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In this article we presented an application of the quantum cosmological model in teleparallel gravity. Working 
with a vacuum solution, the gravitational energy density is quantized with the Weyl procedure and we obtain 
a discrete expression for the gravitational energy. As an immediate consequence the empty space exhibits an 
expansion for an early universe.
1. Introduction

Since the seminal papers of Einstein [1] and Hubble [2] our under-
standing of the universe has grown enormously. Even though the pillars 
of modern Physics, General Relativity (GR) and quantum physics, have 
had their paths developed over the years separately, now a crucial chal-
lenge is to develop a quantum theory of gravitation. As early as 1930 
Rosenfeld was the first to verify that there were problems quantizing 
gravity [3, 4, 5] and others attempts have been made until 1959 when 
Arnowitt, Deser and Misner proposed the Hamiltonian formulation of 
GR [6]. Thus the quantization of gravitation could have been achieved 
for instance with the help of Dirac method [7] but the concept of grav-
itational energy is controversy which imposes severe difficulties when 
to use the Hamiltonian formulation to achieve such a goal. In 1967 
DeWitt, in dialogue with Wheeler, made an Einstein-Schrödinger equa-
tion [8] which later became known as the Wheeler-DeWitt equation. 
Throughout these 50 years this theory has had extensive study in the 
community, despite its intrinsic limitations, such as the so called prob-
lem of time [9, 10, 11]. Despite all this a Quantum Cosmology (QC) 
should be a theory that applies the concepts of quantum physics and 
gravity throughout in the whole universe since its birth. It should con-
tain an expression of total energy, with fields of matter and gravity, and 
a quantization procedure that is clear and unambiguous.

The Teleparalelism Equivalent to General Relativity (TEGR) is 
an alternative gravitational theory which is dynamically equivalent 
to GR and allows a well-behaved definition of gravitational energy-
momentum and angular momentum. Einstein himself in 1930, while in-
vestigating the unification between gravitation and electromagnetism, 
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introduced the ideas of teleparallel gravity [12]. Møller [13], Pellegrini 
along with Plebanski [14] have made important contributions to the 
development of TEGR, among others, until in 1994 Maluf presented the 
Hamiltonian formulation of TEGR [15]. The important feature of TEGR 
concerning the definition of gravitational energy makes such a theory 
a natural candidate to evolve to a quantum theory of gravitation once 
a quantization method is used. The Weyl’s prescription [16] is an inter-
esting method to create operators from classical functions, for instance 
this method was used to quantize the Schwarzschild black hole [17]. 
Of course such a theory has to have implications on a QC. In this sense 
a first step was to use the gravitational energy of Friedman-Lemaitre-
Robertson-Walker (FLRW) metric together with the Weyl quantization 
procedure to obtain an analogous Wheeler-DeWitt equation [18].

The Einstein field equations when used with the FLRW metric lead to 
the Friedman equations. These equations describe the evolution of the 
universe where a perfect fluid represent its content. Thus a state equa-
tion for this fluid is settled to express the dominance of a specific kind 
of matter in the evolution of the universe. An immediately problematic 
situation arises, i.e., the initial conditions are undefined. Another prob-
lem is related to the flatness of universe, it means that the curvature of 
the universe with its content is not dominating today hence in the past 
it was very insignificant [19, 20]. In addition the problem of horizon 
means that the different regions of the universe which are not casually 
connected exhibit a surprisingly homogenity [20]. In order to deal with 
such problems the theory of inflation was proposed [21, 22, 23, 24, 
25]. Supposedly a scalar field took place at a given moment in the be-
ginning of the universe driving the inflation of space. There are several 
models that use inflation to try to answer some of the problems of the 
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early universe, such as Natural inflation, Higgs inflation, among others 
[26]. Most of the inflationary models require a scalar field and several 
adjustable parameters to explain the anisotropy of the CMB. That is, 
the available inflation models do not explain very well the quantum 
fluctuations that are observed in the CMB [26].

The QC we have established in reference [18] has some undesirable 
features such as the necessity to choose the matter fields of Einstein 
equation before the quantization procedure, otherwise a perfect fluid 
solution would be undistinguishable from a vacuum solution. Hence 
in this article the gravitational energy-momentum tensor is quantized 
separately, thus it is possible to obtain a purely vacuum cosmologi-
cal quantum equation which implies an expanding universe. Then such 
a quantum expansion is associated to the process of inflation due to 
purely gravitational interaction in the beginning of the universe.

The article is divided as follows. In section 2 the ideas of TEGR are 
presented and the field equations are obtained in the natural unities 
system 𝑐 = 𝐺 = 1. In section 3 we introduce the Weyl quantization and 
apply this to the vacuum gravitational energy establishing a cosmolog-
ical quantum equation for the beginning of the universe. Finally in the 
last section we present our concluding remarks.

2. Background

Telepararallelism Equivalent to General Relativity is a gravitational 
theory dynamically equivalent to GR. In such a theory the torsion tensor 
is responsible for gravitation instead of curvature as in GR and it is for-
mulated in terms of the tetrad field 𝑒𝑎 𝜇 , rather than in terms of the usual 
metric tensor. The tetrad field connects tensors under Lorentz symmetry 
and tensors under coordinates transformations. Thus the latin indices 
𝑎 = (0), (𝑖) stand for 𝑆𝑂(3, 1) group while the greek indices represent the 
diffeomorphic group. Therefore there should be two kinds of connec-
tions one changing the derivatives of Lorentz vectors, called spin con-
nection 𝜔𝜇𝑎𝑏, and another one that affects greek indices, Γ𝜆 𝜇𝜈 . Then by 
the condition ∇𝜇 𝑒

𝑎
𝜈 = 0 which leads to 𝜕𝜇 𝑒𝑎 𝜈 −Γ𝜆 𝜇𝜈 𝑒

𝑎
𝜆 +𝜔𝜇

𝑎
𝑏𝑒

𝑏
𝜈 = 0, 

we get Γ𝜆 𝜇𝜈 = 𝑒𝑎𝜆 𝑒𝑏 𝜈 𝜔𝜇𝑎𝑏 + 𝑒𝑎𝜆 𝜕𝜇𝑒𝑎𝜈 and as a consequence the usual 
definition of curvature tensor,

𝑅𝜆
𝛾𝜇𝜈(Γ) = 𝜕𝜇 Γ𝜆 𝛾𝜇 − 𝜕𝜈 Γ𝜆 𝛾𝜇 + Γ𝑐 𝛾𝜈 Γ𝜆 𝑐𝜇 − Γ𝑐 𝛾𝜇 Γ𝜆 𝑐𝜈 ,

yields 𝑅𝜆
𝛾𝜇𝜈(𝑒, 𝜔) = 𝑒𝑎

𝜆 𝑒𝑏 𝛾 (𝜕𝜇 𝜔𝜈𝑎𝑏−𝜕𝜈 𝜔𝜇𝑎𝑏+𝜔𝜇𝑎𝑐 𝜔𝜈𝑐𝑏−𝜔𝜈𝑎𝑐 𝜔 μc𝑏) [15, 
18].

The torsion tensor which is defined by 𝑇 𝜆
𝜇𝜈 = Γ𝜆 𝜇𝜈 − Γ𝜆 𝜈𝜇 reads 

𝑇 𝑎
𝜇𝜈(𝑒, 𝜔) = 𝜕𝜇 𝑒

𝑎
𝜈 − 𝜕𝜈 𝑒

𝑎
𝜇 + 𝜔𝜇𝑎𝜈 − 𝜔𝜈𝑎𝜇 . The spin connection 𝜔𝜇𝑎𝜈 , 

the Levi-Civita connection 0𝜔𝜇𝑎𝑏 and the contorsion tensor 𝐾𝜇𝑎𝑏 are re-

lated identically by 𝜔𝜇𝑎𝑏 = 0𝜔𝜇𝑎𝑏 + 𝐾𝜇𝑎𝑏, where 0𝜔𝜇𝑎𝑏 = −1
2 𝑒

𝑐
𝜇 (Ω𝑎𝑏𝑐 −

Ω𝑏𝑎𝑐 − Ω𝑐𝑎𝑏) and 𝐾𝜇𝑎𝑏 = −1
2 𝑒𝑎

𝜆 𝑒𝑏
𝜈 (𝑇𝜆𝜇𝜈 + 𝑇𝜈𝜆𝜇 + 𝑇𝜇𝜆𝜈) with Ω𝑎𝑏𝑐 =

𝑒𝑎𝜈 (𝑒𝑏 𝜇 𝜕𝜇𝑒𝑐 𝜈 − 𝑒𝑐
𝜇 𝜕𝜇𝑒𝑏

𝜈). In order to specify this geometry into some-
thing equivalent to Riemannian geometry it is necessary to settle 
𝜔𝜇𝑎𝑏 = 0 which is known as the teleparallel condition. Hence it follows 
that 𝑒 𝑅(𝑒, 𝜔) = 𝑒 𝑅(𝑒) + 𝑒 

(
1
4 𝑇

𝑎𝑏𝑐 𝑇𝑎𝑏𝑐 +
1
2 𝑇

𝑎𝑏𝑐 𝑇𝑏𝑎𝑐 − 𝑇 𝑎
𝑎

)
− 2 𝜕𝜇(𝑒 𝑇 𝜇). 

Consequently, the Hilbert-Einstein Lagrangian density reads 𝑒 𝑅(𝑒) ≡
−𝑒 

(
1
4 𝑇

𝑎𝑏𝑐 𝑇𝑎𝑏𝑐 +
1
2 𝑇

𝑎𝑏𝑐 𝑇𝑏𝑎𝑐 − 𝑇 𝑎
𝑎

)
+ 2 𝜕𝜇(𝑒𝑇 𝜇), where 𝑇 𝑎

𝑎 = 𝑇 𝑏
𝑏
𝑎 and 

𝑇 𝑎
𝜇𝜈(𝑒) = 𝜕𝜇 𝑒

𝑎
𝜈 − 𝜕𝜈 𝑒

𝑎
𝜇 . Then, after drooping the total divergence in 

the above expression, the teleparallel Lagrangian density ℒ is described 
by

ℒ(𝑒𝑎𝜇) = −𝜅 𝑒
( 1
4
𝑇 𝑎𝑏𝑐 𝑇𝑎𝑏𝑐 +

1
2
𝑇 𝑎𝑏𝑐 𝑇𝑏𝑎𝑐 − 𝑇 𝑎𝑇𝑎

)
−ℒ𝑀

≡ −𝜅 𝑒Σ𝑎𝑏𝑐𝑇𝑎𝑏𝑐 −ℒ𝑀

with 𝜅 = 1
16𝜋 , ℒ𝑀 being the lagrangian density of matter fields and Σ𝑎𝑏𝑐

defined as follows Σ𝑎𝑏𝑐 = 1
4

(
𝑇 𝑎𝑏𝑐 + 𝑇 𝑏𝑎𝑐 − 𝑇 𝑐𝑎𝑏

)
+ 1

2

(
𝜂𝑎𝑐𝑇 𝑏 − 𝜂𝑎𝑏𝑇 𝑏

)
[15, 

18].
Performing a functional derivative in the Lagrangian density ℒ with 

respect to the tetrads 𝑒𝑎𝜇 , the field equations read

𝜕𝜆 (𝑒Σ𝑎𝜇𝜆) − 𝑒
(
Σ𝑏𝜆𝜇 𝑇𝑏𝜆

𝑎 − 1
𝑒𝑎𝜇 𝑇𝑏𝑐𝑑Σ𝑏𝑐𝑑

)
= 1

𝑒𝑇 𝑎𝜇 , (1)

4 4𝜅

2

where 𝑇 𝑎𝜇 is the energy-momentum tensor of the matter fields. It is 
possible to show that these field equations can be expressed as

𝜕𝜆 (𝑒Σ𝑎𝜇𝜆) − 𝑒
(
Σ𝑏𝜆𝜇 𝑇𝑏𝜆

𝑎 − 1
4
𝑒𝑎𝜇 𝑇𝑏𝑐𝑑 Σ𝑏𝑐𝑑

)
= 1

2
𝑒
[
𝑅𝑎𝜇(𝑒) − 1

2
𝑒𝑎𝜇 𝑅(𝑒)

]
,

𝐺𝑎𝜇 =𝑅𝑎𝜇(𝑒) −
1
2
𝑒𝑎𝜇 𝑅(𝑒) =

1
2𝜅

𝑇𝑎𝜇 ,

where 𝐺𝑎𝜇 = 𝑒𝑎
𝜈 𝐺𝜈𝜇 is the projected Einstein tensor, that is, the equiv-

alence between GR and teleparallel gravity becomes clear. If equation 
(1) is rewritten then it follows 𝜕𝜈

(
𝑒Σ𝑎𝜆𝜈

)
= 1

4 𝑒 𝑒
𝑎
𝜇 (𝑡𝜆 𝜇 + 𝑇 𝜆𝜇), where 

𝑡𝜆𝜇 = 𝜅 (4 Σ𝑏𝑐𝜆 𝑇𝑏𝑐
𝜇 − 𝑔𝜆𝜇 Σ𝑏𝑐𝑑 𝑇𝑏𝑐𝑑 ). This tensor is interpreted as the 

energy-momentum tensor of the gravitational field and it is a true tensor 
under coordinate transformations although it is not symmetric. The ten-
sor Σ𝑎𝜇𝜈 is skew-symmetric Σ𝑎𝜇𝜈 = −Σ𝑎𝜈𝜇 which implies 𝜕𝜇 𝜕𝜈 (𝑒 Σ𝑎𝜇𝜈) ≡ 0, 
then 𝜕𝜆

[
𝑒 𝑒𝑎 𝜇(𝑡𝜆 𝜇 + 𝑇 𝜆𝜇)

]
= 0. This is a conservation equitation for grav-

itational and matter fields separately. It should be noticed that there is 
no such an expression in the framework of GR, although its dynamical 
equivalence to teleparallel gravity. Then the total energy-momentum 
vector is given by 𝑃 𝑎 = ∫

𝑉

𝑑3 𝑥 𝑒 𝑒𝑎 𝜇(𝑡0𝜇 + 𝑇 0𝜇) which can be rewritten as

𝑃 𝑎 = − ∫
𝑉

𝑑3 𝑥𝜕𝑗 Π𝑎 𝑗 = −∮
𝑆

𝑑𝑆𝑗 Π𝑎 𝑗 (2)

with Π𝑎𝑗 = − 4 𝜅 𝑒 Σ𝑎0𝑗 . This expression is invariant under coordinate 
transformations, here understood as diffeomorphisms in the curved 
space-time which is realized as the usual change of coordinate system, 
for instance from cartesian to spherical coordinates. On the other hand 
it changes depending on the reference frame since it is a vector under 
Lorentz symmetry [15]. Such a feature is well known in Special Rela-
tivity in which a static observer measures the energy of a particle as 
𝐸 =𝑚𝑐2 while another observer moving with a constant velocity 𝑣 mea-

sures 𝐸 = 𝑚𝑐2√
1−𝑣2∕𝑐2

. Therefore there is no reason to get rid of such a 
feature when an energy-momentum vector is established for gravita-
tion.

3. Hypothesis

In this section a cosmological quantum approach is constructed for 
a vacuum solution which allows one to interpret the obtained expan-
sion of the early universe as a mechanism of inflation. In this sense the 
gravitational energy-momentum should be quantized to achieve such a 
goal.

3.1. On Weyl quantization

The Weyl quantization is a procedure that can be used in any func-
tion including those geometrical objects described early. It is a rela-
tively simple method that requires at least two independent parameters. 
Let us consider a classical system described by a function 𝑓 of 𝑛 vari-
ables 𝑧𝑙 , such as the Hamiltonian, then the respective quantum operator 
is obtained by the Weyl transformation 𝑊 [𝑓 (𝑧𝑙)] which is given by

𝑊 [𝑓 (𝑧𝑙)] ∶=
1

(2𝜋)𝑛 ∫ 𝑑𝑛 𝑘𝑑𝑛 𝑧𝑓 (𝑧𝑙) 𝑒𝑥𝑝

(
𝑖

𝑛∑
𝑙=1

𝑘𝑙 (𝑧𝑙 − �̂�𝑙)

)
. (3)

Here �̂�𝑙 are operators associated to the classical variables that obey 
following commutation relation [�̂�𝑎, 𝑧𝑏] = 𝑖𝜔𝑎𝑏 where 𝜔𝑎𝑏 is a anti-
symmetric quantity. For instance the Weyl prescription is superior to 
the canonical quantization because there is no need to impose sym-
metrization out of the scope of the transformation. In addition when 
using the Weyl transformation there is no need to implement that on 
phase space as it is the case of canonical quantization. Thus it is the 
natural procedure to be used on a quantum theory of gravitation. From 
the historical viewpoint the energy has been used to obtain a quantum 
version of a Classical theory by means of some quantization procedure. 
Thus the Hamiltonian has a well established physical meaning that 
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allows one to pass from a Classical to a Quantum regime. However con-
cerning gravitation the idea of a gravitational energy is controversial. 
In order to obtain a quantized equation for the gravitational field with 
a clear physical meaning we focus our attention on teleparallel gravity 
which reveals a clear definition for the gravitational energy-momentum 
tensor [17, 18].”

3.2. An expanding early universe

The cosmological principle asserts that the universe is homoge-
neous and isotropic which is realized by the FLRW metric 𝑑𝑠2 = −𝑑𝑡2 +
𝑎2

[
𝑑𝑟2

1−𝑘𝑟2 + 𝑟2 (𝑑𝜃2 + sin2 𝜃 𝑑𝜙2)
]
. A possible tetrad field obtained from 

this metric tensor and adapted to a stationary observer is

𝑒𝑎 𝜇 =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 𝑎√

1−𝑘𝑟2
0 0

0 0 𝑎 𝑟 0
0 0 0 𝑎 𝑟 sin𝜃

⎤⎥⎥⎥⎥⎦
.

Thus the gravitational energy density can be calculated using equation 
(2), it yields

𝑒 𝑡0(0) =
( 2
16𝜋

) (−𝑎 sin𝜃)√
1 − 𝑘𝑟2

[(3 �̇�2 − 𝑘) 𝑟2 + 1]

= (−𝑎 sin𝜃)
8𝜋

[
(3 �̇�2 𝑟2)√
1 − 𝑘𝑟2

+
√
1 − 𝑘𝑟2

]
The zero component of 𝑃 𝑎 from equation (2) is the total energy of the 
system and it is denoted by

𝐸 =𝐸𝑔 + 𝐸𝑀 ,

where 𝐸𝑔 and 𝐸𝑀 are

𝐸𝑔 = ∫ 𝑑3𝑥𝑒 𝑡0(0) , 𝐸𝑀 = ∫ 𝑑3𝑥𝑒𝑇 (0)0 . (4)

It is well known that the FLRW metric has a dynamical horizon given 
by [27]

𝑅 = 1√
𝐻2 + 𝑘

𝑎2

= 𝑎√
�̇�2 + 𝑘

where 𝐻 ≡ �̇�

𝑎
is Hubble parameter. Regarding the observable universe 

as a sphere of radius 𝑅, and integrating 𝐸𝑔 from equation (4) is given 
by

𝐸𝑔 = − 𝑎

2

⎡⎢⎢⎣3 �̇�2
𝑅

∫
0

𝑟2√
1 − 𝑘𝑟2

𝑑𝑟+

𝑅

∫
0

√
1 − 𝑘𝑟2 𝑑𝑟

⎤⎥⎥⎦ .
Then we get straightforwardly

𝐸𝑔 =
𝑎

4

[(
3 �̇�2
𝑘

− 1
)

𝑅
√
1 − 𝑘𝑅2

−
(
3 �̇�2
𝑘

− 1
)

1√
𝑘
arctan

( √
𝑘𝑅√

1 − 𝑘𝑅2

)]
,

and using the definition of 𝑅 it yields

𝑘𝐸𝑔 =
𝑎2(3 �̇�2 − 𝑘)

√
�̇�2 + 𝑘 (1 − 𝑎2)

4 (�̇�2 + 𝑘)

− 𝑎 (3 �̇�2 + 𝑘)

4
√
𝑘

arctan

[ √
𝑘𝑎√

�̇�2 + 𝑘 (1 − 𝑎2)

]
.

It is noteworthly that this expression is identically satisfied for 𝑘 = 0. 
Thus let us restrict our attention to 𝑘 = ±1.

We suppose a quantum system governed by a Schrödinger-like equa-
tion (𝑘 �̂�𝑔 + 𝑘 𝐻𝑀 )Ψ = 𝐸 𝑘Ψ, with 𝑊 [𝑘 𝐸𝑔] = 𝑘 �̂�𝑔 and 𝑊 [𝐸𝑀 ] =𝐻𝑀 . 
3

The first attempt is to consider a vacuum solution 𝐸𝑀 = 0, which means 
a purely quantum gravitational system. Therefore we need to calculate 
�̂�𝑔 , in this sense we create two auxiliary quantities which read

𝜖1𝑔 =
1
4
𝑎2

3 �̇�2 − 𝑘

�̇�2 + 𝑘

√
�̇�2 + 𝑘 (1 − 𝑎2)

and

𝜖2𝑔 = −𝑎 (3 �̇�2 + 𝑘)

4
√
𝑘

arctan

[ √
𝑘𝑎√

�̇�2 + 𝑘 (1 − 𝑎2)

]
.

If we choose the representation 𝑊 [�̇�] = ̂̇𝑎 = −𝑖 𝜔 𝜕
𝜕𝑎

and 𝑊 [𝑎] = 𝑎. It 
should be noted that the adopted representation is a matter of taste. 
Hence it is perfectly possible to choose a mixed representation, thus we 
keep the simpler. Then using

̂̇𝑎 𝑎6 = −𝑖𝜔 𝜕

𝜕𝑎
(𝑎6) = −𝑖𝜔6𝑎5 − 𝑖𝜔𝑎6

𝜕

𝜕𝑎

̂̇𝑎2 𝑎6 = −𝜔2
[
30𝑎4 + 6𝑎5 𝜕

𝜕𝑎
+ 6𝑎5 𝜕

𝜕𝑎
+ 𝑎6

𝜕2

𝜕𝑎2

]
= 𝜔2

(
30𝑎4 + 12𝑎5 𝜕

𝜕𝑎

)
+ 𝑎6

𝜕2

𝜕𝑎2

̂̇𝑎2 𝑎4 = −𝜔2
(
12𝑎2 + 8𝑎3 𝜕

𝜕𝑎
+ 𝑎4

𝜕2

𝜕𝑎2

)
,

the expression 𝑊 [𝜖1𝑔 ] = 𝜖1𝑔 by use the Weyl quantization (3) is given by

𝜖1𝑔 = −
√
𝑘𝑎2

√
1 − 𝑎2

4

+ 𝜔2

8
√
𝑘
√
1 − 𝑎2

[
(42 + 120𝑎2) + (28 + 48𝑎2)𝑎 𝜕

𝜕𝑎

+ (7 + 4𝑎2)𝑎2 𝜕2

𝜕𝑎2

]
. (5)

It should be pointed out that this quantity was obtained for small values 
of the scale factor which corresponds to very beginning of the universe, 
thus the arctan function was expanded using such a condition. A similar 
procedure can be used to obtain 𝑊 [𝜖2𝑔 ] = 𝜖2𝑔 which explicitly is given by

𝜖2𝑔 = −
√
𝑘𝑎2

4
+ 3𝜔2

4
√
𝑘

(
1 + 2𝑎 𝜕

𝜕𝑎
+ 𝑎2

𝜕2

𝜕𝑎2
+
)

. (6)

If we consider a stationary Schrödinger-like equation in the absence 
of matter fields for an early universe then we have �̂� 𝜓 =𝐸𝜓 and (𝜖1𝑔 +
𝜖2𝑔 ) 𝜓 = 𝑘 𝐸𝜓 , that yields after using expressions (5) and (6) to[
15𝑎2 + 66

8
+
(
6𝑎2 + 76

8

)
𝑎

𝑑

𝑑𝑎
+
(
𝑎2

2
+ 31

8

)
𝑎2

𝑑2

𝑑𝑎2

]
𝜓 = 𝜀𝜓 , (7)

with

𝜀 = 𝑘
3
2

𝜔2 𝐸

which is a dimensionless quantity. Defining 𝐵2 = 992 𝜀 − 6159 the solu-
tion of equation (7) is given by

𝜓 (𝑎) = 𝑎−(45±𝐵)∕62 2𝐹1

(
327 ±𝐵

124
,
265 ±𝐵

124
; 1 ± 𝐵

62
; −4𝑎2

31

)
,

where 2𝐹1 is the hypergeometric function. Thus in order to get a well 
behaved solution the parameter of the hypergeometric function should 
be a negative integer

327 −𝐵 = −124𝑛; ⇒ 𝐵𝑛 = 124𝑛+ 327 ⇒ 𝐵2
𝑛

= 1242
[
𝑛2 + 2 327𝑛

124
+
(327
124

)2]
as a consequence
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992 𝜖𝑛 − 6159 = 1242
[
𝑛2 + 2 327𝑛

124
+
(327
124

)2]
and for 𝑛 = 0 ⇒ 992 𝜖0 = 3272 +6159 we have 𝜖0 ∼ 114. This 𝜖0 represents 
the lowest level of energy in the beginning of the universe. We stress 
out the fact that our result is valid only in the early universe. Therefore 
the fundamental energy level of the universe at this stage is dependent 
on the magnitude of 𝜔. Therefore it worths to analyze how such a con-
stant could be experimentally determined. Since there is commutation 
relation between the operators �̂� and ̂̇𝑎 which is [�̂�, ̂̇𝑎] = 𝑖 𝜔 , there is 
also an uncertain relation between the respective measurement of the 
observables. Thus the present value of the scale factor establishes the 
limiting value for 𝜔 as the error in the determination of Hubble’s con-
stant. It is our intention to establish a boundary magnitude order to be 
used in possible experimental investigations. Thus following the value 
of 𝐻0 = 73.24 ± 1.74 kms−1 Mpc−1 [28], we estimate the present 𝜔 pa-
rameter as

𝜔 ∼ 2 ⋅ 10−20 s−1 .

It is interesting to note that the eigenvalue of ̂̇𝑎 is different from zero, 
that means an expanding early universe. In addition the value of 𝑘
should be one in order to get a real eigenvalue of such an operator. As a 
consequence the quantum cosmology of the beginning of the Universe 
predicts an expanding universe with positive curvature in the absence 
of matter fields. If the squared modulus of the wave function above is 
interpreted as the vacuum density then(
�̇�

𝑎

)2
= 8𝜋

3
∣ Ψ𝑛(𝑎) ∣2 .

This scenario is what one should expect for the mechanism of inflation 
once the scale factor has an exponential increasing in the beginning of 
the Universe due to the expansion of Ψ around 𝑎 = 0.

4. Conclusions

In this article we analyzed the consequences of an alternative equa-
tion for quantum cosmology which was established in the context of 
TEGR. The standard way to introduce QC is by means of the Wheeler-
DeWitt equation. However after almost half a century such an equa-
tion remains with serious limitations. We doubt that any quantization 
method would work in GR since the theory is invariant under Lorentz 
transformations. In fact in GR there is no equivalent quantity to grav-
itational energy-momentum tensor 𝑡𝑎𝜇 , hence any sort of quantization 
in GR lacks physical meaning. In addition there is no discrete energy 
obtained in the context of GR up to our knowledge. On the other hand 
TEGR exhibits a break in the local Lorentz symmetry, therefore we can-
not expect the same predictions of both theories at the quantum level. 
We proposed a quantization of the gravitational energy-momentum ten-
sor which shows an expansion for an empty early universe. Such a 
mechanism is possibly related to inflation. For instance A. Guth assume 
a scalar field to explain such a conjecture [21, 22]. Others attempts to 
explain inflation, involving scalar fields, had been proposed such as a 
massive field with |𝑚2| ≪𝐻2 and more models [23, 24, 25, 29, 30]. We 
propose a quantum theory of gravitation that is enough to deal with an 
early expansion in the universe without any matter field. Such a state-
ment means that the vacuum density is realized as the squared modulus 
of the wave function thus the expansion of the hypergeometric function 
around 𝑎 = 0 yields an exponential expansion dependent on the discrete 
energy. This is equivalent to an inflationary field.

For future perspectives we see the possibility to analyze the features 
of the graviton by interpreting the gravitational energy of the beginning 
of the universe as an gas of such particles. Of course we need to obtain a 
quantum cosmological equation for a perfect fluid and for another range 
of the scale factor in order to describe others stages of the universe.
4
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