measurement 
of the release of superoxide anion (02-) and of lysosomal 
secretion shows that the rates of these effector functions are 
apparently dependent on the concentration of Na ÷ in the 
medium. On the basis of this and other observations, Korchak 
and Weissmann (7) proposed a stimulus-response coupling 
for 02- generation and lysosomal secretion with Na ÷ influx 
as a necessary part of the initiating event. Holian and Daniele 
(21), on the other hand, found that stimulated guinea pig 
alveolar macrophages generate 70% of normal levels of 02- 
in the absence of external Na ÷. The present report is a re- 
examination of the role of Na ÷ influx as the signal transducer 
or enhancer for phagocyte effector functions. 

MATERIALS AND METHODS 

Cell Preparation: The J774.2 murine macrophage cell line was grown 
in Dulbeeco's modified Eagle's medium supplemented with 2 mM glutamine, 
20% fetal calf serum, penicillin, streptomycin, and fungizone. Macrophages 
were washed in Earle's minimal essential medium and allowed to attach in the 
same medium to 1.2-cm (diameter) round glass coverslips for 3--4 h for a final 
cell confluency of 20-50%. 

Human peripheral blood monocytes were isolated by Ficoll-Hypaque gra- 
dient (Pharmacia Fine Chemicals, Piscataway, N J) as described by Boyum (22). 
The gradient-isolated cells were washed eight times with RPMI 1640 medium. 
Monocyte numbers were determined by counting adherent and non-adherent 
populations on a hemacytometer incubated for 5 rain at 37"C. The final cell 
suspension contained ~25% contaminating lymphocytes. Human monocyte- 
derived macrophages were prepared by incubating monocytes in RPMI con- 
taining 10% homologous human serum at 37"C for 6 d. 

NI-L+-pre-treated monocytes and J774.2 macrophages were prepared by 
incubation in 155 mM NH4CI, l0 mM HEPES (pH 7.2) (titrated with KOH) 
for 10 min at 37"C or 22"C as indicated in text. 

Earle's minimal essential medium, Dulbecco's modified Eagle's medium, 
penicillin, streptomycin, and fungizone were obtained from Gibco Laboratories, 
Grand Island, NY. HEPES buffered Hanks' medium and RPMI 1640 (tested 
for low endotoxin content) were obtained from M. A. Bioproducts, Walkers- 
ville, MD. 

Preparation of Parasites for Use as Particles: Toxoplasma 
gondii was grown and harvested as previously described (23). Approximately 

Abbreviations used in this paper. AO, acridine orange; FcR, Fc 
receptor; LPS, lipopolysaccharide; NBT, nitroblue tetrazolium; O2-, 
superoxide anion; PMA, phorbol myristate acetate. 
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10 7 parasites were rendered non-invasive by one of two methods depending on 
the targeted receptor(s) on the macrophage. For the first method, parasites in 
0.5 ml HEPES-buffered Hanks' medium were denatured by slow addition of 
3.7% formaldehyde in phosphate-buffered saline (pH 7.2) to a final concentra- 
tion of 3%. After 60 min at 22"C, they were washed three times with HEPES- 
buffered Hanks' medium and opsonized in a 1:300 dilution of rabbit antitox- 
oplasma serum that had been heated to inactivate complement. The suspension 
was incubated at 22"C for 60 min. Denatured, opsonized parasites were washed 
three times with Na ÷ or Na*-substituted medium for immediate use in a 
phagocytosis assay. Parasites, prepared in this way, are phagocytosed through 
Fc- and non-specific receptor binding. 

For the second method, freshly harvested, highly invasive parasites were 
washed and incubated at 37"C fo" 20-60 min in phosphate-buffered saline (pH 
7.2). This step reduced their invasiveness by ~95%. The parasites were then 
centrifuged at 700 g for 10 min and resuspended in 800 ul HEPES-buffered 
Hanks' medium containing 0.7% heat-inactivated fetal calf serum. A volume 
of 200 #1 of the suspension was added to each of four 22-mm coverslips on 
which human fibroblasts had been grown to confluency. The few remaining 
invasive parasites penetrated the fibroblasts during a 20-rain incubation at 
37"C. The non-invasive parasites were washed offofthe monolayers, pelleted, 
and added to Na* or Na*-substituted medium. The success of this method for 
rendering parasites non-invasive was monitored by plaque titration on mono- 
layers of human fibrobla-.ts (23). Parasites prepared in this way do not bind to, 
and are not phagocytozed by, macrophages unless they are opsonized. Rabbit 
antiserum was added at a final Clution of I:100 to parasite suspensions in Na* 
or Na*-substituted medium immediately before adding them to the phagocytes. 
This method for opsonization was chosen to avoid antiserum-promoted aggre- 
gation of the non-denatured parasites. For opsonization that would link the 
antibody-coated parasites specifically to the FcRs of J774.2 macrophages that 
bind IgG2b and IgG 1, antibody-antigen complexes, a mouse lgG2b monoclonal 
antibody (24) that is specific for an antigen on the surface of the parasite, was 
substituted for the rabbit antiserum, and the parasites were allowed a 20-min 
pre-incubation in the antibody before use in the phagocytosis assay. 

Assay of Phagocytosis and Vacuolar Acidification: J774.2 
monolayers on 1.2-mm coverslips in 1.6-mm wells of Linbro trays were washed 
with Na ÷, K +, or choline* medium, transferred to dry wells, and overlaid with 
50 #1 of parasites in Na +, K+, or choline* medium, prepared as described above. 
After a settling time of 2 rain, during which most of the parasites came into 
contact with the cells, the cultures were incubated at 37"C for 20 rain for 
relatively synchronized phagocytosis. A volume of 0.5 ml of the appropriate 
medium warmed to 37"C was added gently for a further incubation of 20 rain. 
The cultures were then stained by transferring the coverslips to wells containing 
the same media used for the phagocytosis incubation but that also contained 
10 ug/ml of acridine orange (AO) (25). The cells were allowed to concentrate 
the dye for 7-10 rain at 22"C and the uptake of particles was immediately 
assessed by fluorescence microscopy. Phagosomes containing internalized T. 
gondii rapidly acidified, concentrated the AO dye, and emitted a red fluores- 
cence. The distinctive crescent shape of the internalized parasiies set them apart 
from secondary lysosomes, and the red fluorescence distinguished them from 
the extracellular parasites, which appeared light green. 

Cells in the K ÷ medium died ~10 min after AO staining and during the 
microscopic observations. Cell death in K ÷ set a time limit within which the 
extent of phagocytosis and vacuolar acidification had to be determined. These 
effector functions were rapidly and reproducibly assessed by counting red 
crescent-shaped phagosomes at a 400-fold magnification. A field containing 30 
to 100 phagocytosed parasites and 15 to 35 macrophages could be counted in 
<1 min. 

The media used were the same as those previously described (17) with slight 
modifications. Na + medium contained 118 mM NaCI, 8.5 mM Na2CO3, 20 
mM HEPES, 5 mM KCI, 1.8 mM CaCI2, 0.8 mM MgSO4, 5.5 mM glucose 
(pH 7.4). In two other media, Na ÷ was substituted by replacing Na2CO3 with 
K2CO3, and NaCI with K or choline chloride (3X recrystallized [Sigma Chem- 
ical Co., St. Louis, MO]) for all but 5 mM of the NaCI (K ÷ medium) or for 
both the NaCI and KCI (choline* medium). The osmolalities of the stock Na, 
K, and choline chlorides were determined or confirmed at the concentrations 
used by measurement with a Wescor 5100 osmometer. De-ionized, glass- 
distilled water was used for all media, and flame photometer determinations of 
contaminating Na* were made on all media and rinse water of all plasticware. 
Alternative media that are referred to as 0 and 140 mM Na* media were used 
for phagocytosis of opsonized zymosan by NI-L+-pre-treated J774.2 cells. These 
media contained 1 mM CaCI2, 1 mM MgSO4, 5.5 mM glucose, 10 mM HEPES 
titrated with 5 mM KOH, 0 mM Na + (140 mM choline chloride) or 140 mM 
NaCI (pH 7.45). 

Nitroblue Tetrazolium (NBT) Reduction in Phagosomes: 
Qualitative NBT staining for 02- generation into the phagosomes was per- 
formed by a modification of the Baehner method (26, 27) on duplicate cultures 
grown on 1.2-cm coverslips in 1.6-cm Linbro plate wells. J774.2 macrophages 



were overlaid with formaldehyde-denatured, opsonized parasites in 50 ul of 
Na +, K +, or choline + phagocytosis medium that also contained 0.05% NBT. 
Phagocytosis proceeded during a 20-rain, 37°C incubation followed by another 
45 rain at 37°C after addition of 0.5 ml pre-warmed appropriate media. The 
cells were washed with the medium used for phagocytosis, fixed with 4% 
formaldehyde in phosphate-buffered saline for 30 rain, and stained 5 rain with 
0.1% safranin 0 in 1% acetic acid. Dried stained cultures were examined 
microscopically for the presence of formazan, the black particulate product of 
NBT reduction by 02-, inside of the phagosomes that contained parasites. 

Cytochrome c Reduction Assay for 02-: The rate of 02- 
generation by monocytes was measured by a modification of the spectropho- 
tometric method of Babior et al. (28) using cytochrome c (Type II or VI [Sigma 
Chemical Co.]) that had been dialysed 12 h against medium that lacked Na +. 
Human monocytes were added to assay medium for a final concentration of 
0.2 to 1.0 x l06 ceUs/ml. The assay medium contained l mg/ml opsonized 
zymosan and 0.5 mg/ml cytochrome c in media containing 1 mM KCN, 1 
mM CaC12, l mM MgSO4, 5.5 mM glucose, 137 mM Na, K, or choline 
chloride, and 20 mM HEPES titrated with l0 mM NaOH (final pH 7.45). 
Alternative media that are referred to as 0- to 140-mM Na + media were used 
for some assays, as indicated in the text. These contained 1 mM KCN, 1 mM 
CaC12, l mM MgSO4, 5.5 mM glucose, l0 mM HEPES titrated with 5 mM 
KOH, and 0-140 mM NaCl with 140-0 mM choline chloride for osmotic 
balance. When monocyte-derived macrophages were assayed for O2- genera- 
tion, the assay medium also contained 0.1 #g/ml lipopolysaccharide (LPS) 
(from Escherichia coli, 055:B5 [Difco Laboratories, Inc., Detroit, MI]). When 
50 mg/ml superoxide dismutase was added to the assay medium, KCN was 
omitted. 

When 3/~g/ml phorbol myristate acetate (PMA) (Sigma Chemical Co.) was 
used as the stimulant, addition of PMA to the assay mixture that contained 
cells initiated the 02- generation. Monocytes were quickly washed three times 
in choline + medium, added to a pre-warmed O2--generation assay mixture, and 
incubated in 37°C shaker bath in 50 ml disposable polypropylene tubes (Sar- 
stedt, Inc., Princeton, N J) to which the cells did not adhere. Volumes of 0.9 ml 
were chilled in 1 ml Eppendorf tubes and centrifuged at 13,000 g for 1 min. 
Absorbance of the supernatants at 500 nm was measured. The absorbance of 
stimulated minus control values was converted to nmol reduced cytochrome c 
with A~5o = 2.1 x l04 M -~ cm-L Na +, K +, and choline + media did not affect 
the spectral scans of oxidized and reduced cytochrome c. The PMA was stored 
at -200C as l mg/ml in dimethylsulfoxide. Neither the dimethylsulfoxide 
added to the assay with the PMA nor five times that concentration had any 
effect when added alone. 

It was important to assess the activity of the cells in as many Na + concen- 
trations as possible in some of the experiments of this paper. Because these 
experiments required a cell-free or stimulant-free control for each Na + concen- 
tration, doubling the number of assays, and because early as well as late time 
points were desirable, duplicate determinations could not be done within an 
experiment. Instead, such experiments were done repeatedly, and several rep- 
resentative results are displayed in the figures. Continuous recording spectro- 
photometry was avoided because it can give data for only the first 5 min of the 
reaction, and because sequential assays require storage of phagocytes over a 
period of hours at 4°C or 220C, either of which would have created problems 
in the interpretation of the data. 

RESULTS 

Phagocytosis and Phagosomal Acidification in the 
Absence of a Na + Gradient 

To examine the importance of Na + influx as a signal 
transducer for phagocytosis and phagosomal acidification, I 
measured these functions in media in which the Na + gradient 
across the plasma membrane was abolished. Media were 
prepared by replacing most of  the Na + in a simple HEPES 
buffered salt solution (Na + medium) with K + (K + medium) 
or with choline + (choline + medium). The K + medium equili- 
brates (approximately) the K + concentration across the mem- 
brane making it unlikely that there will be a significant K + 
conductance at the time of stimulation. 

T. gondii, a 3 x 7-~m protozoan parasite, was chosen as 
the phagocytosable particle because its crescent shape allowed 
it to be readily distinguished even after internalization by the 
phagocyte. This obligate intracellular parasite actively enters 

cells even in the absence of  any phagocytic activity. Therefore, 
the parasites used in the phagocytosis experiments were ren- 
dered non-invasive by a denaturing and non-denaturing 
means (described in Materials and Methods) so that they 
could serve exclusively as a source of readily recognized, 
phagocytosable particles. Phagocytosis and phagosomal acid- 
ification by cells of  the murine macrophage cell line, J774.2, 
were assessed by AO uptake into phagosomes formed in Na +, 
K +, and choline + media. 

In the first method for rendering parasites non-invasive, 
denaturation with formaldhyde produces particles that were 
phagocytosed through non-specific receptors on the cell sur- 
face. However, the overall rate of  binding and uptake was 
greatly enhanced when denatured parasites were first opson- 
ized with parasite-specific antibody. Since a rapid assay for 
phagocytosis was required, denatured parasites were always 
antibody-coated before use. Such treatment also targeted the 
parasites for the macrophage FcR. Phagocytosis, therefore, 
took place primarily by means of Fc-, but also by means of 
non-specific, receptors. Fig. 1, A-C, illustrates the appearance 
of the crescent-shaped parasites in dye-concentrating acidified 

FIGURE 1 AO-stained phagosomes formed in Na + (A), K + (B), and 
choline + (C) media. J774.2 macrophage monolayer cultures were 
exposed to formaldehyde-denatured, opsonized T. gondii in Na ÷, 
K +, or choline + media as described in Materials and Methods. After 
40 min at 37°C, acidic organelles were stained by AO in the media 
used for phagocytosis. 
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phagosomes. This qualitative assessment of the capacity for 
phagocytosis and vacuolar acidification in the presence and 
absence of a Na ÷ gradient across its membrane indicated no 
apparent differences in uptake or acidification in the three 
media. 

Parasites were also made non-invasive in a second, non- 
denaturing procedure. The non-denatured, non-invasive par- 
asites differed from the formaldehyde treated T. gondii in that 
they did not bind to and were not appreciably phagocytosed 
by macrophages (antiserum-free control in Table I). Yet, when 
these treated parasites were added to macrophage monolayers 
in a medium that contained parasite-specific antibody, phag- 
ocytosis and phagosomal acidification progressed rapidly. 
Therefore, opsonization of these treated T. gondii produced 
particles that were avidly phagocytosed solely through IgG 
binding to FcRs. Quantitation of FcR-mediated uptake of 
non-denatured, non-invasive, antibody-coated parasites by 
J774.2 macrophages (Table I) supported the previous quali- 
tative assessment. No significant differences in uptake fol- 
lowed by phagosomal acidification were observed in compar- 
ing cells incubated in Na + medium with those incubated in 
K + or choline + medium. Similar results (data not shown) were 
obtained when the opsonization was carried out with a para- 
site-specific IgG2b monoclonal antibody (24). The receptor 
for the Fc portion of this antibody is known to have iono- 
phoretic activity when the appropriate ligand is bound (17). 
These results show that the Na * influx that follows binding is 
not the signal for phagocytosis or for phagosomal acidification 
since both occurred equally well in the absence of a Na + 
gradient in the K ÷ and choline + media. 

Localization of Oxidative Intermediates in the 
Phagosomal Vacuole 

A third phagocyte effector function, release of oxygen rad- 
icals, was assessed qualitatively by observation of the deposi- 
tion of formazan in vacuoles that contain phagocytosed par- 
ticles. Yellow NBT dye is ingested together with phagocytosed 
particles and is reduced by 02- to a black, insoluble dye, 
formazan (29, 30). Fig. 2, A-C, shows qualitatively similar 
deposition of formazan when formaldehyde-denatured, op- 
sonized parasites were taken up by J774.2 macrophages in 
Na +, K +, and choline + media. These results suggest that 
oxygen radicals were released into the phagocytic vacuole 
even in the absence of Na + influx (9-12, 17) and in the 
absence of sustained hyperpolarizations (5, 11, 17) attributed 
to an increased K + permeability (5) as reported by other 
investigators. 

02- Generated in the Absence of  a Na ÷ Gradient 

The production of a specific oxygen radical, 02-, was 
assayed quantitatively in stimulated human monocytes for 
two reasons. First, the initial rates of 02- generation were 
measured in order to answer the question: is Na ÷ influx, if 
not a signal transducer, at least a mechanism by which the 
response of a stimulated cell is enhanced? Secondly, the 
control of 02- generation by freshly isolated human mono- 
cytes should more closely reflect phagocyte activity unselected 
by long term cell culture typical of the macrophage tumor 
cell lines. The J774.2 cell line could be constitutively en- 
hanced or unenhanceable. 

Monocytes were stimulated by opsonized zymosan in Na +, 
K +, and choline + media. Their production of O2-, as measured 
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TABLE I 

Effect of the External Na + Concentration on FcR-mediated 
Phagocytosis of Non-invasive T. gondii* 

Total numbers 
counted 

Parasite- Parasites 
Assay specific in phago- Macro- Parasites• 

medium ant ibody somes phages Macrophage 

Experiment 1 
Na + + 524 206 2.54 
K ÷ + 317 116 2.73 
Chol ine + + 694 258 2.69 
Na + - *  4 318 0.013 t 

Experiment 2 
Na + + 232 380 0.61 
K + + 260 443 0.59 
Chol ine + + 268 479 0.56 
Na + - 17 700 0.024 

1774.2 macrophage monolayers were overlaid with non-invasive parasites 
suspended in Na +, K +, or choline + medium. The Na+-substituted media 
contained S mM Na + and amounts of K ÷ or choline + to equalize the 
osmolarity. After a 45-rain incubation at 37"C, and AO staining of the 
cultures, total counts of parasite phagolysosomes in 10 to 20 fields at x 400 
were summed. Values from duplicate cultures were combined. 

*A  plaque titration in human fibroblast monolayers showed that the fre- 
quency of invasive parasites remaining in the suspension of non-invasive 
parasites was 2 x 10 -6. 

* Normal mouse serum was added to the cultures lacking parasite-specific 
antiserum. 

! Similar control cultures that were incubated for 115 rain did not show a 
significant increase in uptake over the indicated 45-rain value. 

by the reduction of cytochrome c, did not require Na + influx 
for signaling or for enhancement (Fig. 3 A). Chloride, another 
major ion in the assay medium, has an intracellular concen- 
tration that is about one third that of the assay medium (31). 
Replacement of NaCI by an osmotic equivalent of sucrose 
reversed the C1- gradient across the membrane, but only 
reduced the production of 02- by -36% in this experiment 
(Fig. 3B), indicating that permeability changes in the mem- 
brane with respect to CI- are not essential to the signaling 
mechanism. Further substitutions: bicarbonate or phosphate 
buffers in place of HEPES or HEPES-Na2CO3 gave essentially 
the same results. The specificity of the assay for 02- produc- 
tion was indicated by the cell-free control levels ofcytochrome 
c reduction when stimulated cells were assayed in the presence 
of the specific 02- scavenger, superoxide dismutase. 

NH4 + Pre-treatment Introduces a Na + 
Requirement for 02- Generation 

The above conclusion that stimulation of 02- generation 
in monocytes does not require a Na + gradient is inconsistent 
with published reports that 02- generation by neutrophils is 
dependent on the external concentration of Na ÷. It seemed 
unlikely that these two cell types would have totally different 
mechanisms for signal transduction. Therefore, the methods 
for isolating these cells were compared to determine if there 
were any steps that could have altered the sensitivity of 
neutrophils to external Na +. Using the Boyum isolation 
method (22), neutrophils, but not monocytes, co-isolate with 
large numbers of contaminating erythrocytes. Two purifica- 
tion steps are required to remove them. Monocytes, used as 
the test cell because their 02- generation response was inde- 
pendent of the external Na + concentration, were mock-puri- 
fied by exposing them to each step of the neutrophil purifi- 



and the 94% inhibition after exposure of cells to a combina- 
tion of NH4 + pre-incubation and dextran at 4°C indicated 
that pre-treatment with NH4 ÷ produced the sought-after Na ÷- 
reversible inhibition. 

FIGURE 2 Formazan deposit ion in phagosomes formed in Na + (A), 
K + (B), and chol ine + (C) media. Phagocytosis of formaldehyde- 
denatured, opsonized T. gondii by J774.2 macrophages in Na + and 
Na+-substituted media but containing NBT was carried out as 
described in the Materials and Methods. After 60 min at 37°C, the 
cultures were fixed, counterstained with safranin-O, and photo- 
graphed. The black granular deposit in the crescent-shaped pha- 
gosome containing a parasite is formazan, the product of reduction 
of NBT by 02-  released into the phagosomal vacuole. 

cation procedure. They were then assayed for 02- generation 
in the presence and absence of Na +. Both steps in the "puri- 
fication" procedure were found to introduce a Na + require- 
ment for this effector function in monocytes (Table II). Cells 
exposed to 2% dextran in RPMI and chilled for a prolonged 
period, exaggerated here for the purpose of enhancement, 
were depressed in their ability to generate 02- in the absence 
of Na +. The 23% reduction of the activity in the absence of 
Na + in the medium may have been a result of prolonged 
chilling that is known to alter intracellular Na ÷ and K + 
concentrations due to slow ion flux across the membrane at 
4°C with no countering Na+/K + ATPase activity. This rela- 
tively small reduction of 02- generation activity in the absence 
of extracellular Na + is also seen in preparations of alveolar 
macrophages (2 I). Cells exposed to the erythrocyte lysis me- 
dium (155 mM NH4CI, 10 mM HEPES [pH 7.2]) were 
markedly depressed in 02- generation in medium that lacked 
Na ÷. The 83% inhibition imposed by NH4 + pre-incubation 
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02-  generation by monocytes in the absence of a Na +, 
K +, or CI- transmembrane gradient. Freshly isolated human mono- 
cytes were incubated in RPMI medium for 4 h after which they 
were washed in chol ine + medium containing 10 mM Na +. They 
were assayed for 02-  generation in an assay mixture containing Na + 
(O), K + (A), choline + (1-1), or sucrose (V) medium and opsonized 
zymosan. 02 -  generation in the absence of opsonized zymosan 
(closed symbols) and in the presence of opsonized zymosan and 
superoxide dismutase (open symbols, dashed line) are also indi- 
cated. 02-  was determined by a spectrophotometr ic assay of cy- 
tochrome c reduction. Control values of cytochrome c reduced in 
the absence of cells were 0.4 nmol for Na + medium and 0.7 nmol 
for sucrose medium at 14 min. Control values determined for all 
t ime points have been subtracted. Levels of 02-  generation by 
unstimulated cells were particularly high in this experiment. More 
typical values were 0.8-1.5 nmol at 15 rain. 

TABLE II 

Effect of 2% Dextran (4 °C) and NH4 + Pre-treatment on 02- 
Generation by Monocytes 

02-  generation 
activities, % of  

Pre-treatment* Na + control* 

2% dextran (4°C) 77.0 
N H4 + 17.5 
2% dextran (4°C), then NH4 + 5.5 

* Monocytes were pre-treated with 2% dextran in RPMI for 2 h at 4°C, or 
0.83% NH4CI-10 mM HEPES (pH 7.2) for 1 h at 37°C, or both. Cells were 
washed in 0 mM Na ÷ medium before the O2-generation assay. 
Pre-treated monocytes in 0 or 140 mM Na + medium were assayed for 02- 
generation stimulated by opsonized zymosan and incubated for 17 h at 
37°C. Results were expressed as (nmol reduced cytochrome c in 0 mM 
Na + medium/nmol reduced cytochrome c in 140 mM Na + medium) X 100. 
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Further examination of the effect of NH4 + on monocytes 
was necessary to establish its role in inducing a requirement 
for external Na ÷ in the production of 02-. Korchak and 
Weissmann (7) and Simchowitz and Spilberg (8) used neutro- 
phils that had been prepared by treatment with NH4 ÷ to show 
that the rate of 02- production was a function of the external 
Na ÷ concentration over a broad range. Monocytes, pre-treated 
with NH4 ÷ or left untreated, were stimulated with opsonized 
zymosan and the generation of 02- was measured in media 
that contained 0, 4, 8, 15, 30, and 140 mM Na ÷. The mono- 
cytes pre-treated with NH4 ÷ (Fig. 4A), but not the untreated 
cells (Fig. 4B), were dependent upon the concentration of 
external Na ÷ for the rate of 02- generation. When recovery 
from the NH4+-imposed inhibition was allowed to take place 
at 37"C in RPMI medium, the NHZ pre-treated monocytes 
lost the dependence upon external Na ÷ (Fig. 4D) that was 
expressed by cells not permitted such a recovery (Fig. 4 C). 

The possibility should be considered that the dependence 
upon external Na ÷ imposed by prior treatment of monocytes 
with NH4 ÷ could be the result of altered interaction of the 
opsonized zymosan with receptors. Although radiolabeled 
concanavalin A (7) and f-met-leu-phe (8) bind to NH4 ÷ pre- 
treated neutrophils regardless of the external Na ÷ concentra- 
tion, particulate ligands such as opsonized zymosan may 
require receptor capping for stabilization of the stimulus on 
cell surfaces in a suspension culture. It is not known whether 
receptor capping is inhibited in a Na+-reversible manner in 
NH4+-pre-treated cells. To eliminate the possibility that the 
NH4 ÷ treatment resulted in a mechanical difficulty in the 
binding of particulate, multivalent ligands, PMA, a potent 
stimulator of the inflammatory response (32), was used to 
induce 02- production. PMA has been shown to activate 
cytoplasmic protein kinase C (33). This stimulant probably 
bypasses any binding and capping requirement for particulate 
ligand stabilization. PMA was added to NH4+-pre-treated 
monocytes that had been pre-incubated in media of various 
Na ÷ concentrations from 0 to 140 mM (Fig. 5, A and B). The 
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FIGURE 4 Na + concentration dependence for 02- generation by 
monocytes pre-treated with NH4 +. (A) 02- generation by NHZ-  
pre-treated monocytes stimulated by opsonized zymosan. The 
numbers labeling each curve indicate the millimolar Na ÷ concen- 
tration present in that assay medium. (B) 02- generation by un- 
treated monocytes (from the same lot of cells as A). (C) 02- 
generation by another population of NH~+-pre-treated monocytes. 
(D) Oz- generating capacity of pre-treated cells from C after a 
"recovery" incubation in RPMI medium at 37°C for 6 h. Background 
cytochrome c reduction in the absence of cells was subtracted from 
all the time points and averaged 0.4-0.15 nmol/ml at 15 rain. No 
samples were taken at zero time and therefore no correction was 
made for the initial absorbance differences. 
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FIGURE 5 Dependence on external Na ÷ for 02- generation by 
PMA-stimulated monocytes and macrophages pre-treated with 
NHZ. (A) Monocytes, exposed to NHZ, were added at zero time 
to 02- generation assay medium that contained 0, 4, 8, 15, 30, or 
140 mM Na ÷ but lacked stimulant. PMA was added to each assay 
at 26 rain. (B) PMA-stimulated 02- generation of A was replotted 
after subtracting the background cytochrome c reduction that oc- 
curred in the presence of cells but in the absence of stimulant. (C) 
Monocyte-derived macrophages were incubated with 0.1 pg/ml 
LPS for 24 h at 37°C. They were then pre-treated with NH4 ÷, after 
which one half were allowed to recover in RPMI medium while the 
other half were assayed for 02- generation in 4 and 140 mM Na ÷ 
assay medium containing LPS. PMA was the stimulant. (D) The 
NH4+-pre-treated, LPS-activated macrophages assayed under the 
same conditions as in C after having been allowed to recover in 
RPMI medium for 60 min. Control curves of 02- generation in the 
presence of cells and LPS but in the absence of PMA were sub- 
tracted from C and D. Values for reduced cytochrome c in these 
controls at 15 min were 0.35 nmol in C, and 0.40 nmol in D. Control 
and experimental time points included zero time samples. 

background rates of cytochrome c reduction in the absence 
of the stimulant were essentially the same for all Na ÷ concen- 
trations. Although PMA more closely induced linear rates of 
02- generation than were seen with opsonized zymosan, the 
overall Na ÷ concentration dependence for effector function 
was maintained. The half maximal rate of O2- generation was 
supported by 30 mM Na ÷. The results indicated that the Na ÷- 
reversible NH4 ÷ inhibition was probably not simply due to 
inhibition of the capping required for interaction of particles 
and multiple receptors. 

Another possible explanation for the Na÷-reversible effect 
of pre-treatment with NH4 + is that some activator contami- 
nated the media used to reverse the effect of NH4 +. This 
possibility was examined with cells that had been incubated 
in RPMI medium that had been tested and found to be 
essentially free (<0.071 ng/ml) of endotoxin. Subsequent 



incubation in saturating concentrations of a known activator 
and maintainance of that concentration throughout the assay 
should eliminate the influence of contaminating activator and 
it should eliminate variations of cell activity that may occur 
ifNH4 ÷ pre-treatment decreases the activated state of the cells. 
Monocytes that were incubated for 6 d show the granulocytic 
morphology ofmacrophages. Monocyte-derived macrophages 
obtained in this way were activated for 24 h in 100 ng/ml 
LPS (34). All of the activated macrophage cultures were then 
pre-treated with NH4 ÷. One half of the cultures were stimu- 
lated with PMA after a short incubation in media that con- 
tained LPS and 4 or 140 mM Na ÷ (Fig. 5 C). The other half 
of the cultures were allowed to recover from the NH4 ÷ treat- 
ment by incubation in RPMI medium that contained LPS. 
These latter cultures were then stimulated with PMA in media 
of different Na ÷ concentrations as described above (Fig. 5 D). 
The activated cells did not generate 02- unless stimulated 
with PMA (see legend of Fig. 5). These cells were as susceptible 
to NH4 ÷ inhibition as were freshly isolated monocytes, and 
showed an initial Na ÷ dependence and recovery to the inde- 
pendent state similar to that seen in Fig. 4, A-D. Therefore, 
inadvertant addition of activator to the media used for Na +- 
reversal or for monocyte recovery is unlikely to be the expla- 
nation for the difference in 02- generating capacity of cells in 
media with low and high Na ÷. 

NH4 + Pre-treatment Introduces a N a  + 

Requirement for Phagocytosis 

It was important to determine whether the NH4 + pre- 
treatment of cells inhibited only the 02- generation pathway 
or if it produced a more general condition of non-responsive- 
ness to the binding of a stimulatory ligand. To answer this 
question, I used in a phagocytosis assay, the same media and 
the same particulate stimulant, opsonized zymosan, used to 
assess 02- generation by inhibited cells. Instead of measuring 
the initial rates of 02- generation by NH4÷-pre-treated mon- 
ocytes, phagocytosis was measured in pre-treated J774.2 mac- 
rophages. Cell monolayers on glass coverslips were pre-treated 
with NH4C1-HEPES for 10 min at 22"C, rinsed with 0 mM 
Na ÷ medium, and overlaid with opsonized zymosan in 0 and 
140 mM Na + medium. Microscopic assessment of the phag- 
ocytic capacity of pre-treated cells, after a 20-min incubation 
at 37°C and a 10-min AO staining, revealed complete inhibi- 
tion of phagocytosis only in the Na+-deprived cultures (Fig. 
6A) while normal phagocytosis was observed in cultures 
incubated in 140 mM Na + medium (Fig. 6B). Thus, N H 4  ÷ 

pre-treatment of macrophages renders them incompetent for 
phagocytosis in the absence of external Na ÷. 

NH4 + Pre-treatment Acidifies Macrophage 
CytosoI--Reversed by Na + 

When J774.2 macrophages were incubated in NI-LC1- 
HEPES for 10 min at 37"C and then stained with AO in 
medium lacking Na ÷, the AO was concentrated by the entire 
cell, rather than just by the lysosomes (Fig. 6 C), indicating 
that the cytosolic pH had decreased as a result of NH4 + pre- 
treatment followed by Na ÷ deprivation. If Na + medium was 
added, the concentrated AO was released from the cytosol, 
but not from the lysosomes, of most of the cells (not shown). 
AO was not concentrated by the cytosol but only by the 
lysosomes of NH4+-pre-treated cells stained in medium that 
contained Na ÷ (Fig. 6A). This indicated that the N H 4 + - p r e  - 

FIGURE 6 AO-stained lysosomes (A), lysosomes and acidified pha- 
gosomes (/3), and acidified cytoplasm (C) of NH4+-pre-treated 
J774.2 macrophages. NH4÷-pre-treated cells were incubated for 20 
rain with opsonized zymosan in 0 (A) or 140 mM (B) Na + medium. 
Washed cells were stained with AO in Na ÷ medium. Some cells 
were incubated and stained in 0 mM Na ÷ medium (C). The fluores- 
cent dye is concentrated by the cytosol as well as the lysosomes of 
C. Open arrow points to zymosan in a phagosome; closed arrow 
indicates zymosan in a stained (acidified) phagosome. 

treated macrophages had become acidified under the condi- 
tions used for the phagocytosis assay and that the proton 
concentration of the cytosol decreased with the addition of 
Na ÷. Further consideration of the relevance of acidified cy- 
tosol to the inhibition ofphagocytosis in J774.2 macrophages 
as well as to the inhibition of 02- generation in monocytes 
and monocyte-derived macrophages will be found in the 
Discussion. 

DISCUSSION 

The Nature of the Transmembrane Signal 

There are two general models for information transfer, 
called signal transduction, across membranes. In one model, 
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some substance crosses the membrane as a result of ligand- 
receptor interaction in a manner similar to the Na + influx 
through the bound acetylcholine receptor or Ca 2÷ channel 
gating in the stimulated mast cell membrane. In the other 
model, a conformational change in a bound transmembran- 
ous receptor activates an effector on the cytoplasmic side of 
the membrane. An example of this model is the agonist 
activation of the beta-adrenergic receptor which then binds 
and activates the cytoplasmically disposed adenyl cyclase. 

As noted in the Introduction, binding of stimulatory ligands 
such as antigen-antibody complexes, concanavalin A, f-met- 
leu-phe, or PMA (1-12, 17-21) to different membrane recep- 
tors of mammalian phagocytes brings about changes in 
permeability, ion fluxes, and transmembrane potential. One 
of these receptors, the FcR that binds antigen-antibody com- 
plexes formed with IgG of the 3,2b/3,1 subclasses, acts as a 
channel for Na ÷ and K ÷ in a ligand-dependent manner (17- 
20). As a result of these observations, there is a frequently 
encountered belief that phagocyte effector function is a result 
of transmembranous signaling through ion fluxes (7-9, 11, 
17-20, 35, 36). 

The data in the present report show that the channel activity 
of the FoR cannot account for the signal transduction mech- 
anism for three effector functions: phagocytosis, phagosomal 
acidification, and 02- generation. Phagocytosis through bind- 
ing of Fc- and non-specific receptors or through binding of 
the ionophoretic FclL, zb/~l of J774.2 macrophages did not 
require Na+/K + fluxes. Acidification of the phagosome was 
equally Na+-insensitive, as was 02- generation. Whether acid- 
ification of the vacuoles took place through the action of a 
phagosomal H+-ATPase or through lysosomal fusion was not 
determined, although fusion with vacuoles containing killed 
parasites has been seen to occur, within the interval allowed 
for phagocytosis here, in peritoneal macrophages (37). It may 
be that lysosomal fusion with the phagosomal vacuole and 
secretion to the outside of the cell are also not dependent on 
transmembrane ion fluxes. 

The initial rate of 02- generation, stimulated by opsonized 
zymosan binding to Fc- and non-specific receptors, was un- 
affected by varying or substituting external Na +. This showed 
that enhancement of response is also not achieved by permit- 
ting Na ÷ influx at the time of agonist-dependent membrane 
permeability changes. Therefore, Na÷/K + fluxes are neither 
sufficient for transmembrane signaling nor necessary for the 
maximal rate of response. 

Other ions in the assay media known to exist in a gradient 
across the membrane include CI-, Ca 2÷, and H ÷. The data of 
Fig. 3B shows that external CI- was not essential for 02- 
generation. Wright and Silverstein (38) and Smolen et al. (14) 
have demonstrated that extracellular Ca 2+ is not necessary for 
phagocytosis and inflammatory responses, respectively, al- 
though the level of the responses may be reduced in its 
absence. Intracellular pH change (39) requires normal Na ÷ 
concentrations in the medium for H ÷ exchange through the 
homeostatic Na+/H ÷ exchanger (40-43), yet signal transduc- 
Lion proceeds in the absence of external Na ÷. Thus, if a 
gradient-driven ion flux is the signal for phagocyte functions, 
the ion involved cannot be Na ÷, K ÷, Ca 2+, CI-, and probably 
is not H ÷. 

Signaling of cytoplasmic function after stimulation of one 
specific type of receptor can affect several pathways that are 
not interdependent. For example, the bound FcR is capable 
of signaling phagocytosis, 02- generation, and lysosomal se- 
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cretion (17). Yet 02- generation and lysosomal secretion can 
proceed even when phagocytosis is inhibited with cytochalasin 
B (2), and Oz- generation proceeds independently of lysoso- 
mal secretion in stimulated neutrophil cytoplasts (44, 45). 
Perhaps there are multiple signaling mechanisms associated 
with the individual receptors, one of which might be Na ÷ 
influx-signaling of a function not tested in this report. The 
likelihood of multiple transmembrane signaling mechanisms 
diminishes with each Na÷-insensitive effector function stud- 
ied. Nevertheless, ion influx, triggered or channeled by recep- 
tor binding, could promote a cytoplasmic function (possibly 
homeostatic) other than the pleiotypic functions described 
above. At least for the stimulation of phagocytosis, phagoso- 
mal acidification, and 02- generation, the FcR must be sig- 
naling by undergoing an agonist-dependent conformation 
change. This change could confer stimulatory activity on its 
cytoplasmic domain or it could govern a lateral interaction 
in the membrane with other membrane components involved 
in a stimulatory pathway. 

Protein kinase C is thought to mediate inflammatory re- 
sponses of neutrophils (46-50). Diacylglycerol, the natural 
endogenous ligand of the kinase and a hydrolysis product of 
the polyphosphoinositides, stimulates 02- generation (48) 
and, in conjunction with Ca 2÷, lysosomal enzyme release (47) 
in neutrophils. Agonist-dependent breakdown of polyphos- 
phoinositides, precursors of the kinase activator, has been 
confirmed in neutrophils by Volpi et al. (51). In fact, there is 
evidence to suggest that protein kinase C mediates cell re- 
sponse to stimulation by Ca2+-mobilizing-agonists in many 
different cell types (46). PMA, a potent stimulant of the 
inflammatory response, is thought to bypass the initial steps 
of the agonist-dependent phosphoinositide pathway, by mim- 
icking the effect of one of its products, diacylglycerol, through 
direct activation of the kinase (33, 46, 49, 50). However, PMA 
also induces permability changes in the plasma membrane of 
neutrophils (9, 11, 45, 52). An interesting finding in the 
present report (Fig. 5D) was that Na ÷ influx was not required 
for and did not enhance PMA stimulation of 02- generation. 
This eliminates the possibility that Na ÷ influx or Na÷-induced, 
voltage-dependent changes in the membrane, in themselves, 
could be inducers of cell response by acting concurrently with 
the presumed protein kinase C activation. 

Na + Reversible Inhibition Imposed by an 
"NH4+-Prepulse " 

The inconsistancy between the results of this report and 
those of previous reports in which neutrophils showed a 
dependence on Na ÷ for lysosomal secretion and 02- genera- 
tion (7, 8) prompted a search for the basis of the differences 
between neutrophil and monocyte responses. An important 
finding was that the neutrophil purification procedure, used 
in the earlier investigations, inadvertantly introduced an ar- 
tifactual requirement for Na ÷. The agent that introduced a 
Na ÷ dependence in neutrophils was identified as NH4 ÷. Brief 
exposure to NH4 ÷, the main component of erythrocyte lysis 
medium in the Boyum isolation method (22), inhibited O2- 
generation in human monocytes and phagocytosis in J774.2 
macrophages. In each case, the inhibition was dependent upon 
Na ÷ for reversal. The kinetics of dependence on the Na ÷ 
concentration for the rate of 02- generation by neutrophils 
(7, 8) were reproduced using monocytes, but only if the 
monocytes were first exposed to NH4CI before stimulation. 



Beyond the artifactual Na ÷ dependence by neutrophils iso- 
lated by the Boyum method, there are no other accounts of a 
Na ÷ requirement for stimulus-response in phagocytes. 

There is a plausible explanation for the inhibition imposed 
by NH4 ÷ on phagocytes as well as for the observation that the 
inhibition was reversed by Na ÷. NH4 ÷ pre-treatment of cells 
is known to induce rapid acidification of cytoplasm (40, 43, 
53, 54). Cytoplasmic acidification using an "NH4+-prepulse, " 
the term adopted (53) to emphasize the brevity of the NH4 ÷ 
pre-treatment and to distinguish it from the prolonged use of 
NH4C1 as a lysosomotropic agent (55, 56), occurs in human 
fibroblasts (40), Chinese hamster lung cells (43), squid giant 
axon, mouse soleus muscle, and several other cell types (53, 
54). Cytoplasmic acidification by transient exposure to NH4 ÷ 
would be expected to occur in phagocytes since the mecha- 
nism of acidification seems to be diffusion of NH3 across the 
plasma membrane. The intracellular NH3 is protonated to 
form NH4 ÷, and thus alkalinizes the cytoplasm. Influx of H ÷ 
through the H+/Na + antiport or in the form of small amounts 
ofNFL + brings the cytosolic pH back to neutrality. When the 
NH4CI in the medium is removed, NH4 ÷ leaves mainly as 
NH3, thereby loading the cells with an excess of protons. (For 
fuller details see references 55 and 56.) External Na + is re- 
quired for reversal of the acidification in other cell types by 
promoting H ÷ extrusion through the Na÷/H + antiport (40- 
43). In the present report, pre-treated J774.2 macrophages 
that were washed in a Na÷-free medium did indeed become 
acid, and medium containing normal levels of Na ÷ was ob- 
served to reverse the acidification. 

There is no direct evidence that cytoplasmic acidification 
is the mechanism by which an NH4+-prepulse inhibits phag- 
ocytosis and 02- generation. However, several correlations, 
summarized below, suggest that this is the case. (a) The NH4 +- 
introduced inhibition of phagocyte effector functions was 
reversed by Na +. (b) The Na + concentration (30-40 mM) that 
supports the half maximal rate of O2- generation in NH4 ÷- 
prepulsed human neutrophils (7) and monocytes (present 
report) was the same as that for the half maximal rate of pH 
rectification in acidified human fibroblasts (40) and A431 
cells (41). (c) AO, usually concentrated only by acidic organ- 
eiles, concentrated in the cytosol of NH4+-pre-treated J774.2 
macrophages. This indicated that macrophages can become 
acidified under the conditions used for the phagocytosis assay. 
The AO-indicated acidity disappeared with the addition of 
Na ÷. (d) Two functionally independent pathways, phagocy- 
tosis and 02- generation, were both inhibited by NH4 ÷ in a 
Na+-reversible manner suggesting a general, pathway-inde- 
pendent, inhibitory condition. (e) The Na+-reversible inhibi- 
tion was independent of the type of stimulant used: opsonized 
zymosan binding to Fc- and non-specific surface receptors or 
PMA binding presumably to cytoplasmic protein kinase C 
(33, 46, 49, 50). Again, a general condition of non-respon- 
siveness is suggested. 

In summary, the present data indicate that monocytes, 
macrophages, and (it may be inferred) neutrophils require 
external Na ÷ to reverse an NH4÷-prepulse-introduced inhi- 
bition but not to signal or enhance phagocytosis, phagosomal 
acidification, or 02- generation. It is proposed that transmem- 
brane signal transduction resulting from agonist interaction 
with an external domain of the FcR is due to an ion-flux- 
independent stimulus of cytoplasmic response presumably 
through a conformational change in the receptor. 
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