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Abstract: The micro-scale and meso-scale ocean dynamic processes which are nonlinear 
and have large variability, have a significant impact on the fisheries, natural resources, and 
marine climatology. A rapid, refined and sophisticated observation system is therefore 
needed in marine scientific research. The maneuverability and controllability of mobile 
sensor platforms make them a preferred choice to establish ocean observing networks, 
compared to the static sensor observing platform. In this study, marine vehicles are utilized 
as the nodes of mobile sensor networks for coverage sampling of a regional ocean area and 
ocean feature tracking. A synoptic analysis about marine vehicle dynamic control, multi 
vehicles mission assignment and path planning methods, and ocean feature tracking and 
observing techniques is given. Combined with the observation plan in the South China Sea, 
we provide an overview of the mobile sensor networks established with marine vehicles, 
and the corresponding simulation results. 
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1. Introduction 

Ocean phenomena such as front, wind-driven red tides, and mixing upwelling are rapidly dynamic 
processes with high spatial and temporal characteristic, which are difficult to observe using regular 
static mooring observation systems. In order to provide coverage sampling in a regional area and ocean 
feature tracking in a mobile form, the use of mobile sensor platforms is preferred. Then, it becomes 
necessary to study the cooperation and optimization between the control and trajectory planning of 
mobile sensor networks and data assimilation in an ocean dynamic model. 

Researchers have carried out a number of ocean observation and environment monitoring programs. 
Data obtained from these programs has been applied to validate a variety of advanced instruments and 
ocean sampling strategies. These programs have also provided lots of data for research on ocean 
physics, biology, chemistry and others. Three large scale sea trials in 2000, 2003 and 2006 had been 
carried out [1,2] in the Autonomous Ocean Sampling Networks (AOSN) program. A variety of 
advanced, applicable instruments and regional observing technologies are proposed in ocean 
observation systems. A group of gliders were utilized to establish a virtual moored array to analyze 
meso-scale variability and phytoplankton in the Philippine Sea east of Luzon Strait for about 10 days 
of continuous observation [3]. The European Gliding Observatories (EGO) initiative [4,5] is a 
gathering of several European countries and oceanographic researchers, interested in ocean 
observation with underwater gliders. Surface vehicles and underwater vehicles together are exploited 
to establish a multi-layer model simulation and data assimilation system to collect temperature, salinity 
and ocean current data for oceanographic feature exploration [6]. The development of in situ observing 
instruments and mobile platforms favors the improvement of ocean observing systemc [7]. Underwater 
observing sensor platforms mainly include Array for Real-time Geostrophic Oceanography (ARGO) 
profile floats, fixed underwater observation networks, shipboard oceanographic survey systems, and 
marine vehicles including Autonomous Underwater Vehicles (AUVs), Autonomous Surface Vehicles 
(ASVs) and Autonomous Underwater Gliders (AUGs). Researchers prefer to select marine vehicles as 
sensor platforms carrying platforms for their superior maneuverability and low cost. Marine vehicles 
are intelligent, mobile, controllable sensor platforms and make possible rapid and adaptive ocean 
dynamics process observation, especially for near-real-time (NRT) observations of ocean micro-scale 
phenomena [8,9].  

The development of computers and data assimilation techniques provides convenience for 
prediction and estimation of ocean dynamic process. Ocean models such as Modular Ocean Model 
(MOM), Princeton Ocean Model (POM), and Regional Ocean Modeling System (ROMS) [10] have 
developed to a mature status, and become an essential tool to simulate ocean environments. Ocean 
models are utilized to establish the communication between observations and ocean physical 
processes. Data assimilation is a technique that melds observation data, and ocean dynamic process 
together to make efficient, accurate and realistic estimations. Data assimilation methods can be 
grouped into two categories: sequential assimilation and non-sequential assimilation [11]. The former 
include optimal interpolation (OI), three-dimensional variation (3DVAR) [12], Kalman Filter, 
Extended Kalman Filter (EKF), and Ensemble Kalman filter (EnKF) [13]. The latter includes  
four-dimensional variation (4DVAR) [14] and Kalman Filter Smoother. 
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According to the observation mission and optimal criteria, the NRT path planning of marine 
vehicles is closely related to the vehicles’ maneuverability, data estimation and prediction, and 
cooperative control methods. In view of artificial potentials and virtual bodies, Fiorelli et al. [15] 
proposed a formation control method to detect and track ocean features, such as ocean fronts, 
upwelling, gradient fields, and eddies. Zhang et al. [16] introduced a cooperative KF method to track 
ocean features in a noisy and changing scalar field, which connects the formation control, data 
estimation, and the formation optimization together. Jin et al. [17] and Susca et al. [18] consider the 
feature boundary as a hidden Markov model (HMM) with separated sample data information collected 
from multi vehicle platforms, and develop a Page’s cumulative sum algorithm for each vehicle’s 
boundary track, and estimate the boundary with the data collected from vehicles, the prior knowledge 
and boundary model. Smith et al. [19] designed a mutual observation method: gliders’ trajectory is 
predicted with the output information from an ocean model, and gliders provide NRT measurement 
information that is sent back to the ocean model. For the sample of physical and physical 
biogeochemical dynamics, Lermusiaux [20] combines the ocean model with sample data via data 
assimilation, and develops a novel adaptive modeling approach with simplified maximum likelihood 
principles. Leonard et al. [21] proposed Objective Analysis (OA) as the evaluation criteria, and then 
constrained the mobile vehicle-sensor nodes on the parameterized trajectory to execute samples. The 
desired observation data can be obtained with the optimization of trajectory parameters and number of 
vehicle sensor nodes. Alvarez et al. [8] described networks with drifting profiling floats and gliders for 
adaptive ocean sampling, and proposed the genetic algorithm to optimize the gliders’ trajectory. 
Considering the situation where ocean current is comparable to vehicles’ velocity, Davis et al. [22] 
proposed a method to compute an optimal transit route to rapidly reach a specified waypoint based on 
the ray equations for non dispersive wave propagation. Yilmaz et al. [23] applied a mixed integer 
linear programming (MILP) method to find the vehicles’ path, that where the sample process can 
maximize the uncertainty of scalar field estimates. Heaney et al. [24] proposed a genetic algorithm to 
assimilate the uncertain regional measurements into the dynamical ocean model. 

In this study, a framework of ocean phenomena observing systems with underwater mobile sensor 
networks is given. The main idea is to integrate the control and plan of the sensor platforms with data 
assimilation to obtain more sample data. A brief overview of observation system configurations is 
given in Section 2. Section 3 presents the decomposition and assignment of observation missions. With 
respect to different kinds of observation missions, the advantage and characteristics of cooperative 
observations with different marine vehicles are analyzed. Autonomous trajectory planning and 
optimization of underwater vehicles, mainly for ocean feature tracking and coverage sample of ocean 
areas, is described in Section 4. Section 5 details the ocean data assimilation and ocean model 
simulation. Descriptions of semi-physical simulation platforms of marine vehicles are given in Section 6. 
Finally, Section 7 contains the corresponding simulation results, including the isothermal line tracking 
in the South China Sea (SCS) and underwater glider dynamic experiments.  

2. Overall Observing System Configuration  

The overall integration of ocean phenomena observation systems includes the following parts 
(Figure 1): marine vehicles’ onboard system (MVOS), onshore server and database storage system 
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(OSDSS) and data processing and vehicle path planning system (DPVPPS). MVOS includes sample 
sensors (Conductivity Temperature Depth profiler (CTD)), vehicle sensors (sonar, 3-Axis Compass 
(TCM3)), propulsion system, storage to store sample information and vehicle dynamic state, and the 
onboard control part. Onboard control as the management center of the onboard systems collects 
sample data from CTD; on the other hand, this part controls the vehicle state according to commands 
from the leader AUV. The onboard control part establishes the connection with other vehicles (or the 
leader vehicle). Vehicles’ sample information and dynamic information are stored temporarily on the 
SD card. Multi AUVs are operated in the pre-planning mode, or transmit information to each other 
through acoustic. Multiple AUVs can follow the leader AUV or work together to complete the 
observation mission. USV executes ocean surface observations and transfers information between 
AUG, AUV and OSDSS. AUG can connect and transmit data to OSDSS through satellites or 
temporarily store sample data on the USV. OSDSS is the center for data storage and data-sharing. 
Through OSDSS, we can downloaded the control command and trajectory from the vehicles path 
planning system, and then transmit to each marine vehicle through USV or satellites; on the other side, 
we can upload and storage the sample data and vehicle’s motion state from the marine vehicles. The 
internet (WWW/FTP) is selected to connect DPVPPS and OSDSS.  

Figure 1. System configuration. 

 
 
The design of MVOS varies with marine vehicles. In this paper, DPVPPS is described in detail. 

DPVPPS mainly includes the following modules: (A) decomposition and assignment of observation 
missions; (B) autonomous trajectory planning and optimization; (C) ocean sample data assimilation 
and ocean model simulation; (D) semi-physical simulation platforms of marine vehicles. For a specific 
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observation mission, we first decompose the mission and assign the mission to suitable vehicles; then 
choose favorable history data information from ocean data assimilation module to initialize the 
mission. Considering the sample data information, optimal criterion and vehicles’ motion characteristics, 
vehicles’ trajectories are then planned and optimized. After getting new sampling data, we fuse the 
sampled data and historic data to construct a NRT sample system and provide information for virtual 
display. The new sample data, data assimilation results and vehicles’ present state are used to predict 
vehicle trajectory in the next steps. The continuous trajectory is discretized to waypoint form, and then 
the control law between each two waypoints is designed in marine vehicles’ semi-physical simulation 
platforms. By using the virtual display, we can obtain general information, and monitor each module’s 
status and provide assistance to each module in case of emergency.  

3. Decomposition and Assignment of Observation Missions 

Observation and sampling density depends on the rate of change of ocean phenomena. These 
variations impose various requirements for marine vehicles such as motion mode, communication 
mode, and endurance. In this study, observations of meso-scale and micro-scales dynamic processes 
with scale less than 100 × 100 km2 is discussed. Typical objectives of an ocean observation mission 
may include physical oceanography, biological, and ecology. Observation missions can be decomposed 
into coverage observation in a regional area, ocean feature tracking, emergency response observations, 
vertical profile observations, and hierarchical observations. Suitable vehicles should be chosen for a 
particular observation mission. As a result, the basic issues are mission decomposition and marine 
vehicle selection. 

3.1. Motion Characteristic of Marine Vehicles 

The characteristics, including communication capability, vehicle endurance, and propulsion system 
are different for USVs, AUVs, and AUGs. USVs having communications capabilities are close to land 
robot vehicles can connect to the onshore center in real time with high speed. The endurance of USVs 
depends on the propulsion systems and energy supply. AUVs communicate with each other with 
acoustic signals, or cooperate in a pre-planned form. AUVs have a relatively low endurance but good 
controllability and maneuverability. As a new kind of AUV vehicle, AUGs can take advantage of the 
hydrodynamic force (lift force) from the main wing and net buoyancy adjustment mechanism to glide 
up and down, so AUGs have long endurance, but low velocity and maneuverability. AUGs connect 
with the control center through a satellite when it floats to the sea surface. We select the shore-based 
centralized control center in planning and optimizing marine vehicles’ trajectory, and transmit the 
control commands to the vehicles through Iridium or communications transmitters. With the analysis 
of the marine vehicles’ motion property, three kinds of typical observing missions are defined as 
follows (Figure 2): 

(a) USV surface observation: These vehicles are suitable for high-precision observations on the sea 
surface. USVs can be applied for rapid response, emergency management. For example, if 
satellite communication is lost between a USV and an onshore server, the USV can temporarily 
store sample data and transfer the information of AUVs and AUGs. 
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(b) AUV hierarchical observations: These vehicles are suitable for high-precision observation of 
different water layers under the sea surface, thanks to their good controllability and 
maneuverability. AUVs are also preferred for regional observations such as eddies or 
emergency observations, extreme weather conditions, storm surges, etc. 

(c) AUG coverage sampling and vertical profile observations: AUGs can be utilized for vertical 
profile observation due to their vertical gliding up and down motion. On the other side, AUGs 
can glide for months with low power consumption. Therefore AUGs are suitable for long 
duration observations. 

It is worth mentioning that vehicle selection and observation mission matching cannot be separated 
absolutely. With the cooperation of different kinds of vehicles, a variety of observation capabilities can 
be derived. Considering the endurance of AUGs, we focus on AUG coverage sampling and ocean 
feature tracking observations, and take USVs and AUVs as additional observing vehicles. 

Figure 2. Motion characteristic of marine vehicles. 

 

3.2. Marine Vehicles Operating Modes for Ocean Observations 

The observation processes also have their own focus and requirements with respect to different 
ocean phenomena. For example, using shipboard CTD cross-section observations, temperature and 
salinity at different levels are collected. Moored subsurface buoys are mainly proposed to establish  
in situ and long-term observing systems for ocean mixed layers and air-sea interface observations. 
Drifting buoys can provide ocean temperature data covering a large range of ocean, therefore drifting 
buoys are chosen to establish the global observation array for ocean forecasting and climate studies. 
Here, the observing requirements and operating mode for marine vehicles are defined as follows: 

(a) Collaborative observations in a hierarchical plane: We constrain marine vehicles’ path on a 
parameterized geometric curve, and maintain vehicles’ positions and velocities with certain 
relationships, then execute coverage sampling observations. In this mode, the three dimensional 
observations are simplified to two dimensional observations in a horizontal plane at certain 
depths. This flexible observation mode makes possible quick adjustment of geometric 
parameters and collaborative relationships, so the sample regional area can be zoomed to 
maximize the validity of the sample data. This operating mode is suitable for AUVs, USVs, 
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and AUGs. We can get real-time connection or NRT connections from AUVs and USVs, and 
then design the collaborative control methods. For AUGs, when they float to the sea surface, 
the shore-based control center gets their position and then a control law is designed to pre-plan 
the gliders’ distribution during the next diving period.  

(b) Cross section (or profile) continuous observations: AUGs can execute repeat and continuous 
observations on the selected cross section. Compared to the shipboard CTD observations and 
ARGO floats, AUGs provide sample data with long duration and high sampling density.  

(c) Virtual mooring array observations: The marine vehicles are controlled in a confined region as 
an array to execute repeated sampling. This kind of observation is similar to the continuous 
vertical profile observations achievable with a fixed-point mooring subsurface buoy. A mobile 
virtual mooring array is made up of multiple marine vehicles. Then the surface observation and 
cross section observation can be combined together. In addition, through the vehicles’ position 
control, the suitable anchor point is selected as the virtual anchor array center. This mode is 
suitable for AUGs. 

4. Autonomous Trajectory Planning and Optimization 

In this section, the trajectory planning and optimization methods for coverage sample observations 
and ocean feature tracking are discussed. Coverage sample observation is an observation task with 
multiple marine vehicles working together to sample an ocean regional area uniformly. From the 
coverage sample, rough information observations can be obtained. After that, we focus on an ocean 
feature of interest, such as upwelling, or ocean front, and propose multiple vehicles combined with the 
NRT observation data to track the origin and boundaries of the feature.  

4.1. Coverage Sample Observations 

The system frame of coverage sample observation is shown in Figure 3. The sample data obtained 
from the marine vehicles are assimilated in the ocean model, and then the sample data variance 
distribution is evaluated to obtain prediction information of the observation objective. The data 
evaluation criterion decides the vehicles’ path planning and sample objective. Through mission 
assignment, we choose the suitable vehicle, and integrate variance distribution and prediction of 
sample data to plan the marine vehicles’ paths. 

Figure 3. Coverage sample observation. 

 



Sensors 2012, 12              
 

 

380

It is difficult to get comprehensive information with a single vehicle, so multiple vehicles are 
required to sample in a formation or maintain some relative position with respect to each other to 
obtain multiple data sets from different locations at the same time. KF and EKF are utilized for the 
sample instrument noise and the ocean spatially correlated noise. The ocean features are nonlinear, and 
cannot be expressed in explicit functions. However, with the understanding and the knowledge of the 
ocean features, EKF provides an approximate method to describe and estimate their variance. The 
sampling processes are affected by the ocean currents, marine vehicles’ velocity and endurance, so the 
cooperative observation control module optimizes vehicles’ formation and plans vehicles’ desired 
velocity to adjust for any disturbance of the environment. Lastly, marine vehicle platforms execute the 
desired velocity control and data sampling. Detailed descriptions of observation data evaluation, 
observation path planning and cooperative observation control are as follows: 

(a) Observation data evaluation: Criteria of observation data evaluation determine the effectiveness 
of data sampling. From numerical simulation and data assimilation, ocean environment 
prediction results can be achieved. In this study, the criterion is defined as the output 
uncertainty variance of the environmental prediction. The environmental prediction can be 
obtained from ocean numerical simulation in a constant-interval sequence form. It is known 
that, the longer of interval, the less the accuracy of the prediction results. Distribution of 
uncertainty variance reflects the accuracy of the prediction results: uncertainty variance of 
adjacent sequence reflects the spatial correlation of the ocean dynamic process, and uncertainty 
variance of the same network cell at different times reflects the temporal correlation of ocean 
dynamic process. 

(b) Observing path planning: Combining objectives, the ability of marine vehicles and 
environmental constraints, we transform the observation path and constraints as objective 
functions and constraint functions. The objective functions can be the shortest time, minimum 
energy, or validity of the observation data. In this study, the distribution of uncertainty 
prediction variance is selected as the objective function to improve the accuracy of 
environmental predictions. Repeated observations are carried out at the position of maximum 
uncertainty variance to access the interesting data. The constraints include velocity and 
endurance of marine vehicles, initial sampling position constraints, and observation operation 
(trajectory) mode, environmental constraints and so on. Mixed Integer Linear Programming 
(MILP) is proposed to solve the path optimal problems and design suitable marine vehicles’ 
trajectories to obtain comprehensive and uniformly distributed sample data. For continuous 
cross section observation, vehicles’ trajectory is restricted to a straight line in a longitudinal 
plane. In virtual observation mooring array observation, marine vehicles are constrained in a 
small radius circle, and then the trajectory of the array circle center is planned. For hierarchical 
observations, the vehicles’ trajectory is pre-planned on the closed-loop curve, such as a circle, 
ellipse, or square. The path planning is simplified to optimize the close-loop curve parameters 
(such as the center position of the curve, area covered by the curve, etc.), the number and 
location position of the vehicles. Ocean currents affect the vehicles’ motion and dynamics, 
especially AUGs which operate at a low velocity compared to AUVs and USVs. Current data is 
transformed into a three dimensional grid data and compensated using the vehicles’ velocity.  
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(c) Cooperative observation control: During observation processes, marine vehicles should operate 
collaboratively and maintain their relative positions in a formation. The cooperative control 
includes two types named “loose collaboration” and “close collaboration”. For the “loose 
collaboration”, we mainly plan each single vehicle’s path and control the vehicle’s dynamic 
model to maintain its observation path. For example, multi-profile continuous observation and 
virtual mooring observations are “loose collaboration” observations. In the “close 
collaboration” mode, multiple vehicles are required to have strict distribution to maintain their 
relative positions. For example, multiple vehicles cooperatively sampling on a closed curve is a 
“close collaboration”. In this situation, we design the control law to maintain the desired 
interval by measuring the curve arc length between adjacent vehicles. The vehicles’ dynamic 
control and the cooperative trajectory control law are designed separately. The continuous 
trajectory is discretized into waypoints, and the vehicles’ dynamic control law drives each 
vehicle to reach the next waypoint in the shortest time. A particle agent model is used to 
simplify the cooperative trajectory control design. In deep sea, two adjacent AUG exit points 
are about 5–7 km apart, and time interval is about 5 ~ 7 hours, so the cooperative control 
method for AUGs has to magnify many times in the spatial and temporal aspect, compared to 
land robots. It is possible that sampling data from different AUGs is not synchronized, since 
AUGs may not float to the sea surface at the same time. In this situation, the gliding velocity 
and position are pre-planned from data assimilation results.  

4.2. Ocean Feature Tracking 

After the rough information of the regional area is obtained, multiple vehicles are introduced to 
track the feature(s) of interest in the area. Figure 4 shows the frame and processes of ocean feature 
tracking.  

Figure 4. Ocean feature tracking. 
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First, the phenomena and variations are described as a mathematical expression by which the 

vehicles can track and observe in feature extraction module. For example, to track temperature upwelling, 
the temperature is described as a scalar field with the maximum (or minimum) as the center and 
gradient as the variation direction and magnitude of upwelling. In order to avoid the limitations of 
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observation information, multiple vehicles are proposed to move in a formation or rotational formation 
to obtain comprehensive information of the scalar field, and multiple sample data are employed to 
estimate the feature variation. The direction of movement of multiple vehicles depends on the feature 
extraction results and tracking missions. After the movement direction is certain, a leader-follower 
form is applied, that the leader vehicle tracks the movement direction, and multiple vehicles follow the 
leader vehicle to achieve the sample data. Those movements are defined as autonomous pursuing 
decision and multi vehicles cooperative control of tracking. There are certain noises in the observation 
data, caused by the complex background field noise and instrument noise, so KF, EKF are introduced 
in vehicles’ cooperative control module to reduce the observation errors caused by instruments and 
temporal-spatial variations. Detailed descriptions are as follows: 

(a) Feature extraction: Typically extracted ocean features include upwelling, fronts, gravity waves, 
tides, eddies. After the rough information of the ocean feature is received, an appropriate 
number of vehicles is selected to carry out the tracking missions. For example, when we track 
the two-dimensional temperature field T, the mission is described as tracking of       T, ,T୶׏  ,T୷׏
where ሾ׏T୶,  T୷ሿ is a gradient that reflects the variation of temperature. Three vehicles are׏
enough to complete the mission if the impact of higher order derivatives of the scalar field T is 
neglected. Then multiple vehicles are driven to move forward intelligently along the gradient 
directions or in an anti-gradient direction, or an orthogonal direction to the gradient, which 
depends on the observation objective. 

(b) Autonomous pursuing decision: Autonomous pursuing decision reflects multi vehicles’ cluster 
movement direction. The leader (or virtual leader) vehicle is defined as the multiple vehicles’ 
formation center, and the control law of the leader’s velocity and steering velocity is designed 
to track the feature. Then other vehicles are controlled to follow the leader in a formation. 
Autonomous pursuing decision combines the virtual leader vehicle tracking strategy and the 
actual track goals together, for example, when tracking temperature contours, first the pursuing 
strategy is designed to control the vehicle to move close to the contours, and then move along 
the temperature contours. In this process, many constraints and limitations should be taken into 
account, such as the actual vehicles’ speed limitation, the error between the movement 
direction and expected direction. If the feature is lost, the predictive information can be adopted 
to re-position.  

(c) Cooperative control of tracking: After the decision of the leader moving direction is 
determined, the control law is applied (including velocity and location) to drive multiple 
vehicles following the leader, and maintain a desired formation. Multiple vehicles’ formation 
control includes rotation, scaling and translation terms. The scaling of formation can change the 
size of the observation area. The qualities of observation data are different with respect to the 
sample location. For example, the gradient estimation depends on sample data T and distance 
between vehicles (P୧, i ൌ 1,2,3) and vehicle leader PC as Equation (1) shows:       T ൌ T୧ ൅ ሾ׏T୶ ׏T୷ሿሾP୧ െ PCሿԢ, i ൌ 1,2,3      (1) 

So in order to enhance the validity of sample data, the distance between vehicles as in Equation (1) 
are changed periodically to scale and rotate the vehicles’ formation. As a result, the sample data 
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estimation and formation design can be combined together to get rich sample data that reflects the 
feature variation and characteristics. 

5. Ocean Data Assimilation and Ocean Model Simulation 

Ocean models and historical sample data from satellites and in situ observations provide 
convenience for the construction of ocean environment models. Based on the knowledge of ocean 
environments and sample data from vehicles, many kinds of methods such as optimal interpolation, 
variation method and EnKF are utilized in data assimilation. We compare the assimilation results, and 
select the rapid data assimilation method for near real time observations. Figure 5 gives the processing 
flow scheme of data assimilation. There are appropriate and mature ocean circulation models (POM, 
ROMS, HYCOM) for ocean observations. In order to progressively enhance the temporal and spatial 
resolution of ocean simulation results, the sample data of observing region is refined level by level 
from 15' × 15', to 5' × 5', and then 2' × 2'. The low resolution simulation results provide the initial 
conditions and boundaries for the high resolution of ocean model simulations. Numerical simulations 
of regional observations include the following two steps: first, the ocean model starts up with the 
forcing field of climatology. When the ocean model becomes stable, we can get the climatological 
annual cycle. With these basic analyses, the driven factors, such as wind, sea surface heat flux, and 
freshwater flux, are added to get a NRT ocean environment simulation. Numerical modeling and 
simulation of regional ocean areas can provide ocean dynamic simulation environments, which are 
useful for verification of the correctness and effectiveness of the relevant sample data. On the other 
side, the simulation results can be applied to construct the background for the data assimilation.  

Figure 5. Ocean model and data assimilation. 

 
 
With the help of historical sample data and numerical model simulation results (for ocean regional 

areas that lack observation data), we select a suitable observation mode, and different kinds of marine 
vehicles to sample the relative region, and then construct the ocean feature environment model. The 
sample data collected by vehicles are the original data, and can be fused with the historical data for 
ocean background construction. The data assimilation results are evaluated on various aspects, such as 
demographic characteristics of the sample data, mean of the sample and RMS (root mean square) 
errors. The core concept of data assimilation is the definition of error and error estimation, including 
the background error (ocean dynamic model error) and observation error. The introduction of a 
background error covariance matrix that is suitable for the actual situation is important and difficult if 
there is less background information. Here, the recursive filter method and sequential three-dimensional 
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variational analysis (Sequential 3DVAR) are utilized to construct the background error covariance 
matrix. With the consideration of the effectiveness and efficiency of data assimilation methods, the 
rapid data assimilation methods, that suitable for the marine vehicles’ observation system are 
ultimately determined. 

6. Semi-Physical Marine Vehicle Simulation Platforms  

The observation sensor nodes are mainly composing of AUVs, AUGs, ASVs, and the dynamics and 
motion control of marine vehicles also have a significant impact on the sensor networks. This section 
gives a general control frame for marine vehicles as the following three parts (Figure 6): marine 
vehicle control simulation (MVCS), actual control of marine vehicle (ACMV), and ocean currents 
prediction and waypoint planning (OCPWP). Ocean currents have a significant influence on the 
vehicles’ motion, especially for AUGs. Sometimes, ocean currents are considerable compared to an 
AUG’s velocity, or even bigger than an AUG’s velocity. Ocean currents are estimated and then 
compensated with the vehicles’ velocity. As we know, due to the ocean currents and other external 
disturbances, the feedback velocity, position from MVCS and ACMV are different. From the multiple 
vehicles trajectory plan, we obtain the desired velocity νୢ and position ηୢ in the static water without 
consideration of ocean currents, so the vehicles control velocity vA  for ACMV may be different 
from  vୢ . From the difference between actual control feedback information  νA, ηA and simulation 
feedback information νୱ, ηୱ, ocean currents  νୡ  can be predicted. Then the desired  νୢ, ηୢ and ocean 
currents  νୡ are added to ACMV, and the desired  νୢ, ηୢ are utilized in MVCS. Through the simulation 
and actual control module, current predictions are updated cyclically from νA, ηA and  νୱ, ηୱ. Current 
prediction information from the previous cycle is applied to correct the vehicle’s present velocity. If 
the vehicle navigated the downstream, we have vA  ൏ vୢ, otherwise, we have vA ൐  vୢ. 

Figure 6. Semi-physical simulation platforms. 
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From the nominal vehicle dynamic model, MVCS provides an intuitive impression about the 
vehicle motion in the virtual reality, and provides a convenient condition for handing any emergency, 
collision avoidance, ocean current compensation, and debugging the advance control methods. Due to 
some velocity  V , and position  η from OCPWP, the simulation results can be achieved from the 



Sensors 2012, 12              
 

 

385

nominal dynamic model. Then through the coordinate frame transforms, the marine vehicles’ velocity, 
trajectory and position are transformed to the inertial frame, and finally, displayed on the virtual reality 
screen. ASVs can easily communicate with the shored control center in real-time mode, so the 
simulation component and actual control component can feedback information online from each other. 
AUVs and AUGs usually work in a pre-planning mode; therefore, it is convenient to switch the 
information transformation from real-time contact mode to the pre-planning mode or NRT mode.  

The dynamic models of AUV, AUG and ASV have a general form as in Equation (2) with subtle 
differences caused the propulsion systems used [25]: Mνሶ ൅ Dሺνሻν ൅ Cሺνሻν ൅ gሺηሻ ൌ τ     (2) 

where ν, η, τ are the velocities, position, and propulsion force, respectively; M, Dሺνሻ, Cሺνሻ, gሺηሻ are the 
inertial mass matrix, hydrodynamic damping matrix, rigid body coriolis and centripetal matrix, and 
restoring forces and moments. AUVs and ASVs are propelled by thrusters, fins and rudders, so many 
advanced control methods are used in these vehicles’ control. AUGs are propelled by net buoyancy 
and wings’ lift force. As a result, AUGs’ maneuverability is poor. On the other side, AUGs usually 
glide in steady states, and the switch time from initial state to a steady gliding process is short 
compared to the steady gliding process, so it is necessary to modify and correct the nominal dynamic 
model with lots of AUG ocean and pool experiments. Lastly, the relationships between gliding state 
and net buoyancy, position adjustment of inner movable mass block, can be applied for AUG path 
planning and optimization.  

ACMV mainly includes the low-level control, control allocation, and propulsion systems. We get 
the control force from the low-level control and then assign it to each thruster and rudder through 
control allocation. For AUGs, the control allocation is reflected as the adjustment of net buoyancy, the 
position of an inner movable mass block. Then we get νA, ηA from vehicle dynamic sensors and 
feedback to the ocean currents prediction and waypoint planning module. 

7. Simulation Results 

In this section, partial simulation results of the observation system are given. Firstly, the isothermal 
line tracking in a temperature scalar field is given as an example of ocean feature tracking, and 
secondly, experimental results of AUGs are described as an example of semi-physical marine vehicle 
simulation platforms. 

7.1. Feature Tracking with the Archived Data in the SCS 

The CTD data from the Northern SCS coastal Oceanographic Process Experiment Pilot-Project 
(SCOPEPP) cruise from 30 June to 13 July 2008 are used in the simulation. The sample data 
characterizes the temperature and salinity profile along the transactions during the cruise. We only 
focus on the isothermal line tracking at 35 m below surface. Since resolution of the sample data is low, 
a longitude is identified as a unit length, and three vehicles are employed to track the temperature 
isothermal line of 25°. The multiple vehicles’ formation is an equilateral triangle (∆PଵPଶPଷ), and PC is 
the virtual leader vehicle in the formation center. The distance between each vehicle and the equilateral 
triangle center is 0.2 unit length. The trajectories of each vehicle (P1, P2, P3, and PC) are shown in 
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Figure 7(A). The connecting line of vehicle 1(P1) and the virtual vehicle center (PC) coincides with the 
isothermal line, and the connecting line of vehicle 1 (P1) and vehicle 3 (P3) is orthogonal to the 
isothermal line. The rotational angular velocity of the formation depends on the curvature of the ocean 
feature, and the trajectory path length of the vehicle is different from each other. Figure 7(A) shows 
that, the path length of vehicle 2 is bigger than that of vehicle 3, as the trajectory of vehicle 2 is at the 
outside of the isothermal line most of the time. The path length of vehicle 1 is almost the same as that 
of the center vehicle, for its trajectory coincides with that of the center vehicle. As a result, the 
endurance and velocity of the vehicle should be seriously considered and selected. A Kalman Filter is 
utilized to estimate the temperature at the virtual vehicle center (PC) with the temperature information 
from P1, P2, and P3. Figure 7(C) gives the distance variations between the multiple vehicles. The 
convergence of the multiple vehicles’ formation is better in the field where the temperature changes 
are moderate. The isothermal line has great bending in the scalar field where the temperature changes 
rapidly, so when vehicles pass through these areas, the path length of each vehicle has a large 
difference; and formation is adjusted automatically according to the sample information from P1, P2 
and P3. As a result, vehicle formation in these areas has small oscillations. Trajectory of the virtual 
vehicle center is shown in Figure 7(B). Temperature estimation error between the true value in PC and 
the estimation result from P1, P2, and P3 is shown in Figure 7(D). From Figure 7(B,D), it can be  
seen that, the multiple vehicles’ formation center is around the 25° isothermal line with a small 
estimation error. 

Figure 7. Temperature isothermal line tracking with marine vehicles. 

  

(A) Temperature tracking with multi vehicles   (B) Position of center vehicle 

  
(C) Distance between multi vehicles  (D) Temperature estimation error 
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7.2. Dynamic Control and Simulation of Marine Vehicles 

AUG is selected as a special example to discuss the vehicles dynamic and control, for AUG’s 
maneuverability is low compared to other kinds of vehicles. The glider prototype was designed from 
2003, and the engineering versions were completed in 2007. The glider of engineering versions can 
dive down to 800 meters depth, with durance of 500 kilometers. The dynamic model of AUG that will 
be utilized in the observing systems has been discussed in [26] as: νሶ ൌ Mିଵ ቊെ Mሶ ν ൅ ቂ P ൈ ΩΠ ൈ Ω ൅ P ൈ Vቃ ൅ ቈ mୠg൫REBT k൯ሺm୫୰r୫୰ ൅ m୰ୠr୰ୠ ൅ mୠrୠሻ ൈ ൫REBT k൯቉ ൅ ቂFTቃቋ  (3) 

 mୠሶ ൌ uୠ 

Glider motions mainly include steady vertical motion and three dimensional spiraling gliding 
motions. With the assumption that the position of m୫୰  is fixed at  r୫୰ , and with a constant net 
buoyancy which implies that the control input  mୠሶ ൌ 0 , glider’s equilibrium equations in three 
dimension are: ቊ P ൈ Ω ൅ mୠg൫REBT k൯ ൅ F ൌ 0Π ൈ Ω ൅ P ൈ V ൅ ሺm୫୰r୫୰ ൅ m୰ୠr୰ୠ ൅ mୠrୠሻ ൈ ൫REBT k൯ ൅ T ൌ 0    (4) 

When a glider glides in the spiraling motion with a constant velocity, the pitch and roll angles are 
constant [27]. This situation implies that REBT k is constant. By taking the derivative of REBT k with 
respect to time [28], we get: Ω ൈ ൫REBT k൯ ൌ 0       (5) 

From Equation (5), it is known that the underwater glider glides with constant angular velocities 
along a circular helix which is aligned with the direction of gravity, and the angular velocity is  Ω ൌ REBT kωଷ. We select the net buoyancy mass mୠ, position r୫୰୶ and rotational angle γ of r୫୰ as the 
control input parameters, and give a description of a glider experiment performed during May 2011 in 
Songhua Pool, Jilin Province, China. CTD is used to get glider depth information and the digital 
compass module TCM3 (3-Axis Compass) to get glider attitude angles. Due to the depth limitation of 
the pool, the glider gliding depth is restricted within approximately 40 m. The sampling periods of 
TCM3 and CTD are approximately 6 seconds. In the experiment, the position and rotational angle 
(pitch angle θ, roll angle Ԅ) of m୫୰ are adjusted intermittently with TCM3 feedback information, and 
in a Matlab simulation, the open loop control is utilized to verify the glider’s hydrodynamic properties. 
The equilibrium point of buoyancy and position of mass m୫୰ are mୠ ൌ 0 and r୫୰୶ ൌ 0.4016 m. In 
the experiment, the gliding control mission in one gliding period is given as buoyancy  mୠ ൌ 0.2 kg , 
and offset of the linearly and rotationally movable mass as ᇞצ  r୫୰୶ ൌצ  0.01 m  and pitch angle  צ θ ൌצ ל20 . Figure 8(a) shows glider depth information in the vertical plane. Considering the 
limitation of velocity sensor, we differentiate depth with respect to time to get the velocity along k , 
which is shown in Figure 8(b). The glider pitch angle is approximately 20°, as shown in Figure 8(c). 
Figure 8(d–f) give glider control inputs of mୠ, r୫୰୶ and γ. צᇞ r୫୰୶  which are 10 mm approximately צ 
and the net buoyancy is 0.2 kg, and rotational angle γ is 48°. Figures 8(g,h) show roll angle and yaw 
angle with respect to the variation of γ . Figure 8(h) shows that the turning direction is the same with 
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opposite input of γ during turning up and down. Both the input γ and direction of glider lift force 
change oppositely during up and down. The centripetal force is a projection of lift force with a sine 
function of γ . As a result, the turning direction is the same. The simulation results are agreement with 
the experiment in most cases, with a little difference caused by the flow, the glider mass distribution, 
and other disturbances. The comparison shows that the hydrodynamic coefficients and dynamic model 
predict the overall glider dynamic accurately.  

Figure 8. Underwater glider simulation and experiments. 

   
(a) Glider depth   (b) Heave velocity   (c) Pitch angle   (d) Net Buoyancy 

  
(e) Position of m୫୰ along X  (f) Angle γ   (g) Roll angle   (h) Yaw angle  

8. Conclusions and Future Works 

In this paper, a general introduction to architecture and protocol design for underwater mobile 
sensor networks is given. The main structure and methods of the observation system have been 
discussed, including mission assignment, marine vehicle dynamic control, numerical simulation of 
ocean models and data assimilation, and autonomous trajectory planning and optimization. Partial 
simulation results using cruise data in the SCS have been given to demonstrate the effectiveness of the 
system. In the future, more deep sea experiments for AUG will be utilized to modify the dynamic 
model, and enhance the glider’s performance. Sea currents from advanced Doppler current profilers 
(ADCPs) and other observation instruments will be integrated into the semi-physical simulation 
platforms for current estimations. The cooperative working of AUGs, USVs, and AUVs will be 
thoroughly considered for the information transmission and control delay. The dynamic analysis will be 
integrated to the path plan and formation control, so that, the limitations and constraints between these 
two parts can be considered. The limitations of velocity, time delay, and endurance in multiple vehicle 
formation control will be analyzed to establish a cooperative control system. The ocean model and data 
assimilation methods will be applied in SCS to mainly analyze the temperature and salinity variation. 
These parts will be integrated and fused into an overall system. The observation system will also be 
verified with more observation experiments in the SCS. 
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