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Primary biliary cholangitis (PBC) is an autoimmune-mediated chronic cholestatic liver
disease, fatigue, and skin itching are the most common clinical symptoms. Its main
pathological feature is the progressive damage and destruction of bile duct epithelial cells.
Non-coding RNA (NcRNA, mainly including microRNA, long non-coding RNA and circular
RNA) plays a role in the pathological and biological processes of various diseases,
especially autoimmune diseases. Many validated ncRNAs are expected to be
biomarkers for the diagnosis or treatment of PBC. This review will elucidate the
pathogenesis of PBC and help to identify potential ncRNA biomarkers for PBC.
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INTRODUCTION

Primary biliary cholangitis (PBC) is a chronic cholestatic liver disease mediated by autoimmunity.
Fatigue and pruritus are the most common clinical symptoms, usually preceding the appearance of
jaundice by years (Erice et al., 2018; Beuers et al., 2015). The main histological features are chronic
progressive damage and destruction of bile duct epithelial cells (non-suppurative cholangitis), portal
inflammation (mainly lymphocytes, plasma cells, and eosinophils) and increased fibrosis (Poupon,
2010; Tsuneyama et al., 2017; Pandit and Samant, 2022). PBC is globally distributed and can occur in
all races and ethnicities. A recent meta-analysis (Lv et al., 2021) showed that both the incidence and
prevalence of PBC are on the rise globally, with an annual incidence rate of 0.23/100,000–5.31/
100,000, and a prevalence of 1.91/100,000–40.2/100,000. The highest in North America and Nordic
countries (Kim et al., 2000; Koulentaki et al., 2014; Metcalf et al., 1997; Marschall et al., 2019), and the
lowest in Canada (Witt-Sullivan et al., 1990) and Australia (Watson et al., 1995). Population-based
epidemiological data on PBC are still lacking in China. A recent meta-analysis (Zeng et al., 2019)
estimated that the prevalence of PBC in China was 20.5/100,000, ranking second in the Asia-Pacific
region after Japan. Figure 1. The cause of PBC is unknown, and may be caused by a highly complex
interaction between genetic and environmental factors. There is also extensive evidence that
inflammation and immune disorders have an important impact on PBC. The disease mostly
affects middle-aged women (i.e., 85%–90% patients onset at 40–60 years old), with female-to-
male ratios is about 1:10, while higher mortality was described in men (Gonzalez and Washington,
2018). Moreover, there are also recent literature of increasing in male PBC (Lleo et al., 2016). This
may be related to additional environmental exposures, higher prevalence of viral hepatitis, greater
awareness of the disease by physicians and patients and unknown gender factors that may modulate
immunity (Lleo et al., 2016). The specific reasons need to be further explored.

PBCwas also previously known as primary biliary cirrhosis. The name change reflects the fact that
cirrhosis only occurs in the late stage, so it is difficult to correctly identify patients with early disease.
According to the AASLD (American Association for the Study of Liver Diseases), two of the
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following three criteria are met to confirm the diagnosis of PBC:
1) biochemical evidence of cholestasis based on alkaline
phosphatase (ALP) elevation; 2) anti-mitochondrial antibody
(AMA) positivity; 3) histological evidence of intrahepatic
destructive cholangitis (Carey et al., 2015). Among them,
serum AMA, especially the positive AMA-M2 subtype, has
high sensitivity and specificity for the diagnosis of PBC, and
are recognized as distinct diagnostic biomarkers. There is also a
PBC patient subpopulation (~5%–10%) who have the same
clinical and histological features as classic PBC, but AMAs are
negative even with the most sensitive detection methods. For
these patients, the diagnosis is mainly based on liver biopsy
(Kouroumalis et al., 2018). However, problems can arise in the
presence of ascites or infection and are not easily accepted by
patients.

The first-line treatment of PBC is the daily administration of
ursodeoxycholic acid (UDCA), which improves prognosis in ~2/3
of patients in early stage of the disease. This means up to 40% of
patients have an incomplete response to UDCA, and the long-
term survival rate is lower than that of the general population
(Parés et al., 2006). UDCA was approved by the United States
FDA (Food and Drug Administration) in 2016 as a second-line
treatment for patients with primary biliary cholangitis who are
unresponsive to UDCA; however, approximately 50% of patients
might need additional treatments to reach therapeutic goals.
Otherwise, these patients may progress to liver transplantation
or even die (Gulamhusein and Hirschfield, 2020). Therefore,
identification of novel and promising biomarkers is crucial for
PBC early diagnosis and (or) treatment.

Non-coding RNA (NcRNA) refers to a functional RNA
molecule that cannot be translated into protein. They can
perform their respective biological functions at the RNA level
(Wang et al., 2019). Due to increasing development of microarray
sequencing techniques, accumulating data have suggested
ncRNAs play important roles in regulating autoimmunity and
inflammation (Kempinska-Podhorodecka et al., 2017; Young
et al., 2017; Wang et al., 2018a). In addition, different cells
and tissues have different ncRNA expression profiles (Chen

et al., 2016; Katsumi et al., 2016; Zheng et al., 2017a; Erice
et al., 2018; Xiang et al., 2019). Erice studies have shown that
miR-506 is overexpressed in cholangiocytes of PBC, induces
PBC-like characteristics in cholangiocytes and promotes
immune activation (Erice et al., 2018). Dai et al. compared
miRNAs in renal biopsy samples from patients with class II
lupus nephritis (LN) and nephrectomy samples from patients
with renal tumors. The results showed that there were 66
differentially regulated miRNAs (36 upregulated and the
remaining 30 downregulated) in lupus nephritis patients (Dai
et al., 2009). Wu et al. showed that linc0949 and linc0597 were
significantly decreased in patients with SLE compared with
patients with RA and healthy control subjects. Moreover,
linc0949 was positively correlated with SLEDAI-2K scores and
negatively correlated with complement component C3 levels (Wu
et al., 2015). However, the roles of these specifically expressed
ncRNAs in the pathogenesis of PBC have not been fully
elucidated.

In the present review, some functional ncRNAs are listed in
Table 1, mainly including microRNAs (miRNAs), long non-
coding RNAs (lncRNAs), and circular RNAs (circRNAs)
(Katsushima et al., 2014; Nakagawa et al., 2017; Wang et al.,
2017; Wasik et al., 2017; Afonso et al., 2018; Wasik et al., 2020).
We aimed to elucidate the dysregulated ncRNAs in PBC that
contribute to the understanding of the pathogenesis of PBC by
reviewing all currently published studies. Most importantly,
helping to identify those aberrantly expressed ncRNAs in PBC
will facilitate the exploration of promising biomarkers for early
diagnosis and treatment of PBC.

MICRORNAS AND PRIMARY BILIARY
CHOLANGITIS
Broad Roles of MicroRNAs in Various
Diseases
MiRNAs are evolutionarily conserved, non-coding small
RNAs of 18–25 nucleotides in length. MiRNAs incompletely
bind to complementary sequences in the 3′ untranslated region
(3′UTR) of messenger RNA (mRNA) and regulate the
expression of target genes at the post-transcriptional level
by promoting the degradation of mRNA or repressing its
translation (Tavasolian et al., 2018). MiRNAs can regulate
about 90% of protein-coding genes and play important roles in
various biological processes such as metabolism, cell
differentiation, proliferation, apoptosis, and the
maintenance of immune homeostasis (Alvarez-Garcia and
Miska, 2005; Baltimore et al., 2008; Check Hayden, 2008).
Disturbances in miRNAs expression profiles are associated
with a variety of human diseases, including autoimmune
diseases, such as systemic lupus erythematosus (SLE), PBC,
and rheumatoid arthritis (RA) (Young et al., 2017; Wang et al.,
2018a; Erice et al., 2018). Some of them have been proposed as
non-invasive biomarkers of disease.

As shown in Table 1, various miRNAs were dysregulated in
PBC. These miRNAs can regulate target genes of cytokines,
oxidative stress, immunity and inflammation-related

FIGURE 1 | The prevalence of PBC in different countries around the
world.
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TABLE 1 | Aberrant expressed ncRNAs in PBC.

NcRNA Target Site Expression Signaling Role References

MiRNA

miR-506 AE2/InsP3R3 Intrahepatic bile
ducts

Up --- Binds the 3′UTR region of
AE2 mRNA, prevents
protein translation;
Decreased AE2 activity;
Impair bile secretion

Erice et al. (2018)

miR-155 SOCS-1 Liver tissues Up VDR-miRNA 155-
SOCS1 pathway

Sustained inflammatory
responses are elicited
through the VDR-
miRNA155-SOCS1
pathway

Kempinska-Podhorodecka
et al. (2017)

miR-139-5p c-FOS/TNF-α Serum Down NF-κB signaling Regulated TNF-α and
c-FOS.

Katsumi et al. (2016)
Liver tissues
(lymphocytes or
hepatocytes)

Up-
lymphocytes
Down-
hepatocytes

miR-21/miR-150 cMyb/
RASGRP1/
DNMT1

Serum, liver
tissue, and
PBMC in AMA (-)
patient

Up --- A feature of anti-
mitochondrial antibody-
negative PBC.

Wasik et al. (2020)

miR-425 N-Ras Peripheral blood
CD4+ T cell

Down TCR signaling Downregulation of
inflammatory cytokines (IL-
2 and IFN-γ)

Nakagawa et al. (2017)

miR-223-3p/miR-
21-5p

TGFBR1 Peripheral blood
B cells

Down TGF-β1 signaling Associated with
progression of PBC.

Wang et al. (2017)

miR-34a/miR-132 NRF2 Liver tissues Down Oxidative stress Oxidative stress;
Autophagy

Wasik et al. (2017)

miR-21 CDK2AP1 Liver tissues Up Regulated necrosis MiR-21 ablation
ameliorates liver damage
and necroptosis

Afonso MB, et al., (2018)

miR-92a IL-17A Plasma and
PBMC

Down Th17 signaling Direct regulation of IL-17A Liang et al. (2016)

miR-181a BCL-2 Peripheral blood
CD4+ T cell

Down TCR signaling Regulated Th17 cells
distribution via upregulated
BCL-2

Song et al. (2018)

miR-122a/miR-26a ---/EZH2 Liver tissues Down Apoptosis/
inflammation/oxidative
stress/metabolism

Affected cell proliferation,
apoptosis, inflammation,
oxidative stress, and
metabolism

Padgett et al. (2009)
miR-328/miR-299-5p --- Up

miR-26a IL-17A Th17 cell Up --- Regulates IL-17, induces
apoptosis and proliferation

Tang (2009)

miR-34a TGIF2 Peripheral blood Up TGF-β1/Smad Induction of EMT and
fibrosis in intrahepatic bile
duct epithelium

Pan et al. (2021)

Circulating miRNAs

miR-299-5p --- Peripheral blood Up --- MiR-299-5p was
associated with ALP, γ-GT,
TBIL and immunoglobulin
M levels

Katsushima, et al. (2014)

let-7b --- PBMC Down --- miR-let-7b expression was
correlated with Mayo risk
scores, IL-18 and ALP.

Qian et al. (2013)

miR-451a/miR-
642-3p

--- Plasma
exosomes

Up --- Regulated the expression
of the co-stimulatory
molecules CD86 and CD80
in peripheral antigen-
presenting cells

Tomiyama et al. (2017)

miR-197-3p/miR-
505-3p

--- Serum Down --- As a clinical biomarker
for PBC.

Ninomiya et al. (2013)

miR-122-5p/miR-
141-3p

--- Serum Up --- As potential biomarkers
of PBC.

Tan et al., (2014)

miR-26b-5p Down
(Continued on following page)
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molecules, thereby participating in the pathogenesis or/and
progression of PBC (Padgett et al., 2009; Qian et al., 2013;
Liang et al., 2016; Erice et al., 2018; Song et al., 2018). Several
published literatures have extensively explored the molecular
mechanisms of differentially expressed miRNAs in PBC,
particularly regarding their altering effects on inflammation
and autoimmunity (Liang et al., 2016; Nakagawa et al., 2017;
Erice et al., 2018).

The Role of MiR-506 in the Pathogenesis of
Primary Biliary Cholangitis
Anion exchanger 2 (AE2) is essential in the maintenance of the
protective bicarbonate- rich umbrella on the surface of BECs
via regulation of biliary HCO3

− secretion, which shields BECs
from noxious luminal bile acids (Rodrigues et al., 2018).
Banales et al. (2012) demonstrated that miR-506 is
upregulated in cholangiocytes from PBC patients, binds the
3′UTR region of AE2 mRNA and prevents protein translation,
resulting in diminished AE2 activity and impaired biliary
secretory functions. Given the putative pathogenic role of

decreased AE2 in PBC, miR-506 may constitute a potential
therapeutic target for this disease. Furthermore, miR-506 also
regulates other genes involved in maintaining the integrity of
bicarbonate umbrellas, the type III inositol 1,4,5-triphosphate
receptor, an important regulator of calcium release from
cholangiocytes (Ananthanarayanan et al., 2015; Erice et al.,
2018). Under physiological conditions, acetylcholine increases
the level of inositol triphosphate (InsP3) in cholangiocytes,
resulting in an increase in the level of cytoplasmic Ca2+. Apical
Cl− secretion is further stimulated by the Ca2+ activated Cl−

channel transmembrane protein 16F (TMEM16A), ultimately
leading to bicarbonate secretion through AE2 (Minagawa
et al., 2007). The downregulation of InsP3R3 expression in
cholangiocytes from PBC patients leads to decreased
intracellular Ca2+ signaling and bicarbonate secretion,
thereby triggering cholestasis (Shibao et al., 2003). InsP3R3
mRNA contains two highly conserved miR-506 binding sites,
both of which are functional. In miR-506-overexpressed
cholangiocytes, InsP3R3 mRNA and protein levels were
reduced, resulting in a marked reduction in Ca2+ release
from the endoplasmic reticulum and failure of bile secretion

TABLE 1 | (Continued) Aberrant expressed ncRNAs in PBC.

NcRNA Target Site Expression Signaling Role References

miR-4311/miR-
4714-3p

--- Serum Down --- Potential biomarkers for
use in the development of
treatment of patients with
refractory PBC.

Sakamoto et al. (2016)

miR-122/miR-378 Up

miR-155-5p AKT3 PBMC Down MAPK/TCR/BCR
signaling

A new disease marker
of PBC.

Yang. et al. (2013)
miR-150-5p --- Up

LncRNA

lncRNA
NONHSAT250451.1

EGR1 PBMC Up Inflammation/immune
activation/TCR
signaling/NF-κB
signaling/chemokine
signaling

It is involved in
inflammation, immune cell
activation, TCR signaling
pathway, etc., which may
be related to the
occurrence of PBC.

Xiang et al. (2019)

lncRNA AK053349 --- Peripheral blood
CD8+ T cell and
PBMC

Up Autoimmunity and T
lymphocyte activation

Targeted regulation of
EGR1 may be involved in
the occurrence of PBC.

Pang et al. (2009)

lncRNA XIST Inflammatory
cytokines

NK and CD4+ T
lymphocytes

Up Th1/Th17 Stimulated the secretion of
IFN-γ, IL-17, TGF-β and
ROR-γ T cells, and increase
the proportion of Th1 and
Th7 cells, led to the
occurrence of PBC.

She (2020)

lncRNA H19 --- Liver tissue Up HSC activation and
proliferation

Promoted HSC activation
and proliferation,
aggravate PBC.

(Li et al. (2018a); Liu et al.
(2019); Li et al. (2020a))

CircRNA

circ_402458/
circ_087631/
circ_406329

hsa-miR-522-
3p/hsa-
miR-943

Plasma Up Inflammation-
related signaling

Candidate biomarkers
for PBC.

Zheng et al. (2017a)

circ_407176/
circ_082319

Down

--- represents unknown.
PBMC, peripheral blood lymphocyte mononuclear cells; EMT, epithelial-mesenchymal transition; ALP, alkaline phosphatase; γ-GT, γ-glutamyl transpeptidase; TBIL, total bilirubin; TCR,
T cell receptor; BCR, B cell receptor; NF-κB, nuclear factor-κB; MAPK, mitogen-activated protein kinase; HSC, hepatic stellate cell.
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(Ananthanarayanan et al., 2015). In vitro data demonstrate
that upregulation of proinflammatory, profibrotic, and
senescent markers in miR-506-overexpressing
cholangiocytes results in increased cellular stress and
increased sensitivity to toxic hydrophobic bile acids (Erice
et al., 2018). These results suggest a mechanistic link between
epigenetic regulation, cellular damage, and immune
dysregulation in PBC. Banales’ team further expiored the
role of inflammatory factors, such as interleukins (IL)-1β,
IL-6, IL-8, IL-12, IL-17, IL-18, tumor necrosis factor alpha
(TNF-α) and interferon gamma (IFN-γ), transforming growth
factor beta 1 (TGF-β1), estrogens (17β-estradiol, 17β-E2), bile
acids [cholic acid (CA), UDCA and tauroursodeoxycholic
(TUCA)] and other factors in regulating miR-506
expression in cholangiocytes and the role of miR-506 in
cholangiocyte pathophysiology and immunomodulation in
PBC. The result show different inflammatory factors
enhance the expression of miR-506 in biliary epithelial cells.
MiR-506 induces PBC-like features in cholangiocytes and
promotes immune activation (Erice et al., 2018). Figure 2.
Intriguingly, miR-506 is an X- linked miRNA localized to
Xq27.3, which helps explain the possibility that females
predominate in PBC disease, although whether this

hypothesis applies to human remains to be demonstrated
(Arora et al., 2013).

Expression Profiles of MicroRNAs in
Peripheral Blood and Liver Tissue of
Primary Biliary Cholangitis Patients
Liang et al. (2016) used microarrays to identify 16 differentially
expressed miRNAs (9 miRNAs upregulated and 7 miRNAs
downregulated) in plasma from 3 PBC patients and 3 healthy
controls. The most prominent finding was the downregulation of
miR-92a, and the expression of miR-92a was negatively
correlated with the Th17 cell population. Furthermore, the
expression of miR-92a was colocalized with IL-17A in
peripheral blood mononuclear cells (PBMCs) of patients,
implying a direct regulation of IL-17A by miR-92a. Notably,
studies have shown that Th17 cells and the IL-17 secreted by the
cells may induce epithelial-mesenchymal transition (EMT) in
intrahepatic bile ducts through IL-17A-IL-17RA-Act1 activation
of the NF-κB pathway, and participate in the progression of PBC
disease (Huang et al., 2016). Figure 2. Domestic studies have
found that there are differences in the expression of miR-26a in
initial CD4+ T cells, memory CD4+ T cells and effector CD4+

FIGURE 2 | Signaling pathway of miRNAs in PBC. MiRNA are involved in regulating inflammation and autoimmunity. Some miRNAs are encapsulated in
nanovesicles and exert critical effects on inflammatory and immune cells. miRNAs participate in PBC inflammation and autoimmune disorders primarily through NF-κB,
TGF-β1, Th17, and so on.
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T cells of PBC patients, and no expression in Jurkat cells (human
T cell line). The authors then cultured Th17 cells (derived from
human CD4+ T cells) and transfected pre-miR-26a and anti-miR-
26a, respectively. The results showed that compared with the
normal control, the cells transfected with pre-miR-26a
significantly decreased IL-17, significantly decreased the
activities of NF-κB and AP-1, and induced increased apoptosis
after activation; transfected with anti-miR-26a cells, IL-17
mRNA, NF-κB and AP-1 activities were significantly
increased, cell proliferation activity increased, and apoptosis
induced by activation decreased. The luciferase reporter
further demonstrated that miRNA-26a could indeed regulate
IL-17. Therefore, this study shows that miRNA-26a regulates
the function of Thl7 cells by affecting apoptosis and cell
proliferation activities induced by IL-17 activation (Tang,
2009). Figure 2. The above studies demonstrate that miRNAs
may play a significant role in the fibrosis of bile duct epithelial
cells in PBC patients through IL-17.

Pan et al. (2021) found that miR-34a was significantly
overexpressed in the serum of PBC patients (30 PBC vs.30
controls). miR-34a upregulation inhibits proliferation of
intrahepatic bile duct epithelium and increases
mesenchymal markers zonula occluden-1 (ZO-1), laminin 1,
vimentin and fibroblast-specific protein 1 (FSP-1) and
expression of fibrotic markers α-SMA, and collagen I. The
authors further demonstrated that miR-34a targets TGIF2 to
induce EMT and fibrosis in intrahepatic bile duct epithelium
through the TGF-β1/smad pathway (Pan et al., 2021).
Figure 2. MiR-139-5p was significantly downregulated in
clinically advanced PBC compared to control. In situ
hybridization and RT-qPCR showed that the expression of
miR-139-5p in lymphocytes of PBC patients was higher than
that of lymphocytes of other liver diseases (chronic viral
hepatitis and autoimmune hepatitis), while miR-139-5p in
hepatocytes of PBC was lower than that in other liver
disease, suggesting that lymphocytes are the main source of
miR-139-5p. In vitro studies showed that with the
upregulation of miR-139-5p, the level of TNF-α in the cell
supernatant was significantly increased, the transcription of
the c-FOS gene was inhibited, and the NF-κB signaling
pathway was finally activated. Activation of NF-κB further
induces the production of TNF-α, and increased levels of TNF-
α may accelerate bile duct injury through positive feedback.
The authors revealed a novel inflammation-regulatory
mechanism between TNF-α and c-FOS transcription
through miR-139-5p in the NF-κB pathway (Katsumi et al.,
2016). Figure 2. Therefore, miR-139-5p could become not
only a biomarker of disease progression, but also a novel
therapeutic target for patients with progressive PBC. In
addition, the expression of miR-155 was enhanced in
PBMCs and liver tissues of PBC patients, accompanied by
vitamin D receptor (VDR) mRNA and protein, cytokine
signaling inhibitor 1 (SOCS1) protein expression decreased,
indicating that the decreased VDR expression may lead to the
dysregulation of the negative feedback loop through the VDR-
miRNA155-SOCS1 pathway, thereby triggering a sustained
inflammatory response (Kempinska-Podhorodecka et al.,

2017). Padgett et al. (2009) analyzed liver tissue from 6
patients with end-stage PBC and 5 control subjects using a
miRNA microarray platform. The results showed that 35
differentially expressed miRNAs (11 upregulated and 24
downregulated) were identified in the liver tissue of PBC
patients compared with the liver tissue of normal controls.
The targets they predicted were associated with the regulation
of cell proliferation, apoptosis, inflammation, oxidative stress,
and metabolism. According to the above studies, we can
conclude that miRNAs may be derived from various
immune cells and play a significant effect in the occurrence
and development of PBC by inflammatory factors and
immune-inflammatory pathways (such as TGF-β1/smad,
TCR, NF-κB, and so on). Subsequent studies on miRNAs
and PBC can start from immune cells and immune-
inflammation-related pathways. Subsequent studies on
miRNAs and PBC can start from immune cells (not only
B cells, T cells, but also Th17 cells, Treg cells, macrophages,
etc.), inflammatory factors and immune-inflammation-related
pathways.

MicroRNAs and Therapeutic Targets for
Primary Biliary Cholangitis
Nakagawa et al. (2017) examined total RNAs of CD4+ T cells
from 6 PBC patients and 6 healthy controls using miRNA
microarrays. The authors found that the expression levels of
16miRNAs were significantly different in PBC patients compared
with healthy controls (p < 0.05, fold change >1.2). Among them,
five of these miRNAs were significantly downregulated in PBC
patients by qRT-PCR. The integral analysis of miRNA and
mRNA identified four significantly downregulated miRNAs
(miR-181a, miR-181b, miR-374b, and miR-425) related to the
T-cell receptor (TCR) signaling pathway in CD4+ T cells of PBC.
N-Ras, a regulator of the TCR signaling pathway, was found to be
targeted by all four identified miRNAs. In addition, in vitro assays
confirmed that decreased miR-425 strongly induced
inflammatory cytokines (IL-2 and IFN-γ) via N-Ras
upregulation in the TCR signaling pathway. Therefore, the
restoration of decreased miR-425 or the suppression of N-Ras
may be promising for an immunotherapeutic strategy
against PBC.

The authors believe that miR-122 is the most noteworthy
therapeutic target for PBC. MiR-122 is a conserved liver-specific
miRNA, accounting for 70% of total liver miRNAs (Chang et al.,
2008). Multiple studies have shown that miR-122 plays a key role
in lipid metabolism (Esau et al., 2006), cell differentiation (Kim
et al., 2011), liver polyploidy (Hsu et al., 2016), hepatitis C virus
replication (Luna et al., 2015), acetaminophen toxicity
(Chowdhary et al., 2017; Yang et al., 2021), liver fibrosis in
innate immunity of hepatocytes (Xu et al., 2019). Decreased
miR-122 expression was found in HCV-negative liver cancer
and was associated with metastasis in hepatocellular carcinoma
(HCC) patients (Coulouarn et al., 2009; Tsai et al., 2009).

Tan et al. (2014) analyzed miRNA expression by Illumina
sequencing of serum samples from 3 PBC patients and 3 controls
and assessed the expression of selected miRNAs in a screened
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group (n = 40) by qRT-PCR. A logistic regression model was then
constructed using the training cohort (n = 192) and validated
with another cohort (n = 142). The results showed that serum
miR-122-5p levels were elevated in PBC patients. Compared with
ALP and ANA, the miRNA panel (hsa-miR-122-5p, hsa-miR-
141-3p, and hsa-miR-26b-5p) was a more sensitive and specific
biomarker for PBC (Tan et al., 2014). Circulating miR-122 levels
have been reported to correlate with liver histological stage,
inflammation grade, and ALT activity (Lewis and Jopling,
2010; Zhang et al., 2010; Hu et al., 2012; Wang et al., 2012;
Iino et al., 2013). MiR-122 expression was significantly decreased
in a carbon tetrachloride (CCl4)-induced mouse model of liver
fibrosis and HCC (Li et al., 2013; Hayes and Chayama, 2016).
Similarly, Padgett et al. (2009) used the miRNA array platform to
analyze the liver tissue of 6 patients with end-stage PBC and 5
control subjects, and the results showed that miR-122 was also
downregulated in the liver tissue of PBC patients. This is an
interesting result. It means that the liver may overexpress miR-
122 compensatory in the early stage of PBC. However, most of
miR-122 reaches the peripheral circulation, which increases miR-
122 in peripheral circulation in PBC patients; or in PBC patients,
other tissues, organs or cells abnormally express miR-122 in
addition to the liver. The above-mentioned known immune cells
and inflammatory factors play an important role in the
occurrence and development of PBC. Therefore, the authors
speculate that in the peripheral blood of PBC patients, various
immune cells are activated (such as T cells, B cells, Th cells, Treg
cells, macrophages, etc.) abnormally expressing miR-122
increases the level of miR-122 in serum/plasma. MiR-122 is a
negative regulator of liver fibrosis. Li et al. (2013) found that miR-
122 inhibited the proliferation and activation of Lx2 in hepatic
stellate cells (HSC) by targeting P4HA1, regulating collagen
production, and inhibiting liver fibrosis.

Tsai et al. (2012) generated a mutant mouse strain with a
germline deletion of Mir122a using homologous recombination
(Mir122a−/−). Histological examination of the livers of Mir122a−/
− mice revealed extensive lipid accumulation and reduced
glycogen storage, as well as inflammation and fibrosis,
compared with WT controls. A strong positive reaction to the
anti-F4/80 antibody, which is specific for mouse macrophages
and monocytes, was detected in the Mir122a−/− livers. Teng et al.
(2020) also found that knockout of miR-122 in mouse liver
developed spontaneous liver fibrosis. Therefore, the authors
speculate that miR-122 may be a novel gene therapy strategy
for patients with advanced PBC, especially targeting the liver.
Whether the anti-fibrotic mechanism of miR-122 is related to its
regulation of hepatic fatty acid and cholesterol synthesis still
needs to be further explored (Esau et al., 2006; Naderi et al., 2017).
In addition, due to the ability of miR-122 to enhance HCV
replication, vigilance and monitoring of HCV infection should
be exercised when using miR-122 (Luna et al., 2015). In the early
stage of PBC, the main lesions are chronic inflammation and
fibrosis of the intrahepatic bile ducts. Whether miR-122 can
regulate the proliferation and apoptosis of intrahepatic bile
duct cells has not been reported in the literature. This is also
the direction our research group is working on.

Immunomodulatory Role of Exosomal
MicroRNAs in Primary Biliary Cholangitis
Extracellular vesicles (EVs) are nano- or micro-lipid bilayer
spheres produced by different cells. They are released into the
extracellular space where they participate in intercellular
communications. They are also found in bile and contain
miRNAs (Li et al., 2014). Several nanovesicle-delivered
miRNAs have been identified that are specifically expressed in
PBC and play a modifying role in inflammation and
autoimmunity (Olaizola et al., 2018). Exosomes are small
vesicles formed by budding from endosomal membrane and
released to extracellular by fusion with plasma membrane,
which are important mediators of intercellular communication
(Hirsova et al., 2016a; Martínez and Andriantsitohaina, 2017).
Recent studies have reported that exosomes-mediated transfer of
ncRNAs, proteins and lipids are associated with a variety of
human diseases, including liver disease (Bala et al., 2012; Hirsova
et al., 2016a; Debabrata and Mukhopadhyay, 2017; Pan et al.,
2017; Szabo and Momen-Heravi, 2017). Hepatic epithelial cells,
including cholangiocytes and hepatocytes, are exosomes-
releasing cells (Masyuk et al., 2010; Masyuk et al., 2013;
Hirsova et al., 2016b; Worst et al., 2017). Tomiyama et al.
(2017) found plasma-derived exosomal miR-451a and miR-
642a-3p were increased in PBC patients compared with
healthy controls, and could regulate the expression of the co-
stimulatory molecules such as CD86 and CD80 in peripheral
antigen-presenting cells. Figure 2. In conclusion, accumulating
evidence points to the critical role of miRNAs in regulating
inflammation and autoimmunity, and many mature miRNAs
are expected to be candidate biomarkers and therapeutic targets
for PBC (Ninomiya et al., 2013; Qian et al., 2013; Yang, 2013;
Katsushima et al., 2014; Tan et al., 2014; Sakamoto et al., 2016).

LONG NON-CODING RNA AND PRIMARY
BILIARY CHOLANGITIS
Expression Profiles of Long Non-Coding
RNAs in Autoimmune Diseases
LncRNAs are highly conserved RNA sequences >200 nucleotides
in length that can epigenetically regulate gene expression and
broadly affect cellular biological processes (Mercer et al., 2009;
Ponting et al., 2009). Published literature on lncRNA have been
focused on cancer (Chan and Tay, 2018; Mitobe et al., 2018; Tian
et al., 2018), and studies on lncRNA in innate immunity are
relatively scarce, accounting for only about 4% of all lncRNA
papers (Robinson et al., 2020). With increasing interest of
lncRNA in autoimmune diseases, it has been found that
different autoimmune diseases (including PBC) have specific
lncRNA expression profiles in different cells and tissues
(Zhang et al., 2013; Sigdel et al., 2015; Hur et al., 2019; Liang
et al., 2019). Previous studies have shown that the lncRNA
AK053349 is highly expressed in CD8+ T cells and is
associated with autoimmunity and T lymphocyte activation
(Pang et al., 2009). Zhang et al. (2013) wrote in his doctoral
dissertation that the lncRNA AK053349 was increased in PBMC
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of PBC patients and positively correlated with the Mayo risk
score, emphasizing its potential relevance to the pathogenesis of
PBC and worthy of further study (Zhang et al., 2013). Another
recent domestic study (She, 2020) found that the expression level
of lncRNA XIST in NK cells and CD4+ T lymphocytes of PBC
patients was significantly higher than that of healthy controls, and
could be clearly located in the nucleus. The high expression of
lncRNA XIST in Naïve CD4+ T cells of PBC patients can promote
the proliferation of Naïve CD4+ T cells, stimulate the secretion of
IFN-γ, IL-17, TGF-β and ROR-γ T cells, and increase the
proportion of Th1 and Th7 cells, which led to the occurrence
of PBC. This further supports the critical role of immune cells and
inflammatory factors, especially IL-17 in PBC disease.

Exosomal Long Non-Coding RNA H19
Promotes Bile Duct Proliferation and Liver
Fibrosis
Huiping Zhou et al. (Li et al., 2017) used Mdr2−/− mice as an
animal model of cholestatic biliary disease. Their study showed
that H19 expression was significantly increased in the liver and
bile duct cells of female Mdr2−/− mice compared with male

Mdr2−/− mice, and that abnormal H19 expression was
associated with the severity of biliary fibrosis in female
Mdr2−/− mice. Knockdown of H19 alleviate cholestatic liver
injury in female Mdr2−/− mice. Furthermore, both Taurocholic
acid (TCA) and Estradiol 2 (E2) upregulated the expression of
H19, but there was no superposition or synergy. The role of H19
in cholestatic injury in female Mdr2−/− mice may be related to
extracellular regulated protein kinase 1/2 (ERK1/2) signaling
pathway. In a follow up study, Huiping Zhou’s team further
demonstrated that exosomal H19 is derived from bile duct cells
and transferred to hepatocytes, inhibit the expression of small
heterodimeric partner (SHP) in hepatocytes and promote
cholestatic injury (Li et al., 2018a). Figure 3. To further
determine the effect of H19 expression in the progression of
liver fibrosis, the authors examined the expression levels of
hepatic H19, Ck19, and fibrosis marker genes (Acta2, Loxl2,
and Collagen 1) in both male and female 2-week bile duct ligation
(BDL) mice and in 100 day old female Mdr2−/−mice and perform
a linear analysis. The results showed that the expression level of
hepatic H19 was significantly positively correlated with Ck19 and
fibrosis marker genes. Similarly, in primary sclerosing cholangitis
(PSC) and PBC patients, the hepatic mRNA levels of H19, CK19,

FIGURE 3 | Molecular mechanism of lncRNAH19 promoting cholestasis and activating macrophages.
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and fibrosis marker genes were all increased. In BDL mice with
H19 knockout (H19KO-BDL), collagen deposition and α-SMA-
positive fibroblast distribution near the bile ducts of mice were
significantly reduced. H19 deficiency also significantly alleviated
serum AST, ALT, ALP, and total bile acid (TBA) levels induced
by BDL. H19 deficiency in DKO (Mdr2 and H19 double
knockout) mice significantly reduced bile duct proliferation,
immune cell infiltration and fibrosis in the periportal area.
Next, the authors isolated exosomes from H19-enriched and
H19-free (control) cholangiocytel culture medium and injected
mice via tail vein. The results showed that bile duct proliferation,
hepatic inflammation, collagen deposition, and fibroblast
activation were more severe in mice treated with H19-
enriched exosomes when compared to those treated with
control exosomes. This effect is related to the promotion of
hepatic stellate cell (HSC) activation and proliferation by
exosomal H19 (Liu et al., 2019). Furthermore, cholangiocyte-
derived exosomal H19 promotes macrophage activation,
differentiation, chemotaxis and liver inflammation through the
CCL-2/CCR-2 signaling pathway. Figure 3. H19-deficiency
ameliorates the liver cholestasis and macrophage activation in
both BDL and Mdr2−/− Mice (Li et al., 2020a). Thus, exosomal
H19 represents a noninvasive biomarker and potential
therapeutic target for cholestatic disease. Notably, Mdr2−/−

mice are actually a suitable model for PSC and not an animal
model for PBC disease. What role lncRNA H19 plays in PBC
disease and whether the molecular mechanism is the same
remains to be discussed.

CIRCULAR RNAS AND PRIMARY BILIARY
CHOLANGITIS

CircRNA is an endogenous non-coding RNA, the most
representative characteristic of which is the covalently closed
RNA circle (Salzman, 2016; Ouyang et al., 2017). Circularization
results in resistance and high stability of RNA to exonuclease-
mediated degradation. In addition, circRNAs are abundant and
evolutionarily conserved in the cytoplasm. These properties make
circRNAs potentially more suitable as clinical biomarkers than other
types of RNAs (Jeck and Sharpless, 2014; Lasda and Parker, 2014; Li
et al., 2015). Most importantly, the expression profiles of circRNAs
are specific in different cell types and can generally be found in
peripheral blood, exosomes, and tissues. Due to their various forms
of epigenetic modifications, circRNAs play important roles in
various diseases, such as cancer, neurologic disorders and
cardiovascular diseases (Zhao et al., 2017; Yang et al., 2018a;
Ojha et al., 2018; Sheng et al., 2018). Ma et al. (2019) showed
that circARSP91 promotes cancer immune surveillance by
regulating NK cells in liver cancer, suggesting a key role of
circRNAs in tumor immunity. Furthermore, circRNA Malat-1 is
thought to act as a key regulator of alloimmune rejection by
promoting dendritic cell-induced T cell exhaustion and regulatory
T cell generation, suggesting a critical role for circRNAs in adaptive
immunity (Zhang et al., 2018). In conclusion, circRNAs play key
roles not only in innate immunity but also in adaptive immunity.

In recent years, accumulated studies have shown that
circRNAs are closely related to the occurrence and
development of autoimmune diseases (Yang et al., 2018b),
including SLE (Li et al., 2018b; Wang et al., 2018b), RA
(Zheng et al., 2017b), PBC (Zheng et al., 2017a), etc. Zheng
et al. (2017a) used microarray to identify 22 aberrantly expressed
circRNAs (18 upregulated, 4 downregulated) in the plasma of
PBC patients. Notably, PBC patients who did not receive UDCA
had higher levels of hsa-circ-402458 than those who received
UDCA. Hsa-circ-402458 may target hsa-miR-943 and hsa-miR-
522-3p. For miR-522-3p, it may be an effective target for
regulating chronic inflammatory diseases. Therefore, the
authors speculate that hsa-circ-402458 may act as a miRNA
sponge to regulate inflammation-related pathways, thereby
promoting the development of PBC. Unfortunately, there are
few studies on the relationship between circRNAs and PBC, and
the molecular mechanism behind the regulation of circRNAs in
PBC disease is still unclear. Whether circRNAs, like miRNAs
and/or lncRNAs, play a role in PBC through signaling pathways
such as TGF-β, NF-κB, TLR, TCR and oxidative stress, remains to
be further explored.

CONCLUSION AND FUTURE DIRECTIONS

Studies on ncRNAs in human biology have gained much interest
in the scientific world in recent years (Kapoor et al., 2021; Makkos
et al., 2021; Wang et al., 2021). The role of ncRNAs in immune
regulation, inflammation and autoimmunity can be of significant
translational implication in medicine. Although specific
expression profiles of miRNAs, lnRNAs, and cirRNAs have
been well-documented in the literature (Padgett et al., 2009;
Sigdel et al., 2015; Zheng et al., 2017a), the underlying
mechanisms of ncRNAs in the development of PBC is unclear
and may involve autoimmune regulatory pathways such as TGF-
B1, NF-kB, Th17, and TCR. Furthermore, the effects of ncRNAs
in oxidative stress, apoptosis, immune cells homing, and others in
PBC are also confounding factors. Further studies including a
combination of wet-bench studies and the use of bioinformatics
tools (Li et al., 2020b; Zhu and Leung, 2021) to discover the target
gene networks of non-coding RNAs are necessary to decipher the
mechanistic role of ncRNAs in the pathogenesis of PBC and their
potential application as diagnostic markers and/or therapeutic
checkpoints.
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