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Abstract: Given that improved imputation software and high-coverage whole genome sequence
(WGS)-based haplotype reference panels now enable inexpensive approximation of WGS geno-
type data, we hypothesised that WGS-based imputation and analysis of existing ExomeChip-based
genome-wide association (GWA) data will identify novel intronic and intergenic single nucleotide
polymorphism (SNP) effects associated with complex disease risk. In this study, we reanalysed
a Parkinson’s disease (PD) dataset comprising 5540 cases and 5862 controls genotyped using the
ExomeChip-based NeuroX array. After genotype imputation and extensive quality control, GWA
analysis was performed using PLINK and a recently developed machine learning approach (GenEpi),
to identify novel, conditional and joint genetic effects associated with PD. In addition to improved
validation of previously reported loci, we identified five novel genome-wide significant loci asso-
ciated with PD: three (rs137887044, rs78837976 and rs117672332) with 0.01 < MAF < 0.05, and two
(rs187989831 and rs12100172) with MAF < 0.01. Conditional analysis within genome-wide significant
loci revealed four loci (p < 1 × 10−5) with multiple independent risk variants, while GenEpi analysis
identified SNP–SNP interactions in seven genes. In addition to identifying novel risk loci for PD,
these results demonstrate that WGS-based imputation and analysis of existing exome genotype data
can identify novel intronic and intergenic SNP effects associated with complex disease risk.

Keywords: Parkinson’s disease; genotype imputation; GWAS; SNP–SNP interactions; machine learn-
ing

1. Introduction

Over the past decade, genome-wide association studies (GWAS) have successfully
identified many individual common genetic variants (i.e., single nucleotide polymorphisms
(SNPs)) associated with the risk of a wide range of complex diseases. However, due to
insufficient statistical power, the genetic effects identified by typical GWAS studies tend to
explain only a small fraction of the overall genetic variation underlying complex diseases [1].
In order to identify this missing heritability of complex diseases, it is important to explore
the role of low-frequency SNPs: SNPs with minor allele frequency (MAF) less than 0.05
at novel or established risk loci and the potential interaction between SNPs that might
have a strong contribution towards disease risk compared to their main effects. However,
because most GWAS studies focus on generating genetic data in new samples and use
standard statistical tools to detect common SNPs with marginal effects, they do not identify
heterogeneous effects or epistasis interaction effects of multiple SNPs.

Next-generation sequencing (NGS) technology allowed the development and use of
cost-effective genotyping arrays to efficiently genotype and assess common genome-wide
genetic variation in large samples, leading to the discovery of thousands of risk SNPs
for many complex diseases. The genetic resolution of those large genotyped datasets can
be increased via imputation of unobserved common and rare variants with advanced
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genotype imputation software which use new dense whole genome sequence (WGS)-
based haplotype reference panels [2]. In addition, new methodologies have been recently
developed using machine learning approaches to efficiently discover joint genetic effects of
variants contributing towards complex disease risk by tackling the challenges of traditional
GWAS, i.e., low statistical power to detect conditional and interaction effects due to the
high dimensionality and multiple-test burden [3].

Although the vast majority of GWAS utilise common SNP arrays, some GWAS utilised
exome-based arrays, such as the Ilumina HumanExome BeadChip (ExomeChip), to test
~240,000 mostly nonsynonymous coding variants across the human genome. Given that
improved imputation software and WGS-based haplotype reference panels now enable
inexpensive approximation of WGS genotype data, we hypothesised that WGS-based im-
putation and analysis of existing ExomeChip-based GWAS data will identify novel intronic
and intergenic SNP effects associated with complex disease risk. We also hypothesised
that analysis of imputed data using machine learning will identify novel, conditional and
joint effects of both common and/or rare SNPs related to complex disease risk. To test our
hypothesis, this study focuses on Parkinson’s disease (PD), a common neurodegenerative
disorder with a complex genetic component mainly affecting adults aged over 60 years [4].
PD exerts a substantial burden to the global health and economy, and is expected to affect
more than 12 million people by 2040 worldwide. During the past two decades, numerous
GWAS have been conducted to understand the pathophysiology of PD and they have
identified over 90 independent risk variants, of which most are common, explaining a
heritability of 16–36% [5]; however, the majority of the genetic heritability of PD remains
to be uncovered. Furthermore, the role of rare variants and the interaction effects of both
common and rare variants are yet to be explored.

We accessed a large powerful PD NeuroX dataset available in dbGaP (dbGaP Study
Accession: phs000918.v1.p1) that comprises 5540 cases and 5862 controls of European
ancestry and first applied careful quality control procedures. Then, the dense WGS-based
Haplotype Reference Consortium (HRC) reference panel was used to perform genotype
imputation followed by standard GWAS association analysis, conditional analysis and
interaction analysis using PLINK and R. Lastly, the recently published python package—
GenEpi: a machine learning approach for gene-based epistasis discovery [3]—was utilised
to identify joint genetic effects associated with PD.

2. Materials and Methods
2.1. Data

This study utilised the individual-level PD case-control dataset available in db-
GaP (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000
918.v1.p1, accessed on 15 August 2019) which was first used to replicate the findings of a
PD meta-analysis [6]. The PD dataset comprises 5540 cases and 5862 controls (6842 males
and 4560 females) of European ancestry genotyped using the Illumina NeuroX genotyping
array. This is a combination of the Illumina HumanExome BeadChip (ExomeChip) array,
v1.1 (242,901 variants) and custom content (24,706 variants) focused on neurodegener-
ative diseases. The exome array primarily (90%) contains nonsynonymous with a high
proportion of rare variants (82% with MAF < 0.01) and the majority (60%) of variants
within the custom content are common (MAF > 0.05). The custom array also contains rare
sequence-based variants from familial studies that are not available in the 1000 Genomes
and NHLBI’s Exome Sequencing projects and rare sequence-based variants (frequency
less than 0.05 in the population used) from cohort studies focused on neurodegenerative
disorders including PD [7].

2.2. Quality Control (QC)

Quality control for this study was performed using PLINK v1.9 [8] and recommended
protocols [9–11], with a few modifications to account for the customized content of the
NeuroX array. First, individuals with call rates below 95%, as well as individuals with

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000918.v1.p1
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gender discrepancy (individuals with genetically predicted and reported sex difference)
and individuals showing excess heterozygosity (deviate ±3 SD from sample heterozygosity
rate) were excluded. After this initial individual filtering, SNPs with per SNP missingness
greater than 5% as well as SNPs with MAC below 3 and SNPs that are not in Hardy–
Weinberg equilibrium (HWE p-value < 1 × 10−6) were removed. Then, the pairwise identity
by descent (IBD) was calculated using PLINK v1.9 after pruning for linkage disequilibrium
(LD), where SNPs with r2 > 0.02 within 50-SNP sliding window were pruned out, and used
to remove cryptically related individuals (individuals with lowest call rate from the pairs
of individuals with ‘pi_hat’ > 0.2). Finally, principal component analysis (PCA) was used to
identify and exclude individuals with genetic ancestry inconsistent with European descent
compared to the 1000 G reference panel.

2.3. Imputation and Post Imputation QC

Genotype imputation using the HRC reference panel (version r1.1, which consists
of 64,940 haplotypes of predominantly European ancestry) was performed with mini-
mac4 using next-generation genotype imputation service and methods [12] available in
Michigan Imputation Server (https://imputationserver.sph.umich.edu/index.html ac-
cessed on 18 January 2020). Input data preparation for imputation according the data
preparation guidelines provided by Michigan Imputation Server and post-imputation
QC was done using PLINK v2.0 and vcftools [13]. Quality control for HRC reference
as a pre-preparation step was carried out using the toolbox provided by Will Rayner
(http://www.well.ox.ac.uk/~wrayner/tools/ accessed on 21 January 2020). Genotype im-
putation for each chromosome was performed after several QC and phasing steps by the
server and imputed data which includes dose.vcf and info file for each chromosome were
download directly from the server. The imputation quality of the imputed SNPs was
evaluated using minimac4 info score provided in .info file. Post-imputation QC was done
by extracting SNPs with MAF ≥ 0.001, info score ≥ 0.5, and HWE p-value ≥ 1 × 10−7 in
controls, to identify quality SNPs for further analysis. Using PLINK, the imputed genotype
posterior probabilities in the VCF files were converted to Oxford-format (.gen) best-guess
genotypes for the GenEpi interaction analyses.

2.4. Association Analysis and Conditional Analysis

Association analysis of imputed genotype dosage data was done using PLINK v2.0.
First, PCA was carried out with LD pruned SNPs (following the same criteria described in
QC section) to generate eigenvectors. Then, logistic regression was performed, adjusting
for the first two principal components (PCs), age, and sex to examine the additive effect for
each SNP on PD risk.

Conditional analyses were next applied to identify secondary association signals. For
each genome-wide significant locus identified in the association analysis, we performed
region-wise conditional analysis using PLINK and tested all the SNPs in the region while
adjusting for the most significant (“index”) SNP in that region, as well as for all the
covariates analogous to the association analysis.

2.5. Interaction Analysis

To identify joint effects of SNPs on PD risk, we used a recently developed computa-
tional package called GenEpi [3], which applies a gene-based machine learning approach
to discover pair-wise epistasis associated with a phenotype. In GenEpi, the first step is to
group genetic variants by a set of loci (i.e., genes) in the genome using gene information
available in the UCSC human genome annotation database [14] followed by dimensionality
reduction of genetic features in each locus using LD which involves grouping of features
into LD blocks using a given r2 and D’ threshold and selection of the features with the
largest MAF to represent each block. The selected genotype features of each single gene
will then be independently modelled by L1-regularised regression. In the next stage, to
identify cross-gene epistasis features, both the individual SNPs and the previously selected

https://imputationserver.sph.umich.edu/index.html
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within-gene epistasis features are pooled together and used in L1-regularised regression
to select the final genotype feature set. In addition, users have the option to include envi-
ronmental factors to build a final model. Evaluation of the final model is available in the
design by 2-fold cross validation (CV). Given this study’s focus is to identify SNP-SNP
interactions associated with PD risk (not prediction), SNP–SNP interactions were further
analysed by generating counts and frequencies of each two-locus genotype using PLINK
v1.9 to understand the manner of each interaction.

For the current study, GenEpi was applied to best-guess genotypes on the set of SNPs
with nominal statistically significant association results (p-value < 0.05) using the thresholds
of D’ > 0.8 and r2 > 0.8 to generate LD blocks of features, and the first two ancestry PCs,
age and sex, as environmental factors.

3. Results
3.1. Genome-Wide Association Analysis

In the current study, the initial PD case-control GWAS individual-level dataset down-
loaded from dbGaP was quality controlled to exclude low-quality variants and samples
(see Supplementary Table S1 for composition of the sample) using customised quality con-
trol procedures (Methods and Supplementary Table S2) to include low-frequency variants
for further analysis. After quality control steps, a total of 10,533 individuals (5167 cases,
5366 controls) and 110,504 SNPs remained for genotype imputation.

After filtering out low-quality individuals and SNPs, the remaining dataset was pro-
cessed following the data preparation guidelines provided by the Michigan Imputation
Server. Briefly, for each chromosome, VCF files created using VCFCooker were sorted
by genome position and uploaded as input files to the server. The server’s imputation
process, including pre-phrasing and imputation to the HRC reference panel using min-
imac4, took about 15 h after successful input validation and quality control. The total
imputed dataset downloaded from the server contained approximately 40 million SNPs.
Post-imputation quality screening using minimac4 info score, MAF and HWE p-value
as parameters resulted in a substantially increased dataset. Compared to the original
NeuroX genotyped dataset, the final imputed dataset contained 1,465,938 SNPs with good
imputation quality (minimac4 info score ≥ 0.5, MAF ≥ 0.001, and HWE p-value ≥ 1 × 10−7

in controls), representing an increase of 1200%. Among the imputed SNPs, 733,576 were
common (MAF ≥ 0.05) and 732,362 were low frequency (MAF < 0.05). Moreover, despite
the vast majority (73%) of SNPs in the initial NeuroX dataset being exonic, many intronic
and intergenic SNPs were imputed; indeed, the imputed dataset comprised 53% intronic,
40% intergenic and 7% exonic SNPs (Table 1 and Supplementary Table S5).

Table 1. Composition of the genotype dataset before and after imputation.

Region MAF Before
Imputation

After
Imputation

Before
Imputation

(%)

After
Imputation

(%)

Exonic
<0.05 68,026 62,829 61.56 4.29
≥0.05 12,581 38,282 11.39 2.61

>0 80,607 101,111 72.95 6.90

Intronic
<0.05 2385 393,633 2.16 26.85
≥0.05 12,085 378,058 10.94 25.79

>0 14,470 771,691 13.10 52.64

Intergenic
<0.05 3181 275,900 2.88 18.82
≥0.05 12,246 317,236 11.08 21.64

>0 15,427 593,136 13.96 40.46

Total
<0.05 73,592 732,362 66.60 49.96
≥0.05 36,912 733,576 33.40 50.04

>0 110,504 1,465,938 100 100
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After testing each SNP for association with PD risk using logistic regression in-
cluding age, sex and the first two ancestry PCs as covariates (Methods), association
results were obtained for 1,465,918 SNPs, with 20 very rare variants producing NA val-
ues where the logistic regression failed to converge (see Supplementary Data S1 ‘Neu-
roX_Reanalysis_Summary_Statistics.txt’ and Supplementary Note S1 ‘Description_NeuroX_
Reanalysis_Summary_Statistics.txt’), A total of 11 independent association signals for PD
were identified, reaching a genome-wide significant p-value (p ≤ 5 × 10−8), including 5
newly identified signals that are more than 1 MB from the previously reported PD risk loci
(Table 2, Figure 1, Supplementary Table S3, Supplementary Figure S2). Of these novel loci,
three are driven by low-frequency (0.01 < MAF < 0.05) variants (rs137887044 in WDR41 on
chromosome 5q14.1, rs78837976 in MUC12 on 7q22.1, and rs117672332 in ITGAE/HASPIN
on 17p13.2), and two by rare (MAF < 0.01) variants (rs187989831 near TEKT4 on chromo-
some 2q11.1 and rs12100172 in CARS2 on 13q34). LocusZoom plots of the identified novel
loci are shown in Figure 2.

Table 2. Summary of the additional genome-wide significant loci identified after imputation.

SNP CHR BP Nearest
Gene EA NEA EAF MAF OR (95% CI) p-Value

Novel PD Risk Loci

rs187989831 2 95,560,505 TEKT4 C G 0.005 0.005 0.001 (3 × 10−5–0.004) 7.56 × 10−10

rs137887044 5 76,912,498 WDR41 C T 0.972 0.028 1.85 (1.49–2.27) 2.41 × 10−8

rs78837976 7 100,647,511 MUC12 C T 0.989 0.011 16.67 (9.09–33.33) 2.98 × 10−18

rs74125032 13 111,329,589 CARS2 T C 0.002 0.002 4.5 × 10−10 (6 ×
10−13–4 × 10−7) 2.36 × 10−10

rs117672332 17 3,606,117 HASPIN T C 0.989 0.011 7.69 (4.76–12.5) 2.20 × 10−15

PD Risk Loci Reported in Other GWAS

rs983361 4 90,761,944 SNCA T G 0.217 0.217 0.820 (0.77–0.88) 6.29 × 10−9

rs7221167 17 43,933,307 MAPT C T 0.396 0.396 0.848 (0.80–0.90) 3.08 × 10−8

CHR = chromosome; BP = base position in GRCh37 (hg19); OR = odds ratio; EA = effect allele; NEA = non-effect allele; EAF = effect allele
frequency; OR (95% CI) and p-value = odds ratio (95% confidence interval) and p-value from association analyses.
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Figure 1. (a) Manhattan and (b) Q–Q plot of the genome-wide association analysis. The Manhattan plot, representing
the −log10 p-values against the chromosome position. All genome-wide (GW) significant SNPs are depicted in red and the
nearest gene of the most significant variant in each locus is labelled. The Q–Q plot shows the expected −log10 p-values
under the null hypothesis on the x axis, while observed −log10 p-values are represented on the y axis. The λ is a measure of
the genomic inflation (observed median χ2 test statistic/median expected χ2 test statistic under the null hypothesis).
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Figure 2. Cont.
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Figure 2. Cont.
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Figure 2. LocusZoom plots of novel genome-wide significant PD loci. (a) rs187989831 near TEKT4
on 2q11.1, (b) rs137887044 near WDR41 on 5q14.1, (c) rs74125032 in CARS2 on 13q34, (d) rs117672332
in ITGAE/HASPIN on 17p13.2, and (e) rs78837976 in MUC12 on 7q22.1. Association significance with
PD is shown as −log10 p-values on the left y-axis. The most significant SNP represented by purple
colour diamond. All other SNPs are shown as circles and are colour coded according to the strength
of LD with the most significant SNP (LD measured using the European 1000 Genomes data).

Overall, with this individual SNP analysis of the imputed data, we were able to
identify seven PD risk loci that were not reported in the original Nalls et al. (2014) study,
comprising five novel loci and two other loci: rs983361 in SNCA at 4q22.1, which has been
reported to be associated with PD age at onset [15] and rs7221167 in MAPT at 17q21.31,
which has been reported but failed final filtering and QC in Nalls et al. 2019 PD GWAS [5]
(Table 2).

Conditional analysis revealed nine loci with more than one independent risk sig-
nal, including two loci (within SNCA and HASPIN) reaching genome-wide significance
(p < 5 × 10−8). Of those, one secondary association signal is in the newly identified gene
HASPIN (rs11653889 and rs117672332 at 17p13.2) and loci within GBA, TMEM175, SNCA,
and GAK/DGKQ had been previously identified as multi-signal loci by PD GWAS. In
addition, of those secondary association signals identified in conditional analysis, four
(rs113319394, rs3806789, rs74125084 and rs11653889) have high LD (r2 > 0.1) with the index
SNP and five (rs112344141, rs181580861, rs72765119, rs28645997, rs3851784) have very
low LD (r2 ≤ 0.01) with the index SNP. The locus with a secondary association signal at
4q22.1 (rs3806789 in SNCA) showed the largest decrease in p-value (from 2.10 × 10−2 to
9.13 × 10−10) producing a conditional odds ratio of 1.2 when conditioned on rs356182,
indicating significant allelic heterogeneity at this locus. Detailed summary statistics on all
nine secondary loci can be found in the Table 3 (LocusZoom plots of these loci are available
in Supplementary Figure S1).
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Table 3. Secondary association signals from conditional analysis.

Secondary
SNP CHR BP Nearest

Gene EA EAF Index SNP r2 OR p-Value ORcond p-Valuecond

rs112344141 1 154,983,036 GBA G 0.0491 rs35749011 0.001 1.3142 7.93 × 10−4 1.3337 4.18 × 10−4

rs113319394 2 95,555,635 LOC442028 C 0.0045 rs187989831 0.985 1.64 × 10−11 2.94 × 10−5 7.76 × 10−12 2.05 × 10−5

rs181580861 4 958,812 GAK/DGKQ G 0.0013 rs34311866 0.0003 6.4117 4.88 × 10−3 7.0166 3.43 × 10−3

rs3806789 4 90,759,556 SNCA C 0.4951 rs356182 0.174 0.9373 2.10 × 10−2 0.8265 9.13 × 10−10

rs72765119 5 76,363,276 WDR41 G 0.2345 rs137887044 0.0003 1.1172 2.90 × 10−3 1.1135 3.92 × 10−3

rs28645997 7 100,352,470 MUC12 G 0.4134 rs78837976 9.87 × 10−5 1.0935 2.06 × 10−3 1.0870 4.26 × 10−3

rs74125084 13 111,372,680 CARS2 T 0.0058 rs74125032 0.499 1.058 × 10−4 9.63 × 10−8 1.31 × 10−4 1.05 × 10−6

rs11653889 17 3,627,456 HASPIN A 0.0072 rs117672332 0.747 0.0499 1.13 × 10−14 0.0340 1.79 × 10−10

rs3851784 17 45,040,117 NSF A 0.4376 rs117300236 0.0115 0.8860 1.68 × 10−5 0.9081 6.78 × 10−4

Secondary SNP = secondary association single-nucleotide polymorphism; CHR = secondary SNP chromosome; BP = secondary SNP base position in GRCh37 (hg19); EA = secondary SNP effect allele; EAF =
secondary SNP effect allele frequency; Index SNP = most significant SNP used to condition on; r2 = LD between the secondary and index SNP; OR = odds ratio and p-value = p-value for the secondary SNP from
standard association analysis; ORcond = odds ratio and p-valuecond = p-value for the secondary SNP from conditional analyses.
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3.2. Comparison of Association Results with Nalls et al. (2014) Findings

The NeuroX dataset has been previously used by Nalls et al. (2014) to replicate 26
SNP loci found to be associated with PD disease risk (p < 5 × 10−8) from a meta-analysis
of genome-wide association data (Discovery Phase). Of these 26 SNPs, eight were not
available in the NeuroX dataset for analysis due to failed assay design or quality control,
so for the replication study, a suitable proxy SNP was selected. Of the 26 PD risk loci
examined in the original NeuroX study by Nalls et al. (2014), 18 were replicated (p < 0.05)
using the same SNP and an additional four loci were replicated using proxy SNPs.

In the current study, of the eight SNPs missing in the NeuroX dataset, apart from one
SNP (rs8118008)—due to its absence in the HRC reference panel—seven were successfully
imputed. Analysis of the imputed genotype data successfully replicated 21 of the 22 PD risk
loci that were originally replicated in Nalls et al. (2014), including the rs8118008 locus that
although not imputed itself, was replicated using a stronger proxy SNP rs8125675 (r2 = 1)
compared to the proxy SNP (rs55785911, r2 = 0.85) used in Nalls et al. (2014). Notably,
our analysis was able to impute and replicate (p = 0.031) an additional PD risk locus
(rs62120679) that was not replicated using a moderate (r2 = 0.49) proxy SNP (rs10402629) in
Nalls et al. (2014) (Table 4). In contrast, one original SNP (rs11158026) replicated by Nalls
et al. (2014) with p = 0.039 was not replicated in our imputed dataset (p = 0.186). Indeed,
prior to imputation, analysis of our QC’d NeuroX genotypes produced a p-value of 0.119
for rs11158026, indicating the difference in replication was due to the additional samples
used in our analyses (i.e., 5353 cases and 5551 controls in Nalls et al. (2014) compared to
5540 cases and 5862 controls in the current study) (Table 4 and Supplementary Table S4).
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Table 4. Comparison of association results with Nalls et al. for SNPs not available in NeuroX dataset.

SNP Information
Nalls et al. Results Reanalysis of NeuroX

DatasetDiscovery Phase Replication Phase

SNP CHR BP Nearest
Gene EA EAF OR p-Value OR p-Value Imp_rsq OR p-Value

rs35749011 1 155,135,036 GBA-SYT11 A 0.017 1.762 6.09 × 10−23 2.307 * 7.48 × 10−9 * 0.969 2.241 5.03 × 10−11

rs1474055 2 169,110,394 STK39 T 0.128 1.213 7.12 × 10−16 1.218 * 1.07 × 10−6 * 0.961 1.241 2.82 × 10−7

rs115185635 3 87,520,857 KRT8P25 C 0.035 1.789 2.18 × 10−8 0.931 * 0.846 * 0.999 0.983 0.802
rs117896735 10 121,536,327 INPP5F A 0.014 1.767 1.21 × 10−11 1.404 * 1.10 × 10−3 * 0.776 1.525 4.64 × 10−4

rs3793947 11 83,544,472 DLG2 A 0.443 0.912 2.59 × 10−8 0.976 * 0.201 * 0.998 0.983 0.538
rs11158026 14 55,348,869 GCH1 T 0.335 0.889 7.13 × 10−11 0.948 0.039 0.999 1.048 0.186
rs1555399 14 67,984,370 TMEM229B A 0.468 0.872 5.53 × 10−16 0.971 * 0.144 * 0.902 1.033 0.239
rs62120679 19 2,363,319 SPPL2B T 0.314 1.141 2.53 × 10−9 0.999 * 0.518 * 0.919 1.074 0.031
rs8118008 20 3,168,166 DDRGK1 A 0.657 1.111 2.32 × 10−8 1.113 * 1.18 × 10−4 * 0.955 1.120 * 1.13 × 10−4 *

CHR = chromosome; BP = base position relative in GRCh37 (hg19); EA = effect allele; EAF = effect allele frequency; OR = odds ratio and p-value = p-value of the association analysis; Imp_rsq = IMPUTE4
info score. In replication phase of Nalls et al. results, * indicates the SNPs that failed assay design or quality control and a suitable proxy SNP was used (proxy rs71628662 for rs35749011; proxy rs1955337 for
rs1474055; proxy rs62267708 for rs115185635; proxy rs118117788 for rs117896735; proxy rs12283611 for rs3793947; proxy rs1077989 for rs1555399; proxy rs10402629 for rs62120679; proxy rs55785911 for rs8118008).
In current study results, for rs8118008 that is not available in HRC to impute, a perfect (r2 = 1) proxy SNP rs8125675 was selected. SNPs with divergent replication results are shown in bold.
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3.3. Novel Low-Frequency Variants Associated with PD

Along with those known genetic loci associated with PD, we also identified five novel
loci, of which three were driven by low-frequency variants with effect sizes (OR > 1.85;
Table 2, Figure 1). One of these loci, driven by a low-frequency intron variant in WDR41
gene at chromosome 5q14.1 (rs137887044, OR = 1.850 [1.489–2.295], p = 2.41 × 10−8), has
previously been implicated in multiple neurological disorders. The LocusZoom plot for the
1 Mb region of this novel SNP (Figure 2b), showed another genome-wide significant SNP
(rs148662448 near WDR41) having strong LD (r2 = 0.899) with the novel SNP rs137887044.
As expected, when conditioned on rs137887044, rs148662448 no longer showed evidence
for association (p = 0.411), indicating a single genetic risk factor exists at this location.

Our analysis highlighted two novel rare variants. One at chromosome 2q11.1
(rs187989831, p = 7.56 × 10−10) near TEKT4. As shown in the LocusZoom plot (Figure 2a),
there are two other genome-wide significant SNPs (rs1281734107 and rs78890475) in low
LD (r2 ≤ 0.2) close to the novel index SNP. However, conditional analyses conditioning on
rs187989831 found only weak evidence for residual association (0.005 < p < 0.03) of these
two SNPs at this locus. The second rare novel variant (rs74125032, p = 2.15 × 10−10) lies
within an intron of the CARS2 gene on chromosome 13q34. However, these two variants
have extremely small OR in this study and the reason could be that these variants are
extremely rare and have very low genotype frequency within the NeuroX dataset.

3.4. Joint Genetic Effects on PD Risk

Machine learning (GenEpi) association analyses identified significant (p < 3.77 × 10−6)
SNP–SNP interactions at five independent genomic loci harbouring eight different genes
(Table 5). Seven of the eight genes (GAK, TMEM175, SNCA, PLEKHM1, CRHR1, MAPT
and NSF) have been implicated via GWAS by others as having individual SNPs associated
with PD risk, whereas a joint effect of two SNPs at chromosome 7p15.3 (rs2965400 and
rs6461595, p = 3.77 × 10−6) within an intron of the DNAH11 gene has not previously been
implicated in PD, although it has been reported to be associated with cholesterol level and
(age-related) cognitive decline. Furthermore, the most significant interaction effect on PD
was found between two SNPs rs34186148 and rs242941 (p = 4.78 × 10−10) at chromosome
17q21.31 in the CRHR1 gene with the homozygous CC genotype being protective for PD at
both SNPs. The protein coding CRHR1 gene is reported to be associated with anxiety and
depression which are common in PD. Figure 3 shows the genotype combination of SNPs in
CRHR1 (Figure 3a), DNAH11 (Figure 3b) and the most significant interaction in other three
independent loci (TMEM175 at 4p16.3, SNCA at 4q22.1 and NSF at 17q21.31), highlighting
frequency differences in cases and controls for different genotype combinations underlying
the significant association with PD.

Table 5. GenEpi SNP–SNP interaction results.

SNP1 SNP2 Genotype
freq

Nearest
Gene OR p-Value

rsID Chr:bp_Genotype rsID Chr:bp_Genotype

rs11248057 4:906131_GG rs11734449 4:921733_CC 0.101 GAK 1.412 4.70 × 10−7

rs6599388 4:939087_TT rs1051613 4:951179_GG 0.096 TMEM175 1.431 3.01 × 10−7

rs356167 4:90673770_GG rs34320254 4:90705606_TT 0.478 SNCA 0.771 1.54 × 10−6

rs2965400 7:21733475_GG rs6461595 7:21758045_GG 0.132 DNAH11 0.750 3.77 × 10−6

rs2521819 17:43543830_TC rs7224890 17:43548778_GC 0.299 PLEKHM1 1.260 5.55 × 10−6

rs34186148 17:43854655_CC rs242941 17:43892520_CC 0.120 CRHR1 0.576 4.78 × 10−10

rs1294776 17:44004442_TT rs6503453 17:44062603_AA 0.296 MAPT 0.798 9.25 × 10−6

rs200403 17:44781143_CA rs35937770 17:44808360_GG 0.205 NSF 0.752 1.57 × 10−7

Chr:bp_genotype = chromosome and base position (GRCh37 [hg19]) with the genotype of each SNP; Genotype freq = frequency in all
individuals (cases and controls) for the combination of SNP1 genotype and SNP2 genotype; OR = odds ratio and p-value = p-value for the
interaction for each genotype combination.
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Figure 3. Genotype frequency for the combination of SNPs identified by GenEpi. (a) Frequency
in cases and controls of each genotype combination of the most significant SNP–SNP interaction effect
on PD; (b) Frequency in cases and controls of each genotype combination of the SNP–SNP interaction
effect identified in novel PD risk loci. (c–e) show frequency differences in cases and controls for each
genotype combination of the most significant SNP–SNP interactions in other three independent loci.
The dark-shaded cell of each figure represents the combination that has the strongest effect.
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4. Discussion

In this study, we reanalysed an ExomeChip-based NeuroX dataset—previously used
for the replication of GWA meta-analysis results [6,16,17]—to identify novel common and
rare SNPs and their interactions associated with PD risk. Starting with only 110,504 NeuroX
SNPs passing QC, comprising predominantly (73%) exonic and less common variants, we
accurately imputed 1,465,938 SNPs using the HRC reference panel. The imputed dataset
comprised 53% intronic, 40% intergenic and 7% exonic SNPs and spanned a wide frequency
range including rarer as well as more common SNPs across chromosomes 1–22 and X. A
review of the literature only found examples focussing on genome-wide imputation of
exonic variants. For example, Auer et al. (2012) performed genotype imputation of exome
sequence variants in a sample of more than 13,000 African Americans with Affymetrix
GWA genotyping array (Affy6.0) data, using a reference comprising 761 African Americans
with both Affy6.0 genotype data (838,337 SNPs with MAF > 0.01 spread across the genome)
and exome sequence data to identify exonic variants associated with blood cell counts [18].
Similar studies in the same cohort were performed by Johnsen et al. (2013) and Du et al.
(2014) to identify novel low-frequency variants that contribute to von Willebrand factor [19]
and adult body height [20]. In contrast, we imputed common and rare variants across the
genome using a WGS-based HRC reference panel, starting with predominantly rare exonic
variants. In the current study, compared to the association results from the original NeuroX
dataset, the results after imputation produced (i) more robust evidence for replication
with smaller p-values for most of the original significant SNPs, and (ii) a larger number of
genome-wide significant loci associated with PD.

Association analysis of imputed genetic data confirmed several already-known PD risk
loci and also allowed us to identify five novel association signals driven by low-frequency
variants in or near TEKT4, WDR41, MUC12, CARS2, and ITGAE/HASPIN. Of those, first,
the low-frequency variant identified in WDR41 at chromosome 5q14.1 showed a near two-
fold increased risk for PD and WDR41 which is associated with several neurogenerative
disorders and could be a potential candidate gene to identify PD risk. WDR41 is a protein-
coding gene and diseases associated with this gene include striatal degeneration, autosomal
dominant 1, a rare autosomal-dominant movement disorder with some motor symptoms
similar to PD, and frontotemporal dementia and/or amyotrophic lateral sclerosis 1, an
autosomal dominant neurodegenerative disorder [21]. Importantly, several variants in
WDR41 have been identified in previous GWAS having near genome-wide significant
association signals for: Alzheimer’s disease (AD) (p = 7 × 10−7) [22]; caudate nucleus
volume (p = 2 × 10−7), where caudate is a subcortical brain structure implicated in many
common neurological and psychiatric disorders [23]; and epileptogenesis (p = 5 × 10−6) [24]
in European populations. AD is also an age-related neurodegenerative condition caused
by damaged brain cells and both PD and AD can involve common symptoms such as
anxiety, depression, and sleep disturbances; some studies have noted shared risk variants
across AD and PD [25]. However, none of these studies were able to identify the same rare
cording variants for both diseases, perhaps due to limited sample sizes and different data
processing methods. These previous findings and results of the current study suggest that
WDR41 is a strong candidate gene involved in PD risk.

Second, the variant near TEKT4 is a very rare variant and thus showed an extreme
odds ratio in the NeuroX sample. Such an extreme effect estimates that less common
or rare genetic variants have large standard errors and result from the small number of
alleles observed in the analysed case and control samples. Therefore, analyses in larger
samples are required to produce more accurate effect estimates. That said, the near-QC
threshold minimac info scores for the variants producing extreme OR values in this study
(r2 = 0.5334 for rs187989831 and r2 = 0.50635 for rs74125032) could indicate that lower
imputation quality may negatively influence the association test and effect estimation.
Indeed, there are several challenges associated with both imputing and analysing rare
genetic variants due to the low frequency of those variants in the study sample due to
their low correlation with surrounding variants, especially compared to and with common
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genetic variants. Hence, replication via direct genotyping ideally in larger sample sizes is
required to ultimately validate such findings.

Although the TEKT4-associated variant is rare and requires validation, it may be an
important finding due to its potential involvement in sudden unexplained death in PD or
seizure. Diseases potentially related to TEKT4 include myoclonic juvenile epilepsy [26], a
condition characterised by recurrent seizures which cause rapid, uncontrolled muscle jerks,
muscle rigidity, convulsions, and loss of consciousness.

Of the genes implicated by the other novel SNP loci, CARS2 is associated with com-
bined oxidative phosphorylation deficiency and ovarian cancer. It was found that mutations
in CARS2 are associated with progressive myoclonus epilepsy [27] and could lead to a
severe epileptic encephalopathy and complex movement disorder [28]. Epilepsy is an
uncommon comorbidity of PD. Although rare, the coexistence of epilepsy and PD may
influence PD progression [29]. Gruntz et al. (2018) clearly suggest that incident PD is associ-
ated with an increased incident epileptic seizures risk [30]. This suggests that these two rare
variants could be possible candidate genes for PD risk and since epilepsy is associated with
increased risk of sudden unexplained death in epilepsy [31], having variants at these loci,
patients with increased risk of PD may experience sudden unexpected death. However,
these two variants have extremely large odds ratios in this study, perhaps due to their
very low genotype frequency within the analysed dataset. MUC12 is associated with Tn
polyagglutination syndrome and colorectal cancer and previous GWAS have pointed out
the effect of the genetic variants in MUC12 on hemoglobin levels and CARS2 on diastolic
blood pressure. However, there is no disease reported to be associated with the HASPIN
gene, making it an important gene for further analysis.

In addition, our results show strong evidence for multiple association signals: one at
chromosome 17p13.2 in HASPIN substantiating the importance of this gene in PD risk, and
one at chromosome 4q22.1 in SNCA. SNPs at chromosome 4p22.1 are well known for their
association with PD [15,32–34] and several other diseases including dementia with Lewy
bodies [35].

Notably, this analysis using genotype imputation identified eight PD risk loci, includ-
ing the five novel genetic loci mentioned above and two other loci in SNCA and MAPT that
have been previously reported in other PD GWAS, that were not reported in the original
Nalls et al. (2014) study which used the same NeuroX dataset to replicate their discovery
phase findings without genotype imputation. Of these risk loci, all genetic variants in the
five novel loci are low-frequency or rare variants, while variants in the two other previously
reported loci are common genetic variants. In addition to the replication of PD risk loci
identified and replicated in Nalls et al. (2014), our analysis was able to impute and replicate
(p = 0.031) an additional PD risk locus (rs62120679 in SPPL2B) that was not replicated using
a proxy SNP (rs10402629) in Nalls et al. (2014). These results support the utility of genotype
imputation using dense reference panel such as HRC to assess genetic variants with wide
frequency range.

Interestingly, our results provide support for the findings of a recent meta-analysis of
whole-exome sequencing data by Gaare et al. (2020) [16] that was replicated using a cohort
genotyped using the NeuroX array. This 2020 study found no evidence of rare mutation
enrichment in genes within PD-associated loci. Similarly, our study found genome-wide
significant associations of rare SNPs only within novel PD risk loci and not within known
PD-associated loci.

The interaction analysis using the GenEpi machine learning approach identified eight
SNP pairs having joint genetic effects associated with PD, including a strong genome-wide
significant interaction association signal at chromosome 17q21.31 in CRHR1, although pro-
ducing no significant association signals of those two SNPs individually for PD risk. Given
that SNPs in CRHR1 have been previously reported to be associated with PD [5,32,36,37]
and Alzheimer’s disease [38] and SNP–SNP interactions are identified in SNCA, GAK
and MAPT, a well-known risk gene for PD, this suggests that these joint effects are true
findings and nicely demonstrate the utility of our approach to identify joint genetic effects
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associated with complex diseases like PD. However, in GenEpi two criteria were adopted
before modelling the genotype features: first, exclude features with genotype frequency
(proportion of a genotype among the total samples in the dataset) ≤ 5%; and second,
exclude features with weak association (χ2 test p ≥ 0.01) with the disease. This limits
the discovery of joint genetic effects of SNPs having relatively small main effects and the
interactions of non-common SNPs.

Overall, the novel individual association signals in TEKT4 and WDR41 and the SNP–
SNP interaction effect in CRHR1 identified in this study are important because although
TEKT4 and WDR41 have not previously been reported to be associated with PD, previous
findings indicate the possible associations of these genes with several neurogenerative and
neurological disorders, making them strong biological candidates due to their established
pleiotropy. Furthermore, variants in these genes may have utility as prognostic/diagnostic
markers to stratify patients with complex (e.g., PD and other neurogenerative/neurological
disorder) symptomatology. Although follow-up studies are required to confirm some
findings, this study highlights the utility of genome-wide genotype imputation, followed
by careful and thorough statistical analyses, in existing custom and ExomeChip array-
based genetic datasets to identify intronic and intergenic risk loci, despite their sparse,
inconsistent and predominantly exonic coverage.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12050689/s1, Figure S1: LocusZoom plots of genome-wide significant PD loci having
significant secondary association signals, Figure S2: Q-Q plot for the association results of genotype
data (a) without imputation and (b) with imputation, Table S1: Composition of the initial PD-NuroX
sample, Table S2: Summary of QC process, Table S3: Summary of the GWAS results for genome-wide
significant loci, Table S4: Comparison of association results with Nalls et al., Table S5: Genomic region
of the SNPs in the imputed dataset, Table S6: Number of cases and controls for each genotpe combina-
tion of two SNPs found in interaction analysis, Data S1: ‘NeuroX_Reanalysis_Summary_Statistics.txt’,
Note S1: ‘Description_NeuroX_Reanalysis_Summary_Statistics.txt’.
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