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A B S T R A C T   

Vitamin B (Vit B) plays a regulatory role in cognitive memory and learning. We examined the 
biochemical and behavioral effects of biotin supplementation (BS) and swimming training (ST) on 
Alzheimer’s disease (AD), the most common type of dementia, in male rats. Sixty rats were 
randomly assigned to six groups: control, sham (receiving phosphate-buffered saline), AD 
(receiving a single injection of Aβ into the lateral ventricle), ST (for 28 days and before Aβ in-
jection), and BS (receiving BS through oral gavage for 28 days before Aβ injection). The treat-
ments were continued until the end of the behavioral tests. Learning and memory functions were 
investigated through the Morris water maze (MWM) and depression and anxiety-like behaviors 
were tested by elevated plus-maze (EPM) and forced swimming tests. In addition, oxidative stress 
biomarkers, such as total thiol groups (TTG) and malondialdehyde (MDA) in serum were assessed 
and histological studies were performed using brain tissues. In the AD group, Aβ increased the 
distance traveled and escape latency in the MWM, but co-administration of BS and ST attenuated 
the results of the MWM, EPM, and FST tests. Furthermore, BS decreased the litigious biochemical 
effects of Aβ by enhancing the levels of TTG, in addition to reducing serum MDA levels. The use of 
BS as a potent antioxidant improved Aβ-induced memory impairment. It attenuated oxidative 
stress biomarkers in the brain (number of Aβ plaques) and serum of AD rats. We provide evidence 
for the use of BS in neurodegenerative disorders, such as AD, to elucidate the possible 
mechanisms.   

1. Introduction 

Oxidative damage plays a major role in the development of dementia, particularly AD [1]. The brains of AD patients have a 
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significant extent of oxidative damage associated with the unusually significant amyloid β (Aβ)accumulation and the deposition of 
neurofibrillary tangles [2]. Stress may lead to increased production of Aβ and its incorporation into Aβ plaques [3]. The risk of mental 
illness is higher in older adults with anxiety and depressive symptoms than in older adults with mild cognitive impairment and AD [4]. 
Aβ aggregation is a key event in the accumulation of Aβ in the brain, which is an early and central pathophysiological change within 
the biological continuum of AD [5]. Insomnia and sleep deprivation can also trigger Aβ aggregation [6]. Therefore, Aβ aggregation can 
trigger anxiety and depression, and preventing Aβ-aggregation could be a potential therapeutic strategy for these disorders. 

Biotin, a water-soluble vitamin, belongs to the Vit B complex family. Biotin acts as a coenzyme for four carboxylases: pyruvate 
carboxylase, acetyl-CoA carboxylase, propionyl-CoA carboxylase, and methylcrotonyl-CoA carboxylase [7]. During biotin deficiency, 
methylcrotonyl-CoA accumulates in the mitochondria and depletes succinyl-CoA and glycine, leading to the prevention of hem-
e/cytochrome synthesis and resulting in mitochondrial ROS generation, premature cellular senescence [8], and heme deficiency, 
which are linked to cognitive dysfunction [9]. Biotinylation is also influenced by biotin deficiency. Biotins can regulate gene 
expression through the biotinylation of histones [10] and affect cell proliferation, gene silencing, cell death, and DNA repair pathways 
through apoptosis [11]. This suggests that correcting biotin deficiencies can increase mitochondrial metabolism in the aging brain, 
which can optimize ATP generation efficiency [12]. 

Regular exercise is a non-pharmacological approach that prevents memory deterioration in AD [13,14], and exercise or physical 
activity can improve cognitive impairment and memory decline and postpone the onset of most cases of dementia, such as AD [15]. 
Studies on rodents have shown that regular exercise training can improve neuroprotection, inflammation [16], and cognitive [17,18] 
and non-cognitive [19] functions by reducing Aβ and tau deposition. Nonetheless, physical activity can attenuate cognitive deficits 
through Aβ-dependent or -independent mechanisms [15]. Various types of exercise, such as swimming [20], treadmill running [21], 
and wheel running [22] have been studied in AD; however, all types of exercises improve behavioral impairment in AD by increasing 
the levels of neurotrophic factors. The neuroprotective role of biotin supplementation (BS) has recently gained considerable attention 
owing to its ability to prevent mitochondrial damage [23]. Thus, this study was done to determine the protective effect of BS and ST on 
cognitive impairment and mental symptoms in a rat model of AD. 

2. Materials and methods 

2.1. Animals and experimental design 

Adult male rats (200–250 g) were purchased from the animal house of Hamadan University of Medical Sciences. Five animals were 
housed in each cage and after a week of adaptation to the new environment, 60 rats were randomly assigned to six groups (ten rats per 
group): 1) the control group: the rats that received a standard diet, 2) sham group: the rats that received phosphate-buffered saline 
(PBS) via intracerebroventricular (ICV) injection as a solvent of Aβ1– 40; 3) AD group: the rats that received a single injection of Aβ into 
the lateral ventricle; 4) BS group: the rats that received BS (IRAN DARU Co.) at 10 mg/kg/bw through oral gavage once a day for 28 
days [24] before Aβ injection, 5) ST group: the rats that received ST for 28 days before Aβ injection, and 6) BS + ST: the rats that 
received BS (10 mg/kg/bw) through oral gavage once a day and performed ST for 28 days before Aβ injection. The treatments were 
continued until the end of the behavioral tests. All animal procedures were performed in accordance with the institutional and national 
guidelines (ARRIVE guidelines) for animal care and approved by the Animal Research Ethical Committee of the Shiraz University of 
Agriculture. The experimental design is illustrated in Fig. 1. 

2.2. The main reagents and drugs 

Aβ (1–40) peptide (Tocris Bioscience; UK) was dissolved in PBS (10 μg in 10 μl of sterile PBS) and incubated at 37 ◦C for seven days 
to induce peptide aggregation [25]. 

2.3. Aβ injections and surgery 

To establish the AD model, anesthetization was done with an intraperitoneal injection of ketamine (100 mg/kg, Behbod Darou, 

Fig. 1. The experimental design.  
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Tehran, Iran) and xylazine (10 mg/kg, Alfasan, Woerden, The Netherlands), and the animals were placed in a stereotaxic device. The 
aggregated Aβ (5 μl) was injected gently within 5 min into the lateral ventricle (4 mm ventral to the cortex surface, 2 mm lateral to the 
midline, and 1.2 mm posterior to the bregma) [26]. The sham group only received PBS. Following injections, the skin was sutured, and 
the animals were allowed to recover in their home cages [27]. 

2.4. Swimming exercise 

Animals performed a four-week ST program in a cylindrical tank (148 cm × 50 cm), containing temperature-controlled water 
(30–32 ◦C), which included two phases: 1) adaptation phase (water depth: 5 cm, 10 min) and 2) ST phase (two or three sessions of 10 
min, water depth: 5–15 cm) with an interval of 10 min between sessions [28,29]. 

2.5. Behavioral study 

2.5.1. Evaluation of spatial memory 
Learning and memory were assessed by the Morris water maze (MWM) test [30,31]. The device was a black circular pool (diameter: 

160 cm and height: 80 cm) filled with water to a depth of 40 cm, which was kept at room temperature. The pool was divided into four 
equal quadrants. A black square platform (10 cm in diameter) was centered in the northeast quadrant of the pool and submerged 1.5 
cm below the water level. The walls of the room had different extra-maze cues so that the animals could learn the platform position. 
The pool had four quadrants (north (N), south (S), east (E), and west (W)) [32]. There was a video camera in the ceiling above the pool 
to record the sessions. The spatial probe test was done 24 h after the fourth session, during which the platform was removed, and the 
animals could swim for 60 s before being removed from the pool. The rats were released in the water exactly opposite from the 
platform location and their behavior, including escape latencies and swim speed was recorded for subsequent analysis. Thirty minutes 
following the probe test, the platform covered with aluminum foil was raised above the water surface, and in another zone, the animals 
could swim and find it within 60 s to test their visual ability. A digital camera positioned above the water maze was used to capture 
images per second and transmit them to a personal computer running the Neurovision software (Iran). 

2.5.2. Elevated plus-maze (EPM) test 
The EPM was used to evaluate anxiety-like behaviors [33]. The apparatus consisted of two open and two closed arms (length: 70 

cm, width: 10 cm), crossing perpendicularly in the center. The closed arms were surrounded by opaque walls (30 cm) and the whole 
maze was elevated 50 cm above the floor. Each rat was gently placed in the central area with its nose facing one of the arms and 
allowed to freely explore it for 10 min. The device was cleaned with a 5 % ethanol solution and dried with a cloth before testing the 
next animal. All sessions were recorded by a camera attached to a 60 W bulb placed 180 cm above the maze (22 lx in the central square 
of the maze). 

2.5.3. Forced swimming test (FST) 
FST is a widely used test to assess anti-depressant-like activity [34], which was used as previously described [28]. Animals were 

individually placed in a clear plastic cylinder filled with water (25 ± 1 ◦C) for 6 min. During the test phase, the swimming time, 
struggling time, and time spent floating with minimal movements to keep the head above the water were recorded as behavioral 
responses. 

2.6. Determination of MDA and TTG 

After the experiments, the rats were anesthetized with ketamine (100 mg/kg, Behbod Darou, Tehran, Iran) and xylazine (10 mg/kg, 
Alfasan, Woerden, The Netherlands). Blood samples were taken from the portal vein, followed by centrifugation at 3000 rpm for 10 
min at 4 ◦C. Total thiol group (TTG) and malondialdehyde (MDA) levels were measured using commercially available kits (Nav-
andsalamat Co., Iran. 

2.7. Histology 

The animals’ brains were fixed in 10 % neutral buffered formalin for at least 48 h. They were then washed, dehydrated in alcohol, 
and embedded in paraffin blocks. For histopathological assessment, tissue sections (4 μm) were stained with Hematoxylin and Eosin 
(H&E) and Congo Red, and the results were observed under an optical microscope at × 40 and × 400 magnifications. The survival rate 
was considered and the number of Aβ plaques was calculated using ImageTool software [35]. 

2.8. Statistical analysis 

Statistical analysis was conducted using SPSS 26. The Kolmogorov-Smirnov test was applied to indicate the normal distribution of 
data. A one-way ANOVA followed by Tukey’s post hoc test was used for all statistical comparisons, with a significance level set at p <
0.05. 
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3. Results 

3.1. Effects of BS and ST on MWM performance 

A significant difference was found between the BS + ST, BS, and other experimental groups in terms of traveled distance and escape 
latency (p < 0.001). As shown in Fig. 2 (a, b), all treated rats that received BS with ST and BS alone for four weeks showed a decrease in 
escape latency and traveled distance (p < 0.001). The BS + ST and BS groups spent more time in the target quadrant compared to other 
groups (sham, control, ST, and AD groups) (p < 0.001) [Fig. 2 (c)]. The AD group was found with an increase in escape latency and 
traveled distance compared to other groups (Fig. 2). The post hoc analysis indicated no significant difference between the ST group and 
the sham and control groups in terms of traveled distance, escape latency, and the mean time spent in the target quadrant (P > 0.05) 
[Fig. 2 (a-c)]. 

3.2. EPM results 

Different parameters were regarded for the measurement of the rat’s locomotor activity in the EPM. The number of entries into the 
closed arms and the time elapsed in closed arms indicated the locomotion state of the animals [Fig. 3 (a, b)]. In the AD group, the time 
spent in the open arms and the number of entries into the open arms significantly decreased. This group was found with an increase in 
the time spent in the closed arms of the EPM and the number of entries into the closed arms (P < 0.001). In addition, there was a 
significant difference between the BS + ST, BS alone, and ST groups and other experimental groups (sham, control, and AD groups) in 
the time spent in the open and closed arms of the EPM and the number of entries into the closed arms (P < 0.001). As shown in Fig. 3 
(a), the BS + ST group showed a significant increase in the time spent in the open arms of the EPM and the number of entries into the 
open arms. This group showed a decrease in the time spent in the closed arms of the EPM and the number of entries into the closed arms 
(P < 0.001). The BS + ST group showed no significant difference in the time spent in open and closed arms and the number of entries 
into the open and closed arms (P > 0.05). 

3.3. FST results 

The statistical analysis showed a significant interaction between the use of BS in the ST, ST alone, BS groups, and swimming and 
struggling time in the FST (Fig. 4). The time of swimming and struggling significantly increased in the BS + ST group (P < 0.001), but 

Fig. 2. Morris water maze (MWM) test results. Escape latency a, traveled distance b, the mean time spent in the target quadrant c. Sham group: the 
rats that received phosphate-buffered saline (PBS); Alzheimer’s group (AD) (biotin supplementation (BS) + Aβ): the rats that received BS for 28 days 
before Aβ injection; swimming training (ST) + Aβ group: the rats that performed ST for 28 days before Aβ injection, and BS + ST + Aβ group: the rats 
that received both BS and ST before Aβ injection. Data are shown as mean ± standard error of the mean (SEM). ***p < 0.001 compared to the 
control group and ###p < 0.001 compared to the AD group. 
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there was no significant difference between these groups (BS group versus the sham and control groups) in the swimming, struggling, 
and floating time in the FST (P > 0.05). Furthermore, the rats of the AD group showed an increase in the floating time compared to 
other groups (P < 0.001), while the floating time significantly decreased in the BS + ST and ST groups (P < 0.001). 

3.4. Effects of BS and ST on oxidative stress markers in rats 

MDA is the most frequently used biomarker of oxidative stress in many health problems. The impact of BS and ST on TTG and MDA 
serum concentrations was evaluated [Fig. 5 (a, b)]. Our results showed that the levels of MDA in the blood of the AD group significantly 
increased compared to other experimental groups (P < 0.001). Therefore, Aβ caused an increase in the levels of MDA in the AD group 
[Fig. 5 (b)]. In addition, BS significantly decreased the levels of MDA in the blood compared to the AD, sham, control, and ST groups (P 
< 0.001). These administration of BS synergistically returned serum MDA levels to healthy levels in rats. Also, serum TTG levels were 
higher in the BS group (P < 0.001), while TTG levels in the AD rats were lower than in all experimental groups (P < 0.001) [Fig. 5 (a)]. 
There were no significant differences between the BS + ST group and the ST group in the levels of MDA and TTG in the blood (p >
0.05). 

3.5. Histological studies 

Hippocampal neuronal damage and the neuronal survival rate in the rats were observed by Congo Red and H&E staining [Fig. 6 (a- 
f)]. The hippocampal neuronal cells in the AD group were dead and the intercellular space became larger. In this experimental group, 
some cells were disordered and the pyramid-like multilayer structures were disintegrated. In addition, neuronal loss in the first region 
in the hippocampal circuit (CA1) area and hippocampal histopathological damage were observed [Fig. 7 (a, b)]. The number of 
damaged neurons significantly increased in the AD group than in the control group (P < 0.001). 

Fig. 3. Effects of the biotin supplementation (BS) and swimming training (ST) on the time spent in the open and closed arms (a) and open and 
closed arms entries (b) in the experimental groups using the elevated plus-maze test. Sham group: the rats that received phosphate-buffered saline 
(PBS); AD: Alzheimer’s group (BS + Aβ): the rats that received BS for 28 days before Aβ injection; ST + Aβ group: the rats that performed ST for 28 
days before Aβ injection; and BS + ST + Aβ group: the rats that received BS and ST before Aβ injection. Values are presented as mean ± SEM (n = 10 
animals per group). ***p < 0.001 compared to the control group and #p < 0.05 and ###p < 0.001 compared to the AD group. 

Fig. 4. Assessment of anxiety-like behaviors. Effects of the biotin supplementation (BS) and swimming training (ST) on floating, struggling, and 
swimming time in the experimental groups within 6 min in the forced swimming test. Sham group: the rats that received phosphate-buffered saline 
(PBS); AD: Alzheimer’s group (BS + Aβ): the rats that received BS for 28 days before Aβ injection; ST + Aβ group: the rats that performed ST for 28 
days before Aβ injection; and BS + ST + Aβ group: the rats that received BS and ST before Aβ injection. Values are presented as mean ± S.E.M for 10 
rats. *p < 0.05, **p < 0.01, and ***p < 0.001 compared to the control group and ##p < 0.01 and ###p < 0.001 compared to the AD group. 
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The neuronal survival rate assessed in the CA1 area indicated variation among different groups. The AD group showed a marked 
reduction in the neuronal survival rate compared to other experimental groups (P < 0.001) [Fig. 7 (b)]. 

BS significantly increased large, round, and regular neurons in the CA1 area (P < 0.001) (Fig. 6). In addition, the number of survival 
neurons significantly increased in the BS + ST, BS, and ST groups than in other experimental groups (P < 0.001) [Fig. 6 (d-f)]. H&E 
staining revealed no significant neuronal abnormalities in the hippocampus of the BS group and the pyramidal cells in the CA1 area 
were arranged tightly and neatly with no cell loss. The BS group indicated a significant improvement in the neuronal survival rate in 
the CA1 area than in other groups (P < 0.001) [Fig. 7 (b)]. 

Neuronal damage in the BS and BS + ST groups was rare compared to the AD group, which indicated the neuroprotective effect of 
BS [Fig. 7 (a)]. 

4. Discussion 

In our study, the rats in the BS alone and BS + ST groups exhibited a significant decrease in MDA levels compared to other 
experimental groups. Also, the TTG levels in these groups were significantly higher than in other experimental groups; however, these 
results were different for the AD group. In many animal studies, the role of oxidative stress and antioxidant concentrations have been 
assessed in neurodegenerative disorders [36] because mitochondrial damage and oxidative stress lead to neurodegeneration [37]. 
Therefore, a diet rich in antioxidant vitamins may slow the progression of neurodegenerative diseases, such as AD [38,39]. There are 
two major groups of micronutrients necessary for optimal cognitive performance: water-soluble vitamins (B complex) and minerals 
[40]. There are four major mechanisms, by which micronutrients affect cognitive function: through their role in neurotransmitter 
production, receptor modification and neuronal membrane, affecting brain energy requirements, and through their role in Homo-
cysteine (Hcy) metabolism [40]. Nonetheless, these micronutrients have a direct effect on cognitive function via their involvement in 
the energy metabolism of glial cells and neurons, receptor binding, the production of neurotransmitters, and the maintenance of ion 
pumps of the membrane. A marginal deficiency of these micronutrients causes nonspecific symptoms, which are more associated with 
cognitive performance [40]. ST along with BS significantly decreased anxiety and depression-related behaviors. B vitamins can protect 
mitochondrial and other enzymes because these vitamins are cofactors, like biotin, or precursors of mitochondrial cofactors [41]. 
Biotin can act as a coenzyme for biotin-dependent carboxylases [42] and biotin deficiency reduces the activity of these enzymes. The 
antioxidant capacity of biotin [43] is attributed to its protective effects on neurons [42]. Exercise training also reduced stress oxidative, 
as the main cause of memory deficit in patients [44,45]. Various mechanisms have been suggested for the ameliorative effect of ex-
ercise training on reversing neurological disorders, including synaptic plasticity and the management of energy metabolism [46]. In 
accordance with our results, aerobic exercise training had anxiolytic effects and protected the animals from stress [47], and reduced 
anxiety-related behavior [48]. Regular swimming exercise, which was performed before Aβ (1–40) infusion, could protect against Aβ 
(1–40)- induced neurotoxicity [49]. 

Anxiety, depression, and cognitive impairment are all associated. According to Donovan et al. higher levels of brain Aβ were linked 
to more anxious-depressive symptoms [50]. Another study found that anxiety and depression were linked to subjective cognitive 
decline, which may be mediated by aggregation of Aβ and tau in the brain [51]. Depressive and anxious symptoms cause an increase in 
the risk of cognitive decline [52]. Similarly, Aβ1-42 levels might be associated with mental hindrance [53]. Aβ aggregation and anxiety 
in AD have a complicated relationship, and this relationship can cause anxiety [54]. According to recent research, exercise may have 
positive effects on AD and mental disorders. Basic subatomic tools of these effects include neurogenesis, brain-derived neurotrophic 
factor (BDNF), and miR-129 [55]. Exercise improved cognitive function and psychological conditions, like insomnia and depression 
[56]. Several underlying mechanisms related to muscle function, brain function, and neuroinflammation are linked to the beneficial 
effects of exercise on the brain [57]. Incorporating an exercise program into patients’ lifestyles was found to be beneficial and 
rewarding [58]. According to another study, swimming improved the cognitive and behavioral functioning of mice with AD [28]. 
Active work may reduce age-related diseases, including amyloidosis [59]. Physical activity improves memory and cognitive function in 

Fig. 5. Plasma levels of total thiol groups (TTG) and malondialdehyde (MDA) in all groups. Sham group: the rats that received phosphate-buffered 
saline (PBS); AD: Alzheimer’s group (BS + Aβ): the rats that received BS for 28 days before Aβ injection; ST + Aβ group: the rats that performed ST 
for 28 days before Aβ injection; and BS + ST + Aβ group: the rats that received BS and ST before Aβ injection. Data are presented as mean ± SEM (n 
= 10 per group). ***p < 0.001 compared to the control group and ###p < 0.001 compared to the AD group. 
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AD [60]. Several studies have discussed the molecular mechanisms of AD and the potential benefits of exercise and natural antioxi-
dants in alleviating the disease [61]. In addition, an enriched environment has been shown to improve cognition in tauopathy models 
in rats [62]. Antioxidant vitamins have potential therapeutic effects against AD [63]. These vitamins have antioxidant and 
anti-inflammatory properties leading to protection against neurodegeneration and reducing Aβ formation [64]. The molecular 
mechanisms, by which these vitamins enhance AD include their ability to act synergistically against lipid peroxidation and reduced 
oxidative stress, neuroinflammation, and apoptosis [65]. 

We found that taking BS alone and in combination with ST significantly improved cognitive abilities. According to EPM, FST, and 
MWM tests, concomitant intake of BS alone and in combination with ST reduced depression and anxiety-like behaviors in rats, but in 

Fig. 6. H&E (two left columns) and Congo Red (two right columns) staining of the sections of the hippocampal CA1 region. Control (a), Sham (b), 
AD (c), BS + Aβ (d), ST + Aβ €, BS + ST + Aβ (f) groups. Sham group: the rats that received phosphate-buffered saline (PBS); AD: Alzheimer’s group 
(BS + Aβ): the rats that received BS for 28 days before Aβ injection; ST + Aβ group: the rats that performed ST for 28 days before Aβ injection; and 
BS + ST + Aβ group: the rats that received BS and ST before Aβ injection ( × 40 and × 400). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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tissues, BS was more effective in reducing the number of Aβ plaques and increased neuronal survival in the hippocampus of AD rats. 
This improvement could be attributed to the reduced Aβ deposition and MDA levels and increased GSH and SOD concentrations in the 
brain homogenate [42]. Biotin reduces lipid peroxidation and oxidative stress in the brain, kidney [66], and liver [66,67]. In our study, 
Aβ (1–40) caused significant learning impairments in the MWM in rats, but we showed that simultaneous intake of BS alone and in 
combination with ST reversed the memory impairments in the experimental groups. Biotin can protect the brain and prevent AD. 
According to Ref. [68], high-dose biotin supplementation may neutralize promotion-related concealment of a system that separates Aβ. 
Biotin plays a role in the digestion of mitochondria and can reestablish glucokinase activity through a cyclic guanosine monophosphate 
(cGMP)-intervened system [69]. High-segment biotin has been shown to fabricate cGMP levels, which can restore fruitful long-stretch 
potentiation in rodent models [68]. Additionally, neuronal apoptosis and Aβ production can be inhibited by cGMP, indicating that 
high-dose biotin may have the potential to treat and prevent AD. By inhibiting the soluble guanylyl cyclase (sGC) activity that is 
involved in the production of cGMP, high-dose biotin for AD reduces Aβ levels [68]. Biotin as a vital vitamin for lipogenesis, is the 
coenzyme of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme for fatty acid biosynthesis. Due to the high lipid content of the 
brain, biotin deficiency has been linked to neurological disorders [70]. 

The main finding of our study was that concomitant administration of BS and ST reversed memory impairment in the BS + ST 
group. The concomitant administration of BS and ST was more effective than that of BS or ST alone, and the concomitant adminis-
tration of BS and ST may be more effective in suppressing oxidative stress in AD rats. Therefore, the concomitant administration of AD 
may cause neurogenic effects in the brain of rats. 

5. Conclusion 

The current study is the first on the neuroprotective role of BS with ST against AD by modulating oxidative stress and Aβ accu-
mulation. Our data indicated the role of BS in preventing or protecting AD through its antioxidant activity. Our results suggest the 
efficacy of biotin as a dietary supplement and ST in preventing the major components of AD. B vitamins are essential for all aspects of 
brain function; therefore, natural therapeutic compounds based on BS can be used to treat and prevent oxidative stress-related dis-
eases, such as AD. However, further clinical trials are needed to determine their potential and efficacy. Future research on AD patients 
should investigate the effects of different doses of BS on patients’ cognitive performance. 
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