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Abstract

The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of retroviruses and transposable elements and is able
to deaminate cytidines to uridines in single-stranded DNA replication intermediates. A3G contains two canonical cytidine
deaminase domains (CDAs), of which only the C-terminal one is known to mediate cytidine deamination. By exploiting the
crystal structure of the related tetrameric APOBEC2 (A2) protein, we identified residues within A3G that have the potential
to mediate oligomerization of the protein. Using yeast two-hybrid assays, co-immunoprecipitation, and chemical
crosslinking, we show that tyrosine-124 and tryptophan-127 within the enzymatically inactive N-terminal CDA domain
mediate A3G oligomerization, and this coincides with packaging into HIV-1 virions. In addition to the importance of specific
residues in A3G, oligomerization is also shown to be RNA-dependent. Homology modelling of A3G onto the A2 template
structure indicates an accumulation of positive charge in a pocket formed by a putative dimer interface. Substitution of
arginine residues at positions 24, 30, and 136 within this pocket resulted in reduced virus inhibition, virion packaging, and
oligomerization. Consistent with RNA serving a central role in all these activities, the oligomerization-deficient A3G proteins
associated less efficiently with several cellular RNA molecules. Accordingly, we propose that occupation of the positively
charged pocket by RNA promotes A3G oligomerization, packaging into virions and antiviral function.
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Introduction

The human protein APOBEC3G (A3G) belongs to a family of

cellular polynucleotide cytidine deaminases and is a potent

inhibitor of HIV-1 in the absence of the viral protein Vif [1].

Vif-deficient HIV-1 (HIV-1/Dvif) is subject to A3G mediated

cytidine to uridine deamination of single-stranded DNA that is

generated during reverse transcription, a process also referred to as

DNA editing or hypermutation [2–4]. In addition, A3G further

suppresses infection by inhibiting reverse transcription in a poorly

understood manner that seems to be independent of the

deamination activity of the protein [5–9]. A3G is incorporated

into progeny virions during particle assembly at the plasma

membrane by associating with the NC domain of the viral Gag

protein in an RNA dependent manner [10–15]. The viral Vif

protein prevents the antiviral properties of A3G by targeting it for

proteasomal degradation [16]. Specifically, Vif interacts with A3G

and recruits the cullin5-elonginB/C-Rbx ubiquitin ligase complex,

resulting in the polyubiquitylation and degradation of A3G [17].

This reduction of intracellular levels in A3G results in a substantial

decrease in the packaging of A3G into virus particles and,

therefore, suppresses its antiviral properties.

The recent reports of the crystal structure of APOBEC2 (A2) [18]

and the NMR and crystal structures of the C-terminal cytidine

deaminase (CDA) domain of A3G [19,20] offer opportunities to

investigate the structure-function organization of APOBEC proteins

with greater incisiveness. Although the physiological function of A2

is as yet unknown, its structure shows all the hallmarks of a cytidine

deaminase, being a five-stranded mixed b-sheet which presents on

one face two a-helices containing the H/C-X-E-X23–28-P-C-X2-C

catalytic centre that coordinates a zinc ion. Surprisingly, A2

associates into tetramers in a manner unprecedented among

cytidine deaminases. Whereas tetrameric free-nucleotide cytidine

deaminases of bacteria [21,22], yeast [23] and vertebrates [24]

adopt a globular structure in which each subunit interacts with the

other three, A2 forms a linear tetramer in which monomers interact

with either one or two of the other subunits [18]. An A2 monomer

contains a single CDA domain and two of these form a dimer by

joining the b-sheets present in each monomer in a side-by-side

fashion such that one wide b-sheet is formed. The tetramer is

assembled from two such dimers through head-to head interactions

at one edge of the extended b-sheets.

In contrast to A2, A3G contains two CDA domains in a single

polypeptide chain, which are termed the N- and C-terminal CDA

domains (N-CDA and C-CDA, respectively). Indeed, the CDA

fold observed in the A2 crystal structure closely matches the

structure of the truncated A3G C-CDA domain as observed by

NMR and crystallography [19,20]. Differences arise mainly at the

peripheral loops, which are generally longer in A3G than in A2.

The A3G C-CDA fragment is exclusively monomeric, both in
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solution and in crystalline form [19,20]. However, there is

mounting evidence that A3G not only oligomerizes [12,25–30],

but can also assemble into large RNP complexes that accumulate

in cellular microdomains that are associated with RNA regulation,

such as P-bodies and stress granules [30–34]. We therefore asked

whether the tetrameric structure of A2 may hold clues not only

into how A3G oligomerizes, but also into its participation in other

interactions. Here, we show that hydrophobic residues in A3G

that are equivalent to those that mediate A2 oligomerization are

required for RNA-dependent oligomerization, packaging into

HIV-1 virions and the inhibition of HIV-1 infection. In addition,

we present a homology model of an A3G dimer that reveals a

positively charged pocket at the predicted dimer interface.

Mutation of basic residues within this pocket also affects

oligomerization, RNA interactions, virion packaging and virus

inhibition.

Results

Differential contributions of A3G N- and C-CDA domains
to packaging, DNA editing, and oligomerization

The tetramer interface of A2 is formed of extensive hydropho-

bic, polar and electrostatic interactions, many of which are

clustered in a loop termed L1 [18]. In particular, residues F155,

M156 and W157 mediate key hydrophobic interactions

(Figure 1A), whereas R153, E158 and E159 are involved in salt-

bridges as well as in hydrogen bonding. Upon alignment of the A2

amino acid sequence with the N- or C-terminal CDA sequences of

A3G, we identified a highly similar loop sequence in both CDA

domains of A3G in which both charged and hydrophobic residues

are conserved (Figure 1B). Arginines equivalent to R153 in A2 are

present at positions 122 and 313 in A3G, whereas the tyrosines at

positions 124 and 315 in A3G are at the equivalent position of

F155 in A2. Although F155 does not make any direct interactions

across the tetramer interface of the A2 crystal, it is involved in a

cluster of hydrophobic packing interactions that sandwich M156

between Y61 and F155 at the tetramer interface. A tryptophan

equivalent to W157 in A2 is present only in the N-CDA of A3G at

position 127. W157 of A2 makes extensive hydrophobic

interactions across the tetramer interface, notably with Y214

and W157 of the adjacent subunit.

We have previously reported a mutational analysis of residues

122–146 of A3G to define the site of interaction with Vif, which

was mapped at positions 128–130 [35]. That analysis also revealed

that substitutions at positions Y124 and W127 yield A3G proteins

that are inefficiently packaged into virus particles and therefore

lose their antiviral properties. Given the involvement of the

conserved counterparts of these residues in A2 oligomerization, we

sought to establish whether this region would have an analogous

activity in A3G. To investigate this possibility, and to compare the

contribution that the N- or C-CDAs of A3G may make to

oligomerization, we introduced identical mutations (alanine,

leucine and phenylalanine) at residues Y124 and Y315; these

residues were chosen because they are present at equivalent

positions in both the N- and C-CDA of A3G, and because the

mutant proteins are expressed well. In contrast, the introduction of

substitutions at the conserved arginine at position 122 resulted in

poor expression [35], and mutants of R122 were therefore not

examined further. The construction of mutations at position W127

has been described previously [35].

Figure 1. The tetramer interface of A2 and sequence alignment
with A3G. (A) Detail of the A2 tetramer interface, highlighting residues
that mediate oligomerization interactions. One subunit is shown in blue
(left) and one in orange (right). Residues F155 and W157 are shown in
blue, other residues from the left-hand subunit that contribute
interactions are shown in yellow, and residues from the right-hand
subunit are in green; all are indicated by labels. (B) Sequence alignment
of A2 with the A3G N- and C-CDA domains corresponding to the L1
loop of A2. Arrows indicate the position of b-strands, and a barrel
indicates the position of an a-helix in the A2 crystal structure. Below the
alignment, residues in A3G are indicated that correspond to F155 and
W157 in A2.
doi:10.1371/journal.ppat.1000330.g001

Author Summary

APOBEC3G is a human protein that inhibits the replication
of HIV-1 in CD4+ T cells. It gains entry to the virus particles
that are released from infected cells and subsequently
interferes with viral genome replication, which in the case
of HIV-1 is reverse transcription. APOBEC3G is a cytidine
deaminase, and it catalyses the deamination of cytidines to
uridines in viral single-stranded DNA replication interme-
diates, resulting in the generation of defective progeny
viruses. In addition, APOBEC3G can inhibit reverse
transcription by a poorly characterized deamination-
independent mechanism. HIV-1 has evolved the viral Vif
protein to counteract the antiviral properties of APO-
BEC3G. Vif associates with APOBEC3G and targets it for
proteasomal degradation, such that intracellular levels of
APOBEC3G are reduced and packaging into virions is
averted. Based on the structure of a human homolog of
APOBEC3G, APOBEC2, we performed a mutational analysis
of amino acids that have the potential to mediate the
assembly of APOBEC3G into multi-component complexes.
We report that these amino acids affect the association of
APOBEC3G with itself and cellular RNA, and that the same
attributes are also required for packaging into virions and
antiviral function. Thus, the processes of APOBEC3G self-
association, RNA binding, and virion packaging are
functionally linked and essential for virus inhibition.

Oligomerization of APOBEC3G
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We first tested these mutant A3G proteins for their ability to

inhibit HIV-1/Dvif infection (Figure 2A). The substitution of Y124

or Y315 to alanine or leucine caused marked losses of antiviral

function, whereas substitutions to the chemically more similar

phenylalanine resulted in less marked disruption. Determination of

the A3G content of virus particles revealed that all mutations at

position Y124 result in poor packaging, whereas packaging was

maintained with mutations at position Y315 (Figure 2B). Interest-

ingly, the Y124F mutation yielded low but clearly detectable levels

of A3G in virions in comparison to mutants Y124A and Y124L,

which likely explains why this protein showed a less severe loss of

antiviral activity. We next determined the extent to which wild

type or mutant A3G can act as a mutagen in a bacterial DNA

editing assay (Figure 2C). In this analysis, we included two mutants

of W127 (W127A and W127Y), which have previously been

shown to have substantial packaging defects [35]. Editing activity

was maintained following substitutions at positions Y124 and

W127, but mutations at position Y315 caused a loss of editing.

Together, these results indicate that the loss of antiviral activity

imparted by mutations at residues Y124 and W127 corresponds to

reduced packaging, whereas DNA editing activity is unaffected.

Conversely, mutations at residue Y315 ablate DNA editing but not

packaging into virions, which is consistent with the critical

involvement of Y315 in substrate DNA binding at the catalytically

active C-CDA domain [19,20].

To begin to address the ability of A3G to oligomerize, we

performed a yeast two-hybrid experiment (Figure 2D). Mutations

were introduced into the prey-construct and assayed with a wild

type A3G bait. Again, we observed a marked difference between

the effects of substitutions in the N- and C-CDA domains of A3G.

Mutations at Y124 and W127 resulted in a lack of reporter gene

activity, whereas mutations at Y315 displayed wild type levels of

Figure 2. Characterization of A3G proteins with mutations at Y124, W127, and Y315. (A) Single-cycle infectivity of HIV-1/Dvif viruses
produced in the presence of wild type or mutant A3G, indicated on the x-axis, as measured in relative luciferase units and presented as percent
infectivity relative to the wild type A3G (RLU, y-axis). The empty vector control is indicated by -. The data are the average of three independent
experiments, and errors bars represent the standard deviation of the three independent transfections. (B) Expression of wild type and mutant A3G
proteins in 293T producer cells and packaging into HIV-1/Dvif virions as determined by immunoblotting. The empty vector control is indicated by -.
(C) Relative editing activity of wild type and mutant A3G proteins as determined in a bacterial mutator assay relative to activity of wild type A3G from
12 independent experiments. The empty vector control is indicated by -. Immunoblots beneath the graph show the expression of A3G in equal
volumes of the bacterial cultures. (D) Interaction of wild type and mutant A3G proteins (prey) with wild type A3G (bait) in a yeast two-hybrid assay as
determined by b-galactosidase activity in OD540 units. A series of controls include: C1, empty bait and prey vectors; C2, the positive control with
Tsg101-bait and Vps28-prey; C3, wild type A3G-bait and empty prey vector; C4, empty bait vector and wild type A3G-prey. The data are the average
of three independent experiments. Beneath the graph, immunoblots using anti-HA antibody show the expression in equal volumes of the yeast
cultures of A3G prey, which uniquely carry a triple HA –tag.
doi:10.1371/journal.ppat.1000330.g002

Oligomerization of APOBEC3G
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activity and, hence, interaction. This result suggests that residues

Y124 and W127 of the N-CDA domain play critical roles in A3G

oligomerization, whereas Y315 of the C-CDA does not.

RNA-dependent oligomerization of A3G is mediated by
the N-terminal CDA domain

To investigate further the oligomerization of A3G, we next

performed a series of immunoprecipitation and chemical cross-

linking experiments. Wild type or mutant A3G was co-expressed

with HA-tagged wild type A3G (A3G-HA) and then co-

immunoprecipitated from cell lysates using a monoclonal anti-

HA antibody. Aliquots were or were not treated with RNAse A

and analyzed by immunoblotting (Figure 3A). Consistent with the

results of the yeast two-hybrid experiments, wild type A3G and the

Y315A mutant were efficiently co-precipitated with A3G-HA,

whereas co-precipitation of the Y124A mutant was strongly

reduced and a mere trace amount of W127A was detected in the

immunoprecipitate. In all cases, co-precipitation with A3G-HA

was substantially inhibited by the treatment with RNAse A,

indicating that RNA is required for stable A3G oligomerization.

We then performed a chemical crosslinking experiment in which

cell lysates from 293T cells expressing wild type A3G were treated

with BM(PEO)3, a compound with two reactive maleimide moieties

separated by an 18 Å linker that form irreversible covalent bonds

with the sulfohydrils of cysteines [36]. After crosslinking and

resolution by SDS-PAGE, A3G was detected as a band migrating at

,80 kD as well as at ,40 kD where the untreated, and presumably

monomeric, A3G migrates (Figure 3B, lanes 1 and 2). Treatment

with RNase A prior to crosslinking resulted in complete

disappearance of the band at ,80 kD; this was maintained,

however, when the RNase treatment was performed after the

crosslinking reaction (Figure 3B, lanes 3 and 4, respectively). To

verify that the crosslinked A3G species migrating at ,80 kD

represents an A3G oligomer, we also perfomed an experiment in

which myc-tagged A3G (A3G-myc) was co-expressed with A3G-

HA, subjected to crosslinking and then immunoprecipitated with

the anti-HA antibody (Figure 3C). Samples were split into two

aliquots which were (or were not) subjected to RNase A treatment

after crosslinking. Indeed, A3G-myc was detected in the immuno-

precipitate as a species migrating at ,80 kD after treatment with

BM(PEO)3 and this was unaffected by treatment with RNase A. In

the control sample without the crosslinker, detection of monomeric

A3G-myc in the immunoprecipitate was abolished by the treatment

with RNase A. This result indicates that the species migrating at

,80 kD is indeed formed by intermolecular crosslinking between

A3G-HA and A3G-myc.

To assess in greater detail the oligomerization characteristics of

some of our mutant A3G proteins, we next performed a

Figure 3. Oligomerization of wild type and mutant A3G proteins. (A) Co-immunoprecipitation of wild type and mutant A3G with HA-tagged
wild type A3G (A3G-HA). Immunoblots on the left show whole cell expression of A3G, A3G-HA, and the cellular control protein Hsp90. On the right,
blots show A3G and A3G-HA in the immunoprecipitate, with or without RNase A treatment. (B) Immunoblot showing A3G after chemical crosslinking
with BM(PEO)3 in the lysate of transfected 293T cells. Lane 1, untreated control; lane 2, BM(PEO)3 treated; lane 3, BM(PEO)3 treated after incubation
with RNase A; lane 4, BM(PEO)3 treated before incubation with RNase A. Relative molecular mass markers (in kD) are indicated on the right. (C)
Immunoblot showing the immunoprecipitation of myc-tagged A3G (A3G-myc) with A3G-HA, with or without BM(PEO)3 and subsequent RNase A
treatment. Samples were immunoprecipitated with anti-HA antibody, and immoblots were probed with the anti-myc antibody. An asterisk indicates
the position of a band generated by crossreactivity to the heavy chain of the 3F10 antibody used for immunoprecipitation. (D) Immunoblot showing
the effect of BM(PEO)3 treatment on wild type and mutant A3G in the lysates of transfected 293T cells. The control sample transfected with the empty
vector is indicated by -.
doi:10.1371/journal.ppat.1000330.g003

Oligomerization of APOBEC3G
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crosslinking experiment with untagged wild type A3G or A3G

harbouring the Y124A, Y315A or W127A mutations. The

,80 kD crosslinked species appeared at a low level with the

Y124A mutant and was barely detectable with the W127A

mutant, whereas it was efficiently generated with the Y315A

mutant (Figure 3D). Crosslinking and co-immunopreciptitaton of

A3G with the Y124F or W127Y mutations resulted in increased

levels oligomerization in comparison to the respective alanine

mutations (Figure S1), which correlates with the less disruptive

effects on virus packaging of these substitutions relative to the

alanine mutations (Figure 1B and [35]). We note that we were

unable to detect these subtle differences with the yeast-two hybrid

system (Figure 1D).

To assess the possibility that the ,80 kD species may be due to

two A3G monomers being bound in close proximity on the same

RNA molecule, we performed crosslinking experiments in which

A3G was co-expressed with the RNA helicase Mov10. Mov10 is

known to associate with A3G in ribonucleoprotein complexes in

an RNA-dependent manner, though it is unknown whether these

proteins interact directly [34]. We were unable to detect any

intermolecular crosslinks between A3G and Mov10 (results not

shown), further suggesting that the ,80 kD crosslinked species

forms as a consequence of A3G intermolecular contacts. Together,

these results indicate that residues Y124 and W127 play central

roles in the N-CDA mediated oligomerization of A3G, and that

this interaction is also dependent on the presence of RNA.

Modelling of an A3G dimer
In a complementary approach for addressing the mode of A3G

oligomerization, we constructed homology models of A3G dimers

using the A2 crystal structure as a template (Figure 4A). In these

models, the N- and C-CDA domains of one A3G polypeptide

together form the extended b-sheet that is the equivalent of an A2

dimer. Models with either the N-CDA or C-CDA at the oligomer

interface, which corresponds to the tetramer interface of A2, were

then assembled and subjected to energy minimization. In conver-

gence with the results of the experiments described above, models

with N-CDA at the oligomer interface (Figure 4C) proved

energetically more favourable than models with the C-CDA at the

dimer interface by ,2000 to ,3000 kJ/mol, depending on

interactions with the solvent (Table S1). N-terminal dimerization

resulted in residues Y124 and W127 being buried within the oligomer

interface, with Y124 predicted to be slightly more accessible to solvent

than W127 (Table S2). We next assessed the effect of the Y124A and

W127A mutations by determining the interactions that are lost upon

introduction of these mutations into the A3G structure model with

the N-terminal CDA at the dimer interface (Table S3). This analysis

demonstrated that the Y124A mutation results in the loss of intra- and

intersubunit interactions, while the W127A mutation affects mostly

intersubunit interactions in this structure model.

Importantly, inspection of the charge distribution over the

surface the model revealed a conspicuous clustering of positive

charges that are located in a rather large pocket at the predicted

dimer interface (Figure 4D): notably, residues Y124 and W127 are

also located within this pocket (Figure 5A). In contrast, this

positively charged surface is absent from the A2 structure

(Figure 4B). To assess the accuracy of this modelling effort, the

C-CDA domain from our model was superimposed with the NMR

[19] and X-ray [20] structures for this domain (Figure S2). The

overall agreement was good with both structures, as evidenced by

a root mean square deviation (RMSD) of less than 5 Å, but our

model displayed slightly more similarity to the X-ray structure

(RMSD NMR: 4.920 Å and RMSD X-ray: 3.650 Å).

Mutational analysis of basic residues at the oligomer
interface

The presence of clustered charged and aromatic residues at the

A3G oligomer interface is suggestive of a binding site for RNA. In

Figure 4. Structure of A2 and homology model of A3G. Ribbon representation of the A2 crystal structure (A) and the A3G homology model
with the N-terminal CDA domain at the dimer interface (C). Monomer subunits of A2 are shown in turquoise, blue, orange, and yellow. Monomer
subunits of A3G are shown in magenta and green. Zinc ions are shown as red spheres. To the right is a space-filling representation of the A2 crystal
structure (B) and the A3G model (D) highlighting charge distribution. Red indicates negative charge and blue positive charge. The potential is ranged
from 210kT (red) to the maximal positive value +10kT (blue).
doi:10.1371/journal.ppat.1000330.g004

Oligomerization of APOBEC3G
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particular, the basic residues R14, R24, R29, R30, K63, K99, R102,

R122, R136, K141 and R142 all lie within the aforementioned

pocket and we sought to test this feature of our model. All these

arginines and lysines were mutated to alanine and their antiviral

properties assessed in single-cycle infectivity assays; the R24A and

R30A proteins had the most profound loss of antiviral function,

whereas mutations at other positions had no or modest effects, as

exemplified by R136A (Figure 6A, and data not shown).

As the basic residues may act cooperatively to bind RNA, we

also produced a set of doubly mutated proteins in which the R24A

or R30A mutation was combined with alanine substitutions at

R63, R99, R102, R136, K141 or R142. Only the R24A+R136A

and R30A+R136A composite mutants showed further reductions

in virus inhibition, resulting in phenotypes similar in severity to the

W127A mutation (Figure 6A, and data not shown). Analysis of the

levels of A3G present in virus particles revealed that mutants

R24A, R30A, R24A+R136A and R30A+R136A were each

packaged less efficiently than wild type A3G, but that the

R136A mutant was still packaged well (Figure 6B). None of the

R24A, R30A and R136A mutants showed any loss of editing

activity in bacteria, either as single or double mutants, indicating

that these proteins were not misfolded (Figure 6C).

We next assessed the oligomerization properties of these mutant

A3G proteins by co-immunoprecipitation and chemical cross-

linking. In both assay systems, we consistently observed that the

R24A and R30A mutants oligomerized less efficiently than the

wild type protein, and this was accentuated further by the

additional R136A substitution (Figure 6D and 6E). Together,

these results demonstrate that the removal of basic residues from

the predicted oligomer interface creates proteins with very similar

phenotypes to the Y124A and W127A mutants. Specifically, these

mutated proteins display limited antiviral activity, packaging, and

oligomerization, and this is consistent with the close spatial

proximity of these residues in our structure model (Figure 5).

Impaired A3G oligomerization correlates with reduced
RNA association

To determine whether oligomerization-defective mutants of

A3G are reciprocally deficient for associating with cellular RNA,

we performed semi-quantitative reverse transcription coupled

PCR on immunoprecipitates of wild type or mutant HA-tagged

A3G to detect the presence of the Y1, Y4 and 7SL RNAs; these

RNA molecules have each previously been shown to be present in

A3G-associated RNPs [13,32,37]. Indeed, these RNAs were

readily detected in association with wild type A3G and the

oligomer-forming Y315A mutant (Figure 7A). In contrast, much

less Y1, Y4 and 7SL RNA was detected in the immunoprecipitates

of W127A, R24A, R24A+R136A and R30A+136A A3G, as well

as in the A3F and luciferase negative controls. Modest exceptions

were the Y124A and R30A mutants, for which low levels of Y4 as

well as 7SL RNA, respectively, were detected. These differences

were not due to different amounts of protein in the immunopre-

cipitate, as demonstrated by immunoblotting (Figure 7B).

Thus, mutations of hydrophobic and basic residues at the

predicted A3G oligomer interface caused a loss in association with

cellular RNA. These mutations do not, however, affect the ability

of A3G to assemble into high molecular weight ribonucleoprotein

complexes in 293T cells, as evidenced by velocity sedimentation of

A3G-containing cell lysates through sucrose gradients (Figure S3).

Moreover, all A3G-containing complexes maintained sensitivity to

RNase treatment, suggesting that the mutations have not imparted

pleiotropic defects in nucleic acid interactions or the capability to

assemble into large RNP complexes.

Discussion

We have performed a mutational study of residues in the N- and

C-CDA domains of A3G whose counterparts in A2 are involved in

key interactions that support oligomerization of A2. Our results

Figure 5. The dimer interface of the A3G homology model. (A) Detail of the predicted A3G dimer interface highlighting residues Y124 and
W127 (A) and R24, R30, and R136 (B) from each subunit.
doi:10.1371/journal.ppat.1000330.g005

Oligomerization of APOBEC3G
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show that mutations in the N-CDA, but not the C-CDA, are

associated with reductions in A3G RNA-dependent oligomeriza-

tion and packaging into virions. Upon modelling of an A3G dimer

onto the template A2 crystal structure, we identified a positively

charged pocket at the oligomer interface formed between two N-

CDAs that bore the hallmarks of a nucleic acid binding site

Figure 7. Association of wild type and mutant A3G with cellular RNAs. (A) Reverse transcription coupled PCR of RNA recovered from cell
extracts and immunoprecipitates (indicated, respectively, by Cell and IP) of 293T cells transfected with wild type or mutant A3G-HA to detect selected
cellular RNAs (Y1, Y4, and 7SL as indicated on the left). Negative controls were performed with HA-tagged A3F and luciferase (Luc). The control PCR
reactions using immunoprecipitate with Taq polymerase instead of the RT enzyme were all negative and are not shown. (B) Immunoblot with anti-HA
antibody showing the wild type and mutant A3G proteins present in the immunoprecipitate on which RT PCR was performed. Also included are A3F-
HA and luciferase-HA (Luc) negative controls.
doi:10.1371/journal.ppat.1000330.g007

Figure 6. Characterization of A3G proteins with mutations at R24, R30, and R136. (A) Single-cycle infectivity of HIV-1/Dvif viruses produced
in the presence of wild type or mutant A3G. See the legend to Figure 2A. (B) Expression of wild type and mutant A3G proteins in 293T producer cells
and packaging into HIV-1/Dvif virions as determined by immunoblotting. (C) Relative editing activity of wild type and mutant A3G proteins as
determined in a bacterial mutator assay relative to activity of wild type. See the legend to Figure 2C. (D) Co-immunoprecipitation of wild type and
mutant A3G with HA-tagged wild type A3G (A3G-HA). Immunoblots on the top show whole cell expression of A3G, A3G-HA, and the cellular control
protein Hsp90, as indicated by Cell at the left of the blot. At the bottom, blots show A3G and A3G-HA in the immunoprecipitate, as indicated by IP to
the left of the blot. (E) Immunoblot showing the effect of BM(PEO)3 treatment on wild type and mutant A3G in the lysates of transfected 293T cells.
The control reaction with the W127A was performed and blotted in parallel but was run on a separate gel.
doi:10.1371/journal.ppat.1000330.g006
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(Figure 5). Indeed, mutation of basic residues within this pocket

also resulted in losses of antiviral function, packaging into virus

particles, oligomerization and association with cellular RNA

(Figures 6 and 7). Consistent with previous work showing that

only the C-CDA of A3G is responsible for DNA editing [5,38–40],

this attribute was unaffected by disruption of this basic pocket.

Thus, our findings demonstrate further segregation of functions

between the N- and C-CDA domains of A3G.

Throughout our chemical crosslinking experiments, we consis-

tently observed the generation of oligomeric A3G migrating at

,80 kD, which is twice the relative molecular mass of untreated

A3G, which migrates at ,40 kD (Figures 3 and 6). This result

suggests that A3G oligomerizes as a discrete dimer, an assertion

that is further supported by the fact that we did not detect slower

migrating species at ,120 (trimer) or ,160 kD (tetramer). We

note, however, that we have not formally demonstrated dimer-

ization of A3G, as attempts to perform analytical ultracentrifuga-

tion were unsuccessful owing to the poor solubility of purified full-

length A3G at high concentrations (results not shown). Nonethe-

less, dimerization of A3G via the N-terminal CDA domain

remains the simplest model to explain our current results.

Although this conclusion is at odds with a recent study proposing

oligomerization of A3G via the C-CDA domain [41], that study is

also contradicted by the observations that the C-CDA of A3G

appears as a monomer by both ultracentrifugation [19] and

crystallography [20].

Importantly, we have furthermore demonstrated that the

oligomerizaton of A3G is dependent on the presence of RNA, as

evidenced by the disruption of oligomers upon treatment with

RNase (Figure 3). These observations are explained by our

combined modelling and structure-function analyses, which

predict that the oligomer interface between the A3G N-terminal

CDA domains produces a positively charged pocket that requires

occupation by RNA to allow effective oligomerization. Thus, we

propose that the formation of A3G oligomers requires hydro-

phopic and basic residues that mediate protein-protein interac-

tions between the A3G subunits and/or protein-RNA interactions,

in a manner similar to that proposed for PKR and RIG-I [42–44].

We acknowledge, however, that the precise contribution of these

residues to RNA-dependent oligomerization of A3G must await

advances in the biochemical characterization of this protein.

An additional piece of evidence supporting the interdependence

between the oligomerization of A3G and the association with

RNA comes from the analysis of Y1, Y4 and 7SL RNA in A3G

RNPs (Figure 7). In general terms, we observed that oligomeri-

zation-impaired mutants of A3G exhibited much reduced co-

immunoprecipitation of these RNA molecules. Indeed, correla-

tions between oligomer formation and RNA interaction were

excellent in that the R30A and Y124A mutants displayed partial

A3G-A3G interactions as well as intermediate levels of RNA

interactions (Figures 3, 5, and 7). An additional instructive

observation was made upon velocity sedimentation of cell lysates

with oligomerization-impaired A3G, which demonstrated that

assembly into RNase-sensitive high molecular weight RNP

complexes was not noticeably affected by these mutations (Figure

S3). This demonstrates that A3G’s assembly into at least two

intermolecular complexes is RNA-dependent: the oligomerization

of A3G and its recruitment into RNP complexes. Importantly, our

mutational analysis shows that oligomerization can be disrupted

selectively without grossly preventing RNP association. This

suggests either that (1) there is a certain degree of specificity to

the identity of RNAs that are required for A3G oligomerization,

but not to the RNAs that promote RNP association, or that (2)

recruitment of A3G to RNase-sensitive RNP complexes is driven

predominantly by protein-protein interactions. Specifically, RNA-

dependent A3G RNP formation through protein-protein interac-

tions could be mediated by proteins that bind A3G directly and

additionally bind RNA.

Throughout these studies, we have highlighted a tight

correlation between the packaging into HIV-1 virions and the

RNA-dependent oligomerization of wild type and mutant A3G

proteins. Here, we have presented a structure model of an A3G

dimer that readily accommodates these attributes. Indeed, the

packaging of A3G into virus particles has been reported to require

binding to RNA and this has been interpreted as reflective of an

RNA-dependent interaction between the HIV-1 Gag protein and

A3G [10–14,45]. Although the identity of RNA required for

packaging of A3G into HIV-1 virions remains debated

[10,13,14,37,45], specificity with regards to the RNA molecules

that mediate oligomerization of A3G may impart some of the

selectivity for the establishment of an A3G-Gag interaction and

virion packaging.

The structure of A3G is also of considerable interest with regard

to the binding of the HIV-1 Vif protein and efforts to manipulate

this interaction therapeutically. Previous analyses have shown that

Vif interacts with a three amino-acid core motif in A3G at residues

128–130 [35,46–49], which is directly adjacent to residues Y124

and W127. This would position the residues of A3G that interact

with Vif in close proximity to the oligomer interface. In our

previous study, we found that mutant proteins with substitutions at

position Y124 or W127 remain responsive to regulation by the Vif

protein [35], suggesting that oligomerization is not a prerequisite

for binding of Vif. Indeed, the interaction of Vif with A3G in co-

immunoprecipitation experiments is resistant to treatment with

RNase [30,34]. Similarly, mutations at residues 128–130 in A3G

affect the interaction with Vif but not packaging into virus particles

[35] or generation of the dimeric species by chemical crosslinking

(results not shown). Thus, while the residues that mediate Vif-

binding and RNA-dependent oligomerization are in close

proximity, they appear to be functionally distinct.

We have presented evidence for the RNA-dependent oligomer-

ization of A3G via its N-CDA domain. A structure model of an

A3G dimer based on the A2 crystal structure readily rationalizes

the RNA-dependency of oligomerization as it revealed a clustering

of positive charge near the predicted dimer interface. Further-

more, the model proved consistent with the contribution of basic

residues at the interface to RNA-dependent oligomerization and

packaging of A3G into virus particles. We thus propose that this

model can serve as a guide for the further dissection of the

structure-function relationships of domains and motifs within

A3G. Ultimately, this may help endeavours aimed at therapeutic

intervention with the interaction between the HIV-1 Vif protein

and A3G. In particular, such efforts should strive to preserve the

antiviral functions of A3G by interrupting the interaction with Vif,

while maintaining the interactions that mediate association with

RNA, oligomerization and virion packaging.

Materials and Methods

Plasmids and cloning
Wild type and mutant A3G expression plasmids for infectivity

studies, immunoprecitation, crosslinking and the bacterial editing

assay were generated as described previously [35]. A3G expression

plasmids for the yeast two-hybrid experiments were generated by

cloning of the EcoRI fragment from the pCMV4-A3G plasmids

into the EcoRI site of the pGBKT7 (bait) and pHB18 plasmids

(prey) [50]. Proper orientation and sequence of the insert was

confirmed by restriction digest or sequencing.

Oligomerization of APOBEC3G
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Single-cycle infectivity assays
Stocks of HIV-1/Dvif [51] were prepared by cotransfection of

35-mm diameter monolayers of 293T cells with 0.5 mg of pA3G

expression vector and 1.0 mg of pIIIB/Dvif using polyethylenimine

(PEI). After 24 hr, the supernatants were harvested and volumes

corresponding to 5 ng p24Gag used to infect 105 TZM-bl indicator

cells. The producer cells were lysed in SDS-containing loading dye

for the analysis of protein expression. The induced expression of b-

galactosidase in whole cell lysates was measured 24 hr after the

initiation of infection using the Galacto-Star system (Applied

Biosystems).

Analysis of protein expression by immunoblotting
Whole cell lysates prepared from virus producing cells,

immunoprecipitates and purified HIV-1 virions were resolved by

SDS-polyacrylamide gel electrophoresis (SDS-PAGE, 11% gel)

and analysed by immunoblotting using primary antibodies specific

for A3G [5], myc (ab9106; Abcam), HA (12CA5), Hsp90 (sc7947:

Santa Cruz) and p24Gag [52]. Blots were resolved using either

horseradish peroxidase-conjugated secondary antibodies and

enhanced chemiluminescence (Pierce) or fluorescent secondary

antibodies using the LI-COR infrared imaging technology (LI-

COR UK LTD).

Packaging assays
Virus stocks containing 20 ng p24Gag were spun in a benchtop

centrifuge at 210006g for 2 h at 4uC through a 20% w/v sucrose

cushion (500 ml) in a 2 ml eppendorf tube. Viral pellets were

resuspended in loading dye and analyzed by immunoblotting.

Whole cell lysates from the corresponding producer cells were

assessed for A3G and Hsp90 expression in parallel.

E. coli mutation assay
The KL16 strain of E. coli was transformed with pTrc99A-

based, IPTG-inducible A3G expression vectors or the empty

vector [53]. Individual colonies were picked and grown to

saturation in LB medium containing 100 mg/ml ampicillin and

1 mM IPTG. Appropriate dilutions were spread onto agar plates

containing either 100 mg/ml ampicillin or 100 mg/ml rifampicin

and incubated overnight at 37uC. Mutation frequencies were

recorded as the number of rifampicin-resistant colonies per 109

viable cells, which were enumerated using the ampicillin-

containing plates. Colony counts were recorded in this manner

on 12 rifampicin- and 12 ampicilin-containing plates for each

construct, in sets of 4 of each at one time. To average the repeat

experiments, the average colony count for wild type A3G was set

at 100 and all other scores were normalized to this value.

Yeast two-hybrid assay
Yeast Y190 cells were transformed with 1 mg of each of the

pGBKT7 (bait) and pHB18 (prey) plasmids [50]. The Wild type

A3G cDNA was inserted into the bait construct, and Wild type

A3G and mutant derivative inserts thereof were cloned into the

prey construct. Transformants were selected on medium lacking

tryptophan and leucine for 3 days at 30uC. Pools of .20

transformed yeast colonies were scraped into b-Gal assay buffer

(60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM

MgSO4, 50 mM 2-mercaptoethanol, 0.01% SDS, pH 7.0) and

normalized according to optical density in a final volume of

500 ml. Cells were lysed by addition of 25 ml of chloroform and

vortexing. The b-Gal substrate chlorophenol red-b-D-galactopyr-

anoside was added to a final concentration of 4 mM and samples

were incubated at room temperature for 30 min. After centrifu-

gation to remove cellular debris, absorbance was determined at

540 nm. Repeat experiments were normalized to the OD540 of

samples with Tsg101 (bait) and Vps28 (prey) which was set at 4.0.

Coimmunoprecipitation assays
293T cells were transfected with 1 mg pA3G-HA and 1 mg

pA3G (wild type or mutant) in 35-mm cultures. After 24 h, the

cells were lysed in 600 ml lysis buffer (0.5% Triton X-100,

287 mM NaCl, 2.68 mM KCl, 1.47 mM KH2PO4, Na2HPO4,

pH 7.2 and complete protease inhibitor cocktail from Roche). The

lysates were cleared by centrifugation in a benchtop centrifuge at

210006g for 10 min and 500 ml of each incubated with the 3F10

HA-specific antibody raised in rat (Roche) and protein G-agarose

(Invitrogen) for 2 h at 4uC. 50 ml of the cleared lysate was kept to

analyse protein expression levels. After binding to the beads the

samples were washed twice with lysis buffer and split into two

aliquots of 250 ml. To one aliquot of the samples 25 U of bovine

pancreatic RNase A (Sigma) was added, and all samples were

tumbled at room temperature for 30 min. The agarose beads were

then washed three times with lysis buffer, and resuspended in

50 ml loading dye. 10 ml of the immunoprecipitated samples as

well as 10 ml of the cleared lysate were resolved by SDS-PAGE

(11% gel) and analyzed by immunoblotting using primary

antibodies specific for HA, A3G or Hsp90.

Chemical crosslinking
293T cells were transfected with 2 mg pA3G (wild type or

mutant) in 35-mm cultures. After 24 h, the cells lysed in 600 ml

lysis buffer (0.5% Triton X-100, 287 mM NaCl, 2.68 mM KCl,

1.47 mM KH2PO4, Na2HPO4, pH 7.2 and complete protease

inhibitor cocktail from Roche). The lysates were cleared by

centrifugation in a benchtop centrifuge at 210006 g for 10 min.

Samples were then split into aliquots of 100 ml to which 10 U of

RNase A was, or was not, added either prior to or after addition of

1.25 ml of 20 mM BM(PEO)3 (Thermo Scientific) in DMSO. After

incubation at 20uC for 1 h, 1 ml of 1 M DTT was added to

quench the reaction. After the addition of 25 ml loading dye,

samples were analysed by SDS-PAGE and immunoblotting. In the

experiment describing crosslinking of A3G-myc to A3G-HA,

293T cells were transfected with 2 mg of each plasmid. After 24 h,

cells were lysed in 600 ml lysis buffer and cleared by centrifugation.

Samples were split into aliquots of 250 ml which were treated, or

not, with 2.5 ml of 20 mM BM(PEO)3 in DMSO. After addition of

2 ml 1 M DTT samples were incubated with the 3F10 anti-HA

antibody (Roche) and protein A-agarose beads. Subsequent

immunoprecipitation was performed in the manner described

above and the gel resolved samples analysed using a myc-specific

antibody.

Reverse transcription coupled PCR
293T cells in a 10 cm dish were transfected with 12 mg of wild

type or mutant A3G-HA expression vector and lysed after 24 h in

lysis buffer (1% NP-40, 150 mM NaCl, 50 mM Tris-HCl pH 7.5

and complete protease inhibitor cocktail from Roche). The cell

lysates were precleared overnight using an irrelevant monoclonal

antibody and A3G ribonucleoprotein complexes were subjected to

immunoprecipitation with the 3F10 rat anti-HA antibody using

protein G-coupled agarose beads. Following immunoprecipitation,

associated RNAs were recovered with the miRNAeasy mini kit

(Qiagen). RNA was detected by semi-quantitative RT-PCR using

the SuperScript III One-Step RT-PCR system with platinum Taq

DNA polymerase (Invitrogen) (cDNA synthesis at 55uC for

30 min, denaturation at 95uC for 2 min, 15 amplification cycles

of 95uC for 15 sec, 56uC for 30 sec and 68uC for 1 min, and a
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final extension step at 68uC for 5 min) using specific primers for Y

and 7SL RNAs [37]. Products were resolved by electrophoresis on

a 1.5% agarose gel and stained with ethidium bromide.

Homology modelling of an A3G dimer
The structure of the dimer model of A3G was obtained by

homology modelling using as a template the crystal structure of

APOBEC2 (A2) (2NYT pdb entry). To generate the 3D-model,

the alignment between A3G and APOBEC2 was submitted to the

comparative structural modeling program MODELLER 8v2 [54].

100 best solutions for the MODELLER objective function have

been considered. Models were produced with either the N- or C-

terminal CDA domain at the dimer interface.

Velocity sedimentation
293T cells were transfected with 2 mg pA3G (wild type or

mutant) in 35-mm cultures. After 24 h, the cells were lysed in

250 ml lysis buffer (0.626% NP40, 100 mM NaCl, 50 mM KAc,

10 mM EDTA, 10 mM Tris pH 7.4 and complete protease

inhibitor cocktail from Roche). The lysates were cleared by

centrifugation in a benchtop centrifuge at 1626 g for 10 min

followed by 180006 g for 30 sec. Samples were then split into

aliquots of 100 ml to which 10 U of RNase A (Sigma) was, or was

not, added. Samples were then loaded on top of a 10–15–20–30–

50% sucrose step gradient in lysis buffer and centrifuged for

45 min at 1630006 g at 4uC. After centrifugation, samples of

78 ml were sequentially removed from the top of the gradient,

added to 30 ml of loading dye and analysed by immunoblotting.

Supporting Information

Figure S1 Chemical crosslinking (A) and co-immunoprecipita-

tion (B) of A3G proteins with the Y124A, Y124F, W127A, or

W127Y mutations. Refer to the legend for Figure 3 for details.

Found at: doi:10.1371/journal.ppat.1000330.s001 (1.21 MB TIF)

Figure S2 Superposition of the C-CDA domain from the

homology model of A3G (magenta) with the ten NMR models

(blue, RMSD 4.920 Å) (A) and the crystal structure (yellow,

RMSD 3.650 Å) (B)

Found at: doi:10.1371/journal.ppat.1000330.s002 (9.41 MB TIF)

Figure S3 Velocity sedimentation of wild type or mutant A3G

through a sucrose gradient. The direction of the gradient is

indicated at the top of the figure and treatment with RNase by

a+at the right of the figure. Samples were examined by

immunoblot using the A3G-specific antibody.

Found at: doi:10.1371/journal.ppat.1000330.s003 (2.03 MB TIF)

Table S1 Energy decomposition of N-terminal (N-N) and C-

terminal (C-C) models for A3G oligomerization

Found at: doi:10.1371/journal.ppat.1000330.s004 (0.01 MB PDF)

Table S2 Solvent-accessible surface area (SASA) buried upon

dimer formation as calculated with POPS

Found at: doi:10.1371/journal.ppat.1000330.s005 (0.05 MB PDF)

Table S3 Interactions lost upon introduction of the Y124A and

W127A mutations into the structure model of the A3G dimer

Found at: doi:10.1371/journal.ppat.1000330.s006 (0.01 MB PDF)
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