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Background: As one of themost important brain tumors, glioblastoma (GBM) has a poor

prognosis, especially in adults. Immune-related genes (IRGs) and immune cell infiltration

are responsible for the pathogenesis of GBM. This study aimed to identify new tumor

markers to predict the prognosis of patients with GBM.

Methods: The Cancer Genome Atlas (TCGA) database and ImmPort database were

used for model construction. The Wilcoxon rank-sum test was applied to identify the

differentially expressed IRGs (DEIRGs) between the GBM and normal samples. Univariate

Cox regression analysis and Kaplan–Meier analysis was performed to investigate the

relationship between each DEIRG and overall survival. Next, multivariate Cox regression

analysis was exploited to further explore the prognostic potential of DEIRGs. A risk-score

model was constructed based on the above results. The area under the curve (AUC)

values were calculated to assess the effect of the model prediction. Furthermore,

the Chinese Glioma Genome Atlas (CGGA) dataset was used for model validation.

STRING database and functional enrichment analysis were used for exploring the gene

interactions and the underlying functions and pathways. The CIBERSORT algorithm was

used for correlation analysis of the marker genes and the tumor-infiltrating immune cells.

Results: There were 198 DEIRGs in GBM, including 153 upregulated genes and

45 downregulated genes. Seven marker genes (LYNX1, PRELID1P4, MMP9, TCF12,

RGS14, RUNX1, and CCR2) were filtered out by sequential screening for DEIRGs. The

regression coefficients (0.0410, 1.335, 0.005, −0.021, 0.123, 0.142, and −0.329) and

expression data of the marker genes were used to construct the model. The AUC

values for 1, 2, and 3 years were 0.744, 0.737, and 0.749 in the TCGA–GBM cohort

and 0.612, 0.602, and 0.594 in the CGGA-GBM cohort, respectively, which indicated

a high predictive power. The results of enrichment analysis revealed that these genes

were enriched in the activation of T cell and cytokine receptor interaction pathways. The

interaction network map demonstrated a close relationship between the marker genes

MMP9 and CCR2. Infiltration analysis of the immune cells showed that dendritic cells

(DCs) could identify GBM, while LYNX1, RUNX1, and CCR2 were significantly positively

correlated with DCs expression.
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Conclusion: This study analyzed the expression of IRGs in GBM and identified seven

marker genes for the construction of an immune-related risk score model. These

marker genes were found to be associated with DCs and were enriched in similar

immune response pathways. These findings are likely to provide new insights for the

immunotherapy of patients with GBM.

Keywords: glioblastoma, immune-related genes (IRGs), survival prognosis, risk score, tumor-infiltrating

immune cells

INTRODUCTION

Glioblastoma (GBM) is characterized by high mortality and
accounts for 48.6% of primary malignant brain tumors (1). The
incidence of GBM increases with age, with the highest incidence
seen among people aged 75–84 years. The patients usually
have an unfavorable prognosis, with a median survival time of
8 months [95% confidence interval (CI): 8–9] (1). Therefore,
survival prediction is important and urgent for the treatment of
patients with GBM.

In recent years, rapid developments in the field of
bioinformatics have aided the exploration of molecular
characteristics of cancer. Many new molecular markers
and molecular characterization systems of GBM have
emerged, which provide guidance for understanding the
mechanism of progression and promote diagnosis and
treatment (2). Studies related to mutations of isocitrate
dehydrogenase and platelet-derived growth factor receptor
(3), as well as promoter methylation of methylguanine
methyltransferase show that considerable progress has
been made in the genetic research of GBM biomarkers
(4–6). However, favorable treatment options and effective
prognostic markers remain insufficient. Therefore, clinicians and
researchers need to identify novel GBM biomarkers to improve
therapeutic accuracy.

Of late, advances in immunotherapy have proved
that the immune microenvironment plays an important
role in tumor biology and established the promising
prospects of immunotherapy in the future (7, 8). The
GBM microenvironment is usually immunosuppressive
and consists of infiltrating immune cells, such as microglia,
natural killer cells, and neutrophils. For example, the results
of immunohistochemical analysis in literature (9) showed that
more than 70% of the analyzed human glioma samples (n =

105) had significant neutrophil infiltration. And a higher degree
of neutrophil infiltration was associated with higher malignant
glioma grades (10, 11). However, the microenvironment lacks
T cells and specific types of non-immune components, such
as neurons, astrocytes, and tumor cells (7). Compared with
most other types of tumors, the abundance of infiltrating T
cells in glioblastoma is lower (8, 12). In addition, neurons,
astrocytes and tumor cells are not the main types of infiltrating
cells in GBM microenvironment, and they may play a role
in GBM by direct synapses, pruning synapses and promoting
synaptic formation (13, 14). Furthermore, which immune
genes and immune cells are associated with the prognosis of

GBM is yet to be elucidated. Thus, it is necessary to enhance our
comprehension of the potential immunopathological mechanism
of GBM progression.

In this study, RNA-Seq data were acquired from The Cancer
Genome Atlas (TCGA) database and were matched with the
list of immune-related genes (IRGs) in the ImmPort database.
Next, the differentially expressed IRGs (DEIRGs) were identified,
and a prognostic model was constructed via survival analysis
and Cox proportional hazard regression analysis. The Chinese
Glioma Genome Atlas (CGGA) data were used to validate
the predictive value of the model. In addition, the biological
functions and action pathways of seven marker genes in GBM
were examined, and their correlation with 22 kinds of immune
cells was analyzed. The results are expected to provide new
insights to understand the pathogenesis of GBM and establish the
strategies for immunotherapy.

METHODS

Data Acquisition in GBM
The gene expression data and individual clinical information of
GBM patients were derived from the TCGA and CGGA datasets.
On excluding patient data that lacked information on the survival
status and survival time, clinical information of 174 patients with
TCGA and 657 patients with CGGA were obtained.

Acquisition of IRGs
IRGs were exported from the ImmPort database, including
IMMUNE_RESPONSE and IMMUNE_SYSTEM_PROCESS
gene lists. A total of 332 genes were assessed in all
(Supplementary Table 1).

Variance Analysis
The data downloaded from the TCGA and CGGA databases
based on log2 | FC | were first normalized. Then, the TCGA
data were used to construct the model, and CGGA data were
employed to test the predictive performance of the model in
populations from different sources. Then, 56,763 expressed genes
from 174 patients in TCGA were intersected with the list of
immune-related genes, and 879 genes with the expression data
were acquired. The “limma” package of R software was utilized to
analyze the expression differences in the immune-related genes
in TCGA-GBM patients, and the DEIRGs were screened out [the
screening conditions were log2 | FC | > 2 and False Discovery
Rate (FDR) < 0.05]. The “ggplot2” and “pheatmap” packages of
the R software were used to visualize the final results.
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Screening and Identification of Marker
Genes
The gene expression data of DEIRGs were integrated with the
clinical data of TCGA-GBM patients including the survival status
and the survival time data. The “survival” package of R software
was employed for univariate Cox proportional hazard regression
analyses and Kaplan–Meier analysis. P < 0.05 in both cases
was considered to indicate the statistical difference. Then, the
“survival” package of R software was employed for multivariate
Cox proportional hazard regression analysis to further explore
the prognostic potential of the obtained genes. The stepwise
forward regression method was employed for multivariate Cox
regression analysis, and the Akaike information criterion (AIC)
was applied to avoid over-fitting. The genes with the largest
likelihood ratios and the lowest AIC values were selected as the
marker genes.

Construction of Prognostic Model Based
on Marker Genes
By combining the regression coefficient results of multivariate
Cox regression analysis with the expression data of each marker
gene, we established a risk score predictive model using the
following calculation formula:

Risk Score = (β1 × gene1expression)+ (β2 × gene2expression)

+ · · · + (βn × genenexpression)

Where β corresponds to the regression coefficient.

Evaluation and Validation of the Prognostic
Model
According to the abovementioned model, we obtained the risk
score of each patient and the grouping results of GBM patients.
The survival curves were created using the Kaplan–Meier (KM)
method, and the logarithmic rank test was employed to evaluate
the different survival rates between the two groups. P < 0.05 was
considered to indicate statistical significance. The “survivalROC”
package of R software was used to draw the time-dependent
receiver operating characteristic (ROC) curves, while the area
under the curve (AUC) was applied to assess the specificity and
sensitivity of the model. One and two years were defined as the
time nodes. Survival analysis and AUC values were performed on
CGGA data to validate the prognostic prediction performance of
the prognostic model in Chinese GBM patients.

Functional Enrichment Analyses
Gene Ontology (GO) analysis was applied to identify the
common functions of DEIRGs. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis was employed to
identify the significant pathways for gene enrichment. The
“clusterProfiler” package of R software was employed to display
the enrichment results, and the significance threshold was set to
0.05. The STRING website was used to visualize the interactions
between genes.

Correlation Analysis of Immune Cell
Infiltration
The CIBERSORT online site was referred for analyzing the
differences in the infiltrate abundance of 22 immune cells
between tumor samples and normal samples (15). Data from
the Tumor IMmune Estimation Resource (TIMER) 2.0 database
were used to analyze the relationship between marker genes
and 22 types of immune cells in GBM patients (16). Data from
the TIMER database were used to demonstrate the differential
functions of individual immune cells between the tumor and
normal samples (8, 17).

Statistical Analyses
The ROC curves were employed to determine the diagnostic
differentiation of the DEIRGs. KM analysis was performed
to estimate the survival time of the two subgroups, while a
logarithmic rank test was employed to determine the difference in
prognosis (18). Cox proportional hazard regression analysis was
applied to distinguish significant differences (18). All statistical
calculation processes were conducted in the statistical software
environment R version 4.1.0 orMicrosoft Excel 2019. All P-values
were two-tailed. The specific P-values and the other statistical
methods are described throughout the study.

RESULTS

Screening and Identification of DEIRGs
Initially, a flow chart was drawn to depict the analysis
process (Figure 1). The TCGA-GBM data included 169 tumor
samples and 5 normal samples. Upon comparing the expression
abundance of IRGs between the tumor and normal samples,
198 DEIRGs satisfying both log2 | FC | > 2 and FDR < 0.05
were screened. The heat map revealed that 153 genes were
upregulated and 45 genes were downregulated in the tumor
samples (Supplementary Table 2). The volcano map signified
that the log2 | FC | and –log10 (FDR) of RNA-Seq in the TCGA
dataset. The genes with FDR < 0.05 and log2 FC > 2 (<-2)
were marked with red (blue) dots. Figure 2 presents the results
of gene screening.

Establishment of Immune-Related Risk
Score
The patients enrolled in the study were divided into the high-
and the low-expression groups according to the median single-
gene expression level. The single-gene KM curves showed that
the hazard ratios (HRs) of the two groups remained the same
throughout the study. Next, the DEIRGs were included in the
univariate Cox regression analysis and the KM analysis assessed
by the logarithmic rank test. Only DEIRGs with P <0.05 in both
cases were considered as candidate overall survival-related (OS-
related) genes. By combining these two analyses, 15 genes were
obtained (Table 1; Figure 3A). Single-gene KM curves of these
15 genes are shown in Supplementary Figure 1. To improve
the independent forecasting ability of the model, these genes
were included in the subsequent multivariate Cox regression
analysis. Seven genes (LYNX1, PRELID1P4, MMP9, TCF12,
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FIGURE 1 | The flow chart of the study protocol.
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FIGURE 2 | Heatmap and volcano plot of 198 DEIRGs in TCGA-GBM patients. (A) Heatmap of 198 DEIRGs in TCGA-GBM patients. Blue and red indicate the genes

of a lower and higher expression. (B) Volcano plot of 198 DEIRGs in TCGA-GBM patients. Blue and red, respectively, represent the significantly downregulated and

upregulated genes. The names of genes in the dense regions are hidden.

TABLE 1 | The results of the univariate Cox regression analysis.

Gene HR 95% CI Cox P-value Log-rank P-value

CD248 1.015 1.004–1.026 0.008 0.016

LYNX1 1.043 1.011–1.075 0.007 0.030

PRELID1P4 0.254 0.079–0.815 0.021 0.043

IKBIP 1.111 1.037–1.190 0.003 0.019

RGS17P1 16.263 1.865–141.848 0.012 0.002

TBX15 1.103 1.012–1.202 0.025 0.040

MMP9 1.006 1.000–1.011 0.047 0.049

FCGR2B 1.115 1.033–1.203 0.005 0.021

LILRB2 1.090 1.003–1.184 0.041 0.027

TCF12 0.974 0.959–0.988 <0.001 0.003

IL32 1.049 1.011–1.088 0.011 0.042

RGS14 1.119 1.015–1.233 0.024 0.010

TREM1 1.030 1.003–1.058 0.027 0.006

RUNX1 1.091 1.024–1.163 0.007 0.027

CCR2 1.259 1.023–1.551 0.030 0.032

RGS14, RUNX1, and CCR2) were obtained and were integrated
into the prognosis model as marker genes (Table 2; Figure 3B).

Among the sevenmarker genes used to calculate the risk score,
LYNX1, MMP9, RGS14, and RUNX1 were considered as the
prognostic pathogenic genes, with HR > 1, while PRELID1P4,
TCF12, and CCR2 were considered as the prognostic protection
genes, with HR <1. The regression coefficients and gene
expression data of the marker genes were used to establish a
prognostic model. The following formula provides a method for
calculating the risk score:

Risk Score = 0.041× LYXN1− 1.335× PRELID1P4+ 0.005

×MMP9− 0.021× TCF12+ 0.123× RGS14

+ 0.142× RUNX1− 0.329× CCR2

Based on the score formula, the risk score of each GBM was
obtained. Next, the patients were divided into the high- and
low-risk groups by taking the median value as the critical value.

Accuracy Assessment and Validation of
the Prognostic Model
The time-dependent ROC curves were employed to assess the
predictive effect of the prognostic model. The AUC values of the
model were 0.744 at 1 year, 0.737 at 2 years, and 0.749 at 3 years in
the TCGA cohort (Figure 4) and 0.612 at 1 year, 0.602 at 2 years,
and 0.594 at 3 years in the CGGA cohort (Figure 5).

Furthermore, survival analysis was performed in the model
building and validation cohorts. Figure 6A shows the grouping
results of all the patients with GBM in TCGA. The heatmap and
the scatter map alluded that certain differences existed in the
expression of the marker genes and OS (Figures 6B,D). These
results were validated in the CGGA cohort (Figures 7A,B,D).
The KM curves demonstrated that the low-risk group had a
significantly better prognosis than the high-risk group, with a P
< 0.05 (Figure 6C). Similar results were obtained in the CGGA
validation cohort too, with P < 0.05 (Figure 7C). These findings
suggest that the model has a good distinguishing ability and
can be used as a prognostic biomarker in Chinese patients with
GBM. In the training cohort and the validation cohort, the model
in the first 3 years was better in distinguishing between high-
risk and low-risk patients. In addition, we analyzed the effect of
risk score on 15-year prognosis in the validation cohort, which
shows that the model has a certain popularizing significance.
However, in GBM cases, the survival time of more than 10
years is <1%, and long-term survivors are a very rare group
(19). Shorter progression-free interval, larger diagnostic age, and
surgical resection may be associated with a sudden decline in the
10-year survival probability of GBM patients (19).

Enrichment Analysis
To infer the potential functions of DEIRGs in the carcinogenesis
and development of GBM, the enrichment of GO terms
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FIGURE 3 | Forest plots depicting the results of univariate and multivariate Cox analyses. (A) The results of 13 DEIRGs were screened out by the univariate Cox

analysis (We removed two of the genes with a large confidence interval). (B) The results of 7 prognostic DEIRGs were screened out by following multivariate

Cox analyses.

and KEGG pathways of 198 DEIRGs were analyzed. GO
enrichment analysis revealed 637 significantly enriched items.
Supplementary Table 3 shows 26 GO items with the highest
gene counts. T cell activation was found to be the most
enriched in 584 items of biological processes, the outer surface
of the plasma membrane was the most enriched in 6 items
of cellular components, and receptor-ligand activity and signal
receptor activator activity were the most enriched in 47 items
of molecular function (Figure 8A). KEGG pathway enrichment
analysis implied that the most significant pathway was the
cytokine receptor interaction pathway (Figure 8B). Therefore,
the DEIRGs mainly affect the internal functions of the immune

cells, which may alter the immune response activity of the cells
and affect the results of immunotherapy in the patients.

In addition, gene–protein interaction was explored on the
STRINGwebsite (Supplementary Table 4). The website contains
comprehensive known and predicted protein–gene interactions
(20, 21). STRING was employed to explore the interaction
between the marker genes and the realization mechanism of the
regulatory functions. Figure 9 shows the interactions of the five
marker genes.

The interaction network map demonstrated that MMP9 and
CCR2 were enriched in the central region of the network and
exhibited strong interactions with several DEIRGs. In addition,
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TABLE 2 | The results of the multivariate Cox regression analyses.

Gene Coefficient HR 95% CI Cox P-value

LYNX1 0.041 1.042 1.005–1.080 0.025

PRELID1P4 −1.335 0.263 0.080–0.865 0.028

MMP9 0.005 1.005 0.999–1.011 0.099

TCF12 −0.021 0.979 0.964–0.996 0.012

RGS14 0.123 1.131 0.989–1.294 0.072

RUNX1 0.142 1.153 1.027–1.293 0.016

CCR2 −0.329 0.720 0.497–1.043 0.083

RGS14 was linked to the central genes via interactions with
ITGB2 and the RGS gene family. RUNX1 and TCF12 were
connected to the central genes chiefly via interactions with the
associated genes IL2RA and IL10.

Analysis of Tumor Immune Infiltration
Clinical studies on immunotherapy have confirmed that tumor-
infiltrating immune cells can serve as a reference for the
prognosis and immunotherapy of some solid tumors (22,
23). The tumor microenvironment plays a key role in tumor
pathogenesis (24, 25). The CIBERSORT algorithm was applied to
analyze the differences in the 22 immune cells between the tumor
samples and the normal samples (Figure 10). The expression
data of the 879 IRGs in the patients with GBM in TCGA were
included, and the perturbation times were set to 1,000.

The violin plot indicated that the M2 macrophages and
the resting dendritic cells (DCs) had high invasion scores in
the tumor samples (infiltration fraction > 0.2). This finding
had implications for the important roles of these two types
of cells in the tumor microenvironment. In the GBM tissues,
tumor-associated macrophages mainly originated from the
peripheral blood monocytes, and M2 polarization was induced
by ARS2/MAGL signals from the tumor stem cells (26, 27). DCs
can not only induce tumor antigen specific immune response by
recognizing and presenting immature antigens, but also directly
or indirectly participate in the regulation of immune system (28).
In addition, there was a significant infiltration-level difference in
the DCs between the normal and GBM tissues (P < 0.05). The
accumulation of eosinophils has been found in a variety of central
nervous system diseases, but the involvement of eosinophils
in the immune response in GBM has only been preliminarily
recognized in some case studies (29). Eosinophils may regulate
the function of other immune cells by producing cytokines and
chemokines and activate infiltrating immune cells in the tumor
microenvironment (30). This may provide an explanation for
GBM identification and immunotherapy.

Next, the TIMER 2.0 database was used to describe the
correlation between the six marker genes and the DCs
(Figures 11A–F). Furthermore, the TIMER database was used to
generate KM curves for the DCs based on the TCGA-GBM gene
expression data (Figure 11G).

Figure 11 demonstrates the correlation coefficients ρ and P-
values between the expression levels of six marker genes and the
infiltration abundance of DCs. All ρ > 0 indicated that the six
marker genes were positively correlated with DCs. Moreover, the

ρ > 0.3 and P < 0.05 of LYNX1, RUNX1, and CCR2 suggested
their significant positive correlation with DCs. These three genes
may affect the tumor immune microenvironment and regulate
the growth and invasion rate of the tumor cells by affecting
the invasion of the DCs. In particular, Dendritic Cell-Specific
Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-
SIGN) is highly expressed on immature DCs (31). And the
activation of DC-SIGN promotes the transcription of MMP9
(32). Literature (33) shows that human monocyte-derived DCs
express a large amount of RGS14, and the expression level of
RGS protein family can be changed by toll-like receptor signals.
Literature (34) found that TNF- α induces DC-SIGN expression
in renal tubular epithelial cells and may be regulated through
MTOR-RUNX1 pathway. In Helicobacter pylori infection model,
the loss of CCR2 signal leads to the defect of differentiation
and maturation of DCs, which affects the immune response
function of DCs (35). Furthermore, the logarithmic rank P <

0.05 of DC was obtained. DCs can recognize and present foreign
antigens and regulate the growth of tumors in the central nervous
system by increasing the activity of natural killer cells and natural
killer T cells (36). However, a small amount of circulating DCs
in the body may inhibit endogenous tumor immunity (36).
Individualized DC vaccines based on tumor-associated antigens
have been developed on this basis and have been proved to be safe
and effective in some GBM treatments (37). This finding signifies
that the DCs are an important type of tumor-infiltrating immune
cells equipped with the ability to identify GBM tumors.

DISCUSSION

As one of the most invasive brain tumors, GBM is characterized
by an unfavorable prognosis. Immunotherapy may prolong the
survival time of the patients to some extent in the future.
By analyzing the IRGs in the TCGA-GBM and ImmPort
databases, 198 DEIRGs were identified. By employing several
dimensionality reduction methods, such as difference analysis
and Cox proportional hazard regression analysis, seven genes
capable of predicting OS were screened, namely, LYNX1,
PRELID1P4, MMP9, TCF12, RGS14, RUNX1, and CCR2.
According to the Cox proportional hazard regression coefficients
of the seven marker genes, a method for calculating the immune-
related risk score was determined. On the basis of the sample
coding rules of TCGA and CGGA databases (38, 39), patients
with a risk score higher than the median value were considered
to have a high risk for poor prognosis. The immune-related
risk score can be used as a new prognostic predictor to explain
the toxic role in immunobiology from cellular and molecular
pathways (40). It may prevent the occurrence of immune-
related adverse events by early identification of patients at risk
of immunotherapy, so as to continue to maintain and give
full play to the advantages of tumor immunotherapy (40). In
addition, differential expression analysis of the marker genes
revealed the significantly elevated expression of five genes
(PRELID1P4, MMP9, TCF12, RUNX1, and CCR2) and the
significantly lowered expression of two genes (LYNX1 and
RGS14). Functional analysis showed that these genes were
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FIGURE 4 | The time-dependent ROC curves in the TCGA training cohort. (A–C) ROC curves to evaluate the predictive accuracy of the model for OS at 1-, 2-, and

3-years in the TCGA training cohort.

FIGURE 5 | The time-dependent ROC curves in the CGGA validation cohort. (A–C) ROC curves to validate the predictive accuracy of the model for OS at 1-, 2-, and

3-years in the CGGA validation cohort.

primarily involved in T cell activation and that they made
a difference via cytokine receptor interaction pathways. In
addition, the marker genes can be used as characteristic immune
cell-specific genes, and they are also the expression products of
some stromal cells in GBMmicroenvironment (8). This not only
provides an explanation for the pattern of GBM-specific immune
infiltration, but also opens a new window for the pathogenesis of
immune infiltration in GBM.

The characteristics of the seven marker genes provide rich
biological knowledge and potential therapeutic information
about GBM. MMP9, one of the marker genes, is a oncogene
of GBM (41). Studies have shown that the expression of
MMP9 is upregulated in the GBM tissues and that it has the
potential to induce the proliferation of GBM, thus worsening the
prognosis of patients with GBM (41). In GBM patients, MMP9
is closely associated with hematopoietic progenitor cells, which
may contribute to the development of specific therapies aimed

at reducing HPC (42). Moreover, the association and interaction
between heat shock protein 27 and MMP9 may contribute
to the development of drugs that inhibit the infiltration and
migration of GBM. This interaction also provides a new field of
vision for the treatment of GBM (43). TCF12 has been proved
to be an important target for miR-154 and can regulate the
epithelial-mesenchymal transformation of GBM (44). P53/miR-
154/TCF12 pathway may be involved in inhibiting the growth
and invasion of GBM cells, so it can be used as a potential
therapeutic target (44). Another marker gene, RGS14, is highly
expressed in the caudate nucleus of the brain and thymus (45–
47). Previous studies have shown that RGS14 targets the shuttle
between centrosome and nucleoplasm and participates in the
regulation of stress-induced cellular response (46). However, the
role of RGS14 in the tumor tissues is yet to be elucidated. It was
found that RGS14 had a low expression in GBM tissues, but it
was potentially tumorigenic. More work is needed to discover
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FIGURE 6 | Survival analyses of the prognostic model in the TCGA-GBM cohort. (A) Risk score scatter map. (B) Heat map of differential expression of 7 marker

genes. (C) The KM curves of OS in the high- and low-risk groups. (D) Survival status scatter map.
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FIGURE 7 | The results of survival analysis of the prognostic model in the CGGA-GBM cohort. (A) Risk score scatter map. (B) Heat map of the differential expression

level of 7 marker genes. (C) KM curves of OS in the 2 risk subgroups. (D) Survival status scatter map.
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FIGURE 8 | The results of functional enrichment analysis of 198 DEIRGs. (A) The results of GO analysis demonstrated the most-enriched biological functions. (B) The

results of KEGG analysis show the most enriched biological processes. The X-axis represents the enrichment fraction, while the Y-axis represents the GO term and

the KEGG pathway. The color indicates the P-value, while the circle size of the bubble chart represents the gene counts.

FIGURE 9 | The interaction network map of 5 marker genes. The network nodes represent the protein types, the edges represent protein–protein associations, and

the line thicknesses represent the strength of the data supporting the interaction between the genes.

the different roles of RGS14 in the GBM tissues and normal
tissues. Another marker gene, RUNX1, is highly expressed in
GBM, especially of themesenchymal subtype (Mes). RUNX1may
promote the invasion of GBM cells by inducing TGF β signal
transduction. The Mes GBM is widely seen in samples showing a
high degree of necrosis. As an important transcriptional regulator
of mesenchymal transformation, RUNX1 is also closely related
to tissue necrosis (48, 49). This finding indicates that RUNX1
is a key signal node and that it might have a potential role in

targeted therapy (50). Furthermore, CCL2 and its related receptor
(CCR2) play an important role in brain tumors and are involved
in regulating the migration of monocytes into the vascular
endothelium. CCR2 inhibition can reduce tumor myeloid cells,
suggesting that it may play a role in delaying the progression of
gliomas (51–53).

The results of GO analysis showed that the most significant
enrichment of biological process was T cell activation. This
result suggests that immune-related genes may cause alterations
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FIGURE 10 | The violin plot shows the infiltration levels of 22 types of immune cells (blue and red represent normal and GBM samples, respectively).

in the morphology and maturity of T cells. Studies have
revealed that PD-L1 present on the surface of GBM promotes
the activation of PD-1 receptor in microglia, which inhibits
the continuous proliferation of T cells and downregulates the
cytotoxic activity of lymphocytes (54). Furthermore, regulation
of leukocyte cell–cell adhesion was also highly enriched. For
example, proteins regulated by IL-1 β may alter the frequency
and speed of monocytes adhering to basal cells (55). The
most significant enrichment of Cellular Component showed
that the differential immune genes mainly performed biological
functions on the extracellular side of the plasma membrane.
The most significant enrichments of Molecular Function were
the activities of receptor-ligand and signal receptor activator.
For example, PD-1 ligand and PD-L1 receptor can negatively
regulate T cell response and maintain homeostasis of the
tumor microenvironment. Related studies have shown that PD-
L1 can be used as a biomarker to assess the World Health
Organization classification of GBM (54). For example, mutations
or overexpression of epidermal growth factor receptors can
activate the downstream signaling pathways, which may explain
the pathogenesis of GBM (56, 57). On the other hand, the
activity of the signal receptor activator may be correlated with the
activation of the signaling pathway. CMTM6 is a key regulator
of PD-L1, regulating T cell activity in vivo and in vitro (58).
High levels of CMTM6 may inhibit the anti-tumor immune
response of T cells in GBM, so the overexpression of CMTM6 is
associated with poor prognosis and short overall survival of GBM
patients (58). As for KEGG enrichment results, cytokine receptor

interaction was the most important pathway. Moreover, other
pathways, such as the interaction of viral proteins with cytokines
and cytokine receptors and the JAK-STAT signaling pathways,
were correlated with tumorigenesis (59, 60).

Furthermore, studies have shown that high immune
infiltration in GBM predicts a poor outcome (61). Resting DC
infiltration is a prominent feature of the GBMmicroenvironment
in preclinical models and clinical samples. DC is an important
immune cell in both innate and adaptive immune systems
and has a complex array of functions and phenotypes in
GBM microenvironment. Improvements in immunotherapy
for DCs are in the experimental stage (62–64). In addition,
the antitumor immune response of the DCs in the GBM
tumor microenvironment may be realized by interaction with
microglia, tumor cells, and T cells (62). Specifically, the combined
application of CCR2 + HSCs and anti-PD-1 has been proven
to significantly increase the median and long-term survival
rates in the GBM model (65). The main mechanism of MMP9
in the brain is that it promotes enzyme activity and activates
various cytokine- and chemokine-related immune/inflammatory
reactions. Moreover, MM9 can promote leukocyte extravasation
into the brain parenchyma and aid in destroying the blood–brain
barrier. Its improper release may cause the development of brain
tumors (66).

The TCGA-GBM-based risk score prognostic model was
further validated in the Chinese samples, which indicated that
our model has a certain degree of robustness. However, the
results of this study are only based on bioinformatics and can
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FIGURE 11 | The correlation between 6 marker genes and DC. (A) LYNX1. (B) MMP9. (C) TCF12. (D) RGS14. (E) RUNX1. (F) CCR2. (G) Kaplan–Meier analysis of

the DC infiltrating levels from the TCGA database.
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only be used as a reference for preclinical research. In the
future, more experiments are needed to prove it, such as flow
cytometry and immunohistochemistry, to open up new ideas for
the development of immunotherapy for GBM.

CONCLUSION

In this study, an immune-related risk score was established
based on TCGA-GBM and ImmPort databases, and the
predictive effect was validated using the CGGA-GBM database.
Based on the findings, it could be suggested that the seven-
gene risk score can independently evaluate the survival of
patients with GBM. In addition, this score may partly reflect
the immune microenvironment of tumor infiltration via the
association between marker genes and DCs. The score is
also closely related to the response rate of immunotherapy,
thus serving as an immunotherapy reference for patients
with GBM.
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