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Abstract

Hippocampal formation contains several classes of neurons thought to be involved in navi-

gational processes, in particular place cells and grid cells. Place cells have been associated

with a topological strategy for navigation, while grid cells have been suggested to support

metric vector navigation. Grid cell-based vector navigation can support novel shortcuts

across unexplored territory by providing the direction toward the goal. However, this strat-

egy is insufficient in natural environments cluttered with obstacles. Here, we show how

navigation in complex environments can be supported by integrating a grid cell-based vec-

tor navigationmechanismwith local obstacle avoidancemediated by border cells and place

cells whose interconnections form an experience-dependent topological graph of the envi-

ronment.When vector navigation and object avoidance fail (i.e., the agent gets stuck), place

cell replay events set closer subgoals for vector navigation.We demonstrate that this com-

bined navigation model can successfully traverse environments cluttered by obstacles and

is particularly useful where the environment is underexplored. Finally, we show that the

model enables the simulated agent to successfully navigate experimental maze environ-

ments from the animal literature on cognitive mapping. The proposed model is sufficiently

flexible to support navigation in different environments, and may inform the design of

experiments to relate different navigational abilities to place, grid, and border cell firing.
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1 | INTRODUCTION

Successfully navigating the environment is a problem common to

most animals. There are a wide range of approaches to navigation,

mirroring the wide range of behavioral requirements across different

species (Trullier, Wiener, Berthoz, & Meyer, 1997). In mammals, navi-

gation is thought to be supported in part by a “cognitive map”

(O'Keefe & Nadel, 1978), an internal neural representation of space.

Such a map would endow an animal with navigational planning capa-

bilities that should enable it to robustly find its way to previously vis-

ited locations (Figure 1a). The theoretical notion of the cognitive map

is supported by compelling neurophysiological evidence. Hippocampal

place cells represent unique locations in the environment (O'Keefe &

Dostrovsky, 1971), and the more recently discovered grid cells in the

medial entorhinal cortex (Hafting, Fyhn, Molden, Moser, & Moser,

2005) appear to provide a spatial metric by encoding the animal's coor-

dinates in the two-dimensional plane. The discoveries of head-direction

cells (Taube, Muller, & Ranck, 1990a, 1990b) and border cells/boundary

vector cells (Barry et al., 2006; Lever, Burton, Jeewajee, O'Keefe, &

Burgess, 2009; Solstad, Boccara, Kropff, Moser, & Moser, 2008) further

strengthen the hypothesis of an internal neural map of space.

Place cells, particularly in the hippocampal area CA3, are thought

to form interconnections through recurrent synapses such that neigh-

borhood relationships between locations in the explored environment

might be retrievable from the synaptic strengths between place cells.

Such a system could implement a “topological navigation” strategy
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(Figure 1b), whereby the agent navigates to its goal location by calcu-

lating the shortest path in this internal representation of the environ-

ment and then following the resultant sequence of place cells' firing

fields as its itinerary. Many models of place cell-based navigation have

emphasized this topological view, considering recurrent synapses

among place cells to encode connectivity, distance, or transition prob-

ability between locations (Blum & Abbott, 1996; Gillner & Mallot,

1998; Mataric, 1991; Muller, Stead, & Pach, 1996; Redish & Tou-

retzky, 1998; Stachenfeld, Botvinick, & Gershman, 2017).

Grid cells have been suggested to support goal vector representa-

tions (Bush, Barry, Manson, & Burgess, 2015; Edvardsen, 2015;

Erdem & Hasselmo, 2012; Kubie & Fenton, 2012). Given grid cell

activity for the present location and a trace of the grid cell activity

for the goal location, the appropriate straight-line vector across two-

dimensional space can be determined. The grid cell network can then

support a “vector navigation” strategy (Figure 1b; Mittelstaedt & Mit-

telstaedt, 1980; Etienne, Maurer, & Séguinot, 1996), assuming that

the allocentric goal vector can be transformed to the agent's egocen-

tric frame of reference. Head-direction cells and parietal gain field neu-

rons (Pouget & Sejnowski, 1997; Snyder, Grieve, Brotchie, & Andersen,

1998) have been suggested to provide this function (Bicanski & Bur-

gess, 2018; Burgess, Becker, King, & O'Keefe, 2001; Byrne, Becker, &

Burgess, 2007). The agent can then find the correct bearing toward the

goal location even across large stretches of unexplored space due to

the metric properties of grid cells (Carpenter, Manson, Jeffery, Bur-

gess, & Barry, 2015; Fiete, Burak, & Brookings, 2008).

According to these separate classes of computational model, place

cells and grid cells seem to support complementary navigational

F IGURE 1 (a) Stereotypical navigation task. An agent has traveled across unknown terrain to a remote location and wishes to return to its
nest, with limited knowledge of the environment. (b) Two major navigation paradigms supported by neurophysiological evidence. Place cells likely
support topological navigation, where knowledge about locations' interconnectivity is used to reach the goal. Grid cells likely enable the
calculation of distances and angles for straight-line trajectories between arbitrary pairs of previously visited locations (vector navigation).
(c) Model overview. Network portion (gray box) remains fixed across all trials. An external agent controller orchestrates components in the
network in order to produce a variety of navigational strategies, either primarily vector-based navigation, primarily topological navigation, or
combined strategies utilizing a mixture of information from grid cells, place cells, and border cells. A grid cell decoder performs vector navigation
toward a subgoal provided by the place cells. Border cells provide local obstacle information to a course adjustment mechanism. Box colors
indicate related areas in the hippocampal formation [Color figure can be viewed at wileyonlinelibrary.com]
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strategies. Either strategy alone has its strengths and weaknesses:

Place cell-based topological navigation excels at finding the shortest

possible paths needed to reach goals in cluttered and complicated

environments, possibly including detours around known obstacles, but

only if the agent has explored the environment extensively in

advance, forming the necessary topological map. Conversely, grid cell-

based vector navigation can rely on goal vectors, even across long

stretches of potentially unknown terrain, but obstacles along the

straight-line path to the goal might cause the agent to get stuck. A

navigational strategy based on grid cells alone would not be sufficient

outside of obstacle-free open-field environments, raising the question

of whether or how grid cells participate in the navigation process

under real-world conditions.

Here we show how a grid cell-based vector navigation model can

be augmented to cope with environments cluttered by obstacles,

based on the known aspects of hippocampal function. Medial entorhi-

nal cortex (mEC) layer II, where grid cells are most prevalent, is a major

input to the hippocampus, and the hippocampus in turn projects back

to deeper layers of mEC. While the suggested interplay of grid cells

and place cells has been modeled extensively at the circuit level, such

work has usually focused on maintaining the firing properties of one

population based on inputs from the other (Dordek, Soudry, Meir, &

Derdikman, 2016; Hardcastle, Ganguli, & Giocomo, 2015;

Kropff & Treves, 2008; Mulas, Waniek, & Conradt, 2016; Rolls,

Stringer, & Elliot, 2006; Solstad, Moser, & Einevoll, 2006; Stachenfeld

et al., 2017). Here we investigate how the distinct characteristics of

these two representations of space can interact to guide behavior.

We suggest a role for hippocampal replay events during navigation,

using place cells to dynamically adjust the target for the vector naviga-

tion process, based on the intriguing possibility that place cells and

grid cells can fire coherently during replay (Ólafsdóttir, Carpenter, &

Barry, 2016). Additionally, the existence of border cells (Solstad et al.,

2008) suggests that a grid cell-supported vector navigation mecha-

nism might have access to information about nearby obstacles, and

hence the ability to make course adjustments based on their presence.

Boundary vector cells (Barry et al., 2006; Lever et al., 2009) could

serve a similar function, signaling boundary presence at a greater dis-

tance, forgoing the need for actual boundary contact before deflecting

a trajectory. We combine these aspects of topological navigation and

local obstacle avoidance with a grid cell-based vector navigation

model, and demonstrate that such an augmented vector navigation

mechanism can efficiently navigate cluttered environments. The com-

bined navigational strategy enables the agent both to negotiate com-

plicated obstacles and to efficiently traverse long distances of

unexplored space, potentially exploiting shortcuts.

2 | MATERIALS AND METHODS

Here, we present the architecture and main features of the proposed

hippocampal navigation model (Figure 1c), consisting of grid cells

decodable to goal vectors, border cells for local obstacle avoidance,

and a topological map implemented by place cells. Different types of

obstacles present different challenges during navigation, and we

describe how the model utilizes its components in concert to over-

come these challenges. Grid cells, the grid cell decoder, and obstacle

avoidance mechanism are represented by rate-based neural networks

in our implementation. The networks do not need any advance train-

ing, as the weights have been explicitly preconfigured for their

intended roles in the model (see McNaughton, Battaglia, Jensen,

Moser, and Moser (2006), Kubie and Fenton (2012) for how such grid

cell networks might be obtained through learning). For simplicity,

the place cell system is represented directly by a graph data structure,

and the agent's high-level control logic is represented by explicit

rules. A more detailed description of the implementation is given in

Supporting Information.

2.1 | Grid cell decoding for vector navigation

At the core of the model—alongside place and border cells—is a set of

grid cells together with a grid cell-decoding mechanism. The main out-

put of the network is the allocentric direction in which the agent

should move next; this output is primarily driven by the grid cell

decoder. The decoding mechanism confers vector navigation capabili-

ties onto the model, by processing inputs from two separate grid cell

populations and calculating the vector between the two respective

locations represented by those populations. One of the grid cell

populations encodes the agent's current location in the two-

dimensional plane, whereas the other population encodes the agent's

destination. This arrangement is similar to previous work on vector

navigation by grid cell decoding (Bush et al., 2015; Edvardsen, 2015),

with one crucial extension: Here, the vector navigation destination

does not necessarily have to be the same as the agent's ultimate goal

location, but can change between different “subgoals” throughout the

navigation process (see below).

Note that the model of combined vector and topological naviga-

tion proposed below is indifferent to the particular workings of the

grid cell-decoding mechanism, or indeed to the origin of the grid cell

signal itself—we assume only that vector navigation can be performed

through the readout of grid cells. Our specific implementation used

here builds on the implementation from Edvardsen (2017), where grid

cell decoding is performed according to a “nested” view of the grid cell

system (Stemmler, Mathis, & Herz, 2015). Feedforward decoder neu-

rons receive inputs from the two grid cell populations and are precon-

figured to detect specific patterns of directional offset between the

two inputs. A goal vector can be inferred in as few as one to two syn-

apses (Edvardsen, 2018), thus even a fast sweep through multiple

locations (e.g., within the timeframe of a replay event) can continu-

ously update the goal vector. Assuming reasonably fast synaptic inte-

gration and neuronal time constants, a postsynaptic neuron could fire

within 5–10 ms, which would allow for approximately 10 place fields

to be sampled within a replay episode. In addition, replay events

(chained together; Davidson, Kloosterman, & Wilson, 2009) can last

longer than 120 ms, potentially covering longer trajectories,

suggesting that the order of magnitude estimate for the timescales in

the model is consistent with published data.
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The grid cells are implemented as a set of recurrent neural net-

works (specifically, continuous attractor networks; Burak & Fiete,

2009), which perform path integration on a self-motion velocity input

in order to maintain an updated grid cell representation. Although no

noise is explicitly added to this process, some drift may nevertheless

occur over time due to imperfect path integration by the grid cell net-

works. Within the context of the presented simulations the drift is

negligible, though future versions of the model could be extended to

utilize sensory inputs for error correction in the grid cell system.

2.2 | Place cells learn a topological map

Place cells, particularly in the hippocampal area CA3, have been

suggested to represent space as a graph structure by virtue of their

synaptic interconnections (Muller et al., 1996; Redish & Touretzky,

1998). For simplicity we implemented the place cells directly as nodes

in a place graph. New place nodes are created whenever the agent is

sufficiently far away from the place field of any previously created

place node, that is, the agent instantaneously memorizes novel loca-

tions. Each node takes a snapshot of the grid cell ensemble's current

activity, effectively establishing a link between a given place cell and

the grid cells for later coordinated replay.

Next, bidirectional links are formed between pairs of place cell

nodes whenever the agent moves from the place field of one node to

another, corresponding to one-shot Hebbian learning between tra-

versed place cells. The resulting place cell graph reflects the topology

of the explored environment and contains sufficient information to

calculate the shortest paths between arbitrary pairs of start and goal

place cells across those explored parts; the graph can, for example,

determine which of the current immediately adjacent place fields lies

on the shortest path to the destination. By always moving toward the

neighboring place cell located on that shortest path, the agent would

implement a topological navigation behavior. We implemented a

graph search algorithm directly using the place graph structure, but

we assume that the hippocampal place cell system can support a simi-

lar search mechanism, for example, via the resistive network of recur-

rent synapses (Muller et al., 1996).

2.3 | Combining topological and vector navigation

Topological navigation does not require grid cells, as navigation is

always directed toward a local place cell. However, combining a topo-

logical map with grid cell decoding yields additional navigational capa-

bilities. We assume that an active place cell can trigger the

reinstatement of the corresponding grid cell activity for the

corresponding location, possibly mediated by projections from

CA1/subiculum to medial entorhinal cortex (Bush, Barry, & Burgess,

2014; van Strien, Cappaert, & Witter, 2009). In the model, each place

node is associated with a snapshot of the grid cell activity at the time

of the place cell's creation. By associating each visited place field with

its unique grid cell activity pattern, any location can become the start

or end point for vector navigation. This enables powerful combina-

tions of vector navigation and topological navigation and can help an

agent overcome obstacles by selecting a more suitable place field as

its subgoal. We propose that hippocampal replay events can be used

to sample possible subgoals among place cell firing fields to allow the

agent to change its current destination (see below).

Hence, the model accommodates purely topological, purely vecto-

rial, and combined navigational strategies within the same network

architecture. Throughout the navigation process, the relative impact

of each strategy is influenced by external factors (bold arrows in

Figure 1c) that may affect the strength of obstacle deflection (see

below), trigger new hippocampal replay events, or induce periods of

random exploration (see the Supporting Information).

2.4 | Negotiating obstacles via border cells

Grid cell-derived goal vectors do not account for any obstacles that

might lie in the direct path. To steer the agent clear of such obstacles,

we employ border cell signals as inputs to a course adjustment mecha-

nism. This obstacle avoidance mechanism can be sufficient to over-

come some of the obstacles encountered by the agent, but—due to

the local nature of the information conveyed by the border cells—

there will inevitably be certain obstacles that are insurmountable to it.

Obstacles that form a slanted angle with the goal vector (less than

90�) can be avoided by deflecting the agent's direction of motion

away from the obstacle, all the while remaining on a course that

brings it closer to the goal, as the deflected vector still points less than

90� away from the true goal direction (Figure 2a). Since the goal vec-

tor is continuously updated (see the description of decoder in

Section 2.1), the vector will continue to point to the target as the

agent is deflected by obstacles. The agent can follow the deflected

vector until either of two events occurs: The obstacle has been

cleared, in which case the agent can resume navigating along the true

goal vector, or the agent has followed the slope of the obstacle to a

point where the border now forms a perpendicular obstacle to the

goal vector and the deflection mechanism fails. Note that some obsta-

cles might technically be perpendicular to the goal vector yet be trivi-

ally negotiable by small amounts of random exploration, such as a

cylindrical shape encountered head-on. We treat these among the

slanted obstacles and use the term “perpendicular” throughout to

refer to obstacles that remain a problem even after limited random

exploration (e.g., a partially concave shape). In these cases, the agent

selects a new subgoal via replay (see the next section).

The deflected movement vector (distinct from the vector derived

from grid cell decoder) is calculated by ring networks of “motor cells”

(resembling head-direction cells), which combine the true goal direc-

tion decoded from grid cells with obstacle information from border

cells (Figure 2b; see also Supporting Information). The border cells

each respond to obstacles in a particular allocentric direction, with a

stronger activity as distance decreases, and inhibit corresponding

motor cells with the same allocentric tuning direction (see Burgess,

Recce, and O'Keefe (1994) for a similar approach). The population

vector readout of the motor cell population will then tend to steer

away from the obstacle (Figure 2b, rightmost panel). When the agent

is initially far away from an obstacle, the inhibition, and thus the
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deflection, is barely noticeable. However, because of rapid growth in

border cell inhibition, the deflection increases in strength as the obsta-

cle is approached—resulting in a trajectory that gently curves away

from the obstacle (Figure 2a; Video S1).

The goal vector is constantly updated to reflect the detour under-

taken by the agent during the deflected trajectory. For example,

whereas the goal vector originally pointed due East in the example in

Figure 2a, after deflecting to the Northern corner of the obstacle the

goal is now located in a Southeasterly direction. Because the grid cell

decoder can always recalculate the correct goal direction from any

potentially novel location along the deflected trajectory, the agent

remains able to find the goal.

2.5 | Selecting new subgoals through hippocampal
replay events

Faced with “perpendicular obstacles” (locally perpendicular boundaries

where random exploration is unable to trigger further progress), the

local obstacle deflection mechanism will fail to find a viable path for-

ward. Motor cells will be equally inhibited on either side of the goal

vector, so there is no remaining direction of “least resistance” toward

which to deflect the agent, which is now stuck. The agent must then

select a new location as the currently active subgoal for the vector

navigation process. We propose that this takes place through hippo-

campal replay events, which have been reported to occur when navi-

gating animals stop at choice points or otherwise come to rest during

maze sessions. These events are characterized by quick bursts of hip-

pocampal neural activity that appear to play back, or “replay,” traces

of earlier place cell activity along paths previously traveled—possibly

remote from the animal's current location (Foster & Wilson, 2006;

Ji & Wilson, 2007; Ólafsdóttir, Bush, & Barry, 2018). Intriguingly,

simultaneously recorded grid cells have been reported to activate in

coherence with the replaying place cells (Ólafsdóttir et al., 2016),

suggesting that the grid cell population might mirror the replay trajec-

tory by recalling the corresponding spatial locations of the reactivating

place cells. As the grid cell decoder can infer a goal vector in one to

two synapses (Edvardsen, 2018), this suggests that the (sub-)goal vec-

tor can follow along on the timescale of the replay events. These

would then be replay events where grid cells follow a replay in the

place cell population through hippocampal–entorhinal projections

(Ólafsdóttir et al., 2016). However, note that temporal coding phe-

nomena may also arise in the grid cell population independently of the

hippocampus (Hafting, Fyhn, Bonnevie, Moser, & Moser, 2008;

O'Neill, Boccara, Stella, Schoenenberger, & Csicsvari, 2017).

Whenever the agent gets stuck, a replay event originating at the

goal location and propagating toward the current location could thus

be used to find candidates for the new subgoal. The agent initially

tries to reach the ultimate goal location, but if the goal vector is

blocked by an insurmountable obstacle, the subgoal shifts step by step

along a replay trajectory—in our model the shortest path according to

the place cell graph (that is, among all previously visited locations)—

toward the current location. As soon as a place cell is encountered for

which the grid cell-decoded goal vector points sufficiently clear of any

obstacles (that is, allowing the motor cells to activate despite inhibi-

tion from border cells), the agent resumes moving in that direction.

The agent will thus initially prefer to navigate toward locations close

F IGURE 2 (a) Obstacles that form a slanted angle (less than 90�) with the goal vector can be negotiated by deflecting the direction of motion
away from the obstacle. Goal distance keeps decreasing along the diverted trajectory. (b) Obstacle deflection mechanism: A bump of activity is
induced in a ring of motor cells, pointing in the direction of the goal vector decoded from the grid cells. Each border cell responds to nearby
obstacles in a particular allocentric direction and inhibits the corresponding motor cell, causing the population vector readout of the motor cells to
steer away from the obstacle. (c) Perpendicular obstacles have no direction in which to successfully deflect the agent's motion—upon reaching a
perpendicular obstacle (first panel), a new vector navigation subgoal must thus be selected. A hippocampal replay event is initiated at the goal
location and propagated toward the current location, while concurrently updating the goal vector (second panel; red circle shows location of
replay event). When a new viable destination is found, the agent diverts there and performs topological navigation for a while, before eventually
resuming vector navigation (third panel; see Figure 3 for legend) [Color figure can be viewed at wileyonlinelibrary.com]
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to the goal location, attempting to quickly find shortcuts across open

space using the grid cells. However, if all of these locations are

blocked, the agent will eventually resort to finding its way back via a

previously visited place cell close to the current location. Figure 2c

and Video S1 show examples of the process during navigation; when

the agent reaches the wall, a replay event propagates along the chain

of place cells until a feasible subgoal past the obstacle has been found,

and the agent then diverts there.

Since the replay events occur across place cells contained in the place

graph, the choice of subgoal is restricted to previously visited locations—

however, shortcuts can be taken due to the grid cell system. Once a sub-

goal has been reached, the agent follows a topological navigation strategy

for a while, in order to ensure that it escapes the catchment area of the

obstacle. Otherwise—if the agent immediately reverted to vector

navigation—it might risk running back into the same obstacle. The agent

eventually resumes vector navigation, to enable more potential shortcut

discovery later in the trial. The duration of this topological navigation phase

is governed by a configurable “resetting” probability (Supporting Informa-

tion). Also note that, should a replay event propagate all theway to the cur-

rent place cell—indicating that none of the place cells activated earlier

during the replaywere accepted as the new subgoal—we consider the path

forward to be blocked. The agent will then unlearn the connection to the

most recently activated place cell (the one across the blocked gap), so that

the place graph again correctly reflects the topology of the environment.

F IGURE 3 (a) Overview of trial stages. The agent leaves the nest (black cross in b/c/d) along a predefined trajectory for the initial exploration
of the environment, performs a partial traversal of a perimeter in order to reach its prespecified starting position (all trials equally spaced across
the full perimeter), and then attempts to return to the nest. (b) Results from 64 trials in an environment with a diverse set of obstacles, using a
strategy of vector navigation with border cell-based obstacle deflection. Upper panel shows two example trials from the set of simulations, while
lower panel shows all trajectories from the full set of 64 trials, superimposed in the same plot. (c) Results from 64 trials with the same agent
strategy as in (b), but with the environment modified so that the nest is now located further into the cave-like structure. This creates
perpendicular obstacles where the agent gets stuck. (d) Results from 64 trials in the same environment as in (c), but now using the combined
vector–place strategy that can utilize the topological map to select a new subgoal whenever stuck [Color figure can be viewed at
wileyonlinelibrary.com]
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3 | RESULTS

Here, we present simulation results from our combined vector/

topological navigation model, first demonstrating successful naviga-

tion in cluttered environments, next addressing key characteristics of

environments where our combined navigation model is particularly

well-suited, and finally demonstrating how the model is sufficiently

flexible to solve certain experimental mazes from the literature.

3.1 | Navigating cluttered environments

Figure 3a shows an example of the kinds of environments employed

to test the simulated agent's navigational abilities. Large open spaces

are interspersed with obstacles of various shapes centered around a

“nest” location in the middle of the arena. Each trial consists of a

training phase and a test phase, with the agent initially located at the

nest location without any pre-existing knowledge of the environ-

ment. The agent first follows a given outbound path from the nest,

while updating grid cell and place cell population activity as usual

during this initial excursion (performing path integration in the grid

cells, generating new place cells in the place cell graph, associating

them with the contemporary grid cell population snapshot, and for-

ming links among place cells when moving from one field to the

next). It then moves along a perimeter around the environment to a

given starting location, before navigating back to the nest. These

starting locations are spread out along the perimeter in order to

assess the robustness of the agent's navigational ability under differ-

ent conditions.

Simulation results from augmenting pure vector navigation with

an obstacle deflection mechanism are presented in Figure 3b. Two

example trials show the agent successfully returning to the nest loca-

tion from two different starting points along the circular perimeter

(Figure 3b, upper panel), and the results from all 64 trials sup-

erimposed in one plot shows that the agent is indeed successful in

reaching the nest location from all tested starting points (Figure 3b,

lower panel). The obstacle deflection mechanism allows the agent to

locally deflect away from obstacles that lie ahead in its vector toward

the goal, in this case enabling it to navigate all the way back to the

goal. Whether boundary deflection alone is sufficient or not for suc-

cessful navigation is determined by environmental characteristics; if

all encountered obstacles present slanted surfaces (i.e., appear convex

to an agent heading toward the goal; Figure S2A in Supporting Infor-

mation), then this form of navigation will succeed.

An environment with only slanted obstacles will be the exception

rather than the norm. Even in the favorable situation discussed above,

the situation looks quite different if we move the nest just a short dis-

tance into the surrounding “cave” structure. Figure 3c shows results

from a new set of trials with the nest in this changed location. A

majority of the trials are no longer successful in reaching the goal, and

most of the trials end with the agent stopping at two seemingly

unremarkable locations along the outer cave wall. The obstacle forms

a perpendicular border against the goal vector in these locations

(i.e., appears concave to an agent heading toward the goal;

Figure S2B). When the agent finds itself in these locations, practically

all motor cell activity gets canceled by inhibition from border cells in

the direction of the goal. In this situation, the agent initiates a brief

period of random exploration before resuming attempted navigation

toward the goal. However, as the goal distance increases on both

sides of the perpendicular point (Figure S2B), the agent always ends

up back at the same obstacle. These trials eventually expired after a

timeout of 100 simulated seconds.

To avoid these failures, the agent diverts toward a different sub-

goal when halted by a perpendicular obstacle. Figure 3d presents

results where the agent employs our proposed “combined” approach

of augmenting vector navigation with replay-based selection of a sub-

goal when stuck. A new subgoal is selected from the place graph by

gradually shifting the subgoal closer to the current location until the

decoded goal vector is no longer blocked by the obstacle. In the two

example trajectories singled out in more detail, red triangular markers

indicate the locations in which the agent gets stuck on a perpendicular

obstacle and has to initiate a replay episode to find a new subgoal—

each trajectory can be seen to continue onwards from the replay loca-

tion on a diverted course toward a new subgoal. The “combined

vector–place navigation” strategy is successful in guiding the agent

away from perpendicular obstacles and ultimately to the final goal

location, from all tested starting locations. See Video S2 for animated

examples of trials performed as in Figure 3.

3.2 | Advantages in sparsely explored environments

To compare the combined navigational strategy with a purely topolog-

ical strategy, we used environments that had been densely explored

(Figure 4a), sparsely explored (Figure 4b), or had novel shortcuts intro-

duced after the training phase (Figure 4c). A quantitative comparison

of the agent's navigational behavior across these configurations is

depicted in Figure 4d, showing the median length of the paths needed

to return to the goal location across the 64 trials for each unique

configuration.

Dense versus sparse exploration refers to how many different

parts of the environment the agent had visited before the navigation

trial. For dense exploration, the agent's pre-programmed exploration

trajectory was drawn to cover close to the full environment with place

fields (Figure 4a, top row), in order to facilitate a place graph with

more nodes and connections. To quantify the difference in strategies,

we considered close to full exploration of the environment versus

only one outbound trajectory. However, there is no fixed amount of

“necessary” exploration for the model to work. The proposed mecha-

nism for selecting subgoals can be engaged with any amount of explo-

ration, though subgoals must necessarily coincide with a previously

visited location.

When the environment is densely explored, the purely topological

navigation strategy is able to immediately follow the shortest paths

around obstacles, without first having to run into them (Figure 4a).

However, because the agent only navigates according to its learnt

place cell graph, sparse knowledge of the environment results in
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suboptimal paths (Figure 4b), and it does not utilize any of the novel

shortcuts introduced to the environment after the training phase

(Figure 4c). The combined vector–place agent performs less well than

the topological agent in the densely explored environment (Figure 4a),

but performs better in the sparsely explored scenario (Figure 4b). The

grid cell-provided vector navigation capability enables the agent to

shortcut across the open space not initially explored, and also to dis-

cover the novel shortcuts introduced after the training phase

(Figure 4c). Because the combined agent's behavior is mostly driven

by vector navigation until the later stages of the navigation trials,

there is not much difference in performance between the densely and

sparsely explored situations in this condition. See Video S3 for ani-

mated examples of trials performed as in Figure 4.

3.3 | Flexibility to solve a variety of experimental
mazes

We tested the navigation model in experimental environments from

the animal navigation literature. Although relatively simple, we found

that the flexible architecture underlying the navigation model made it

possible to solve certain experimental tasks with minimal peripheral

changes to the agent.

An early inspiration for development of the cognitive map theory

was the sunburst maze (Tolman, Ritchie, & Kalish, 1946), in which rats

deduced the correct corridor toward a goal location despite major

modifications to the environment between the initial training sessions

and the test session. Specifically, the circuitous outbound corridor

available during training (the gray line showing the agent's initial

excursion in Figure 5a) was removed before the test session and rep-

laced with a set of novel radial arms. Tolman et al. (1946) reported

that 19 of 56 rats eventually chose the arm pointing directly toward

the food location (arm 6), and hence demonstrated an ability to calcu-

late the correct shortcut toward the goal. Though the methodology of

this specific experiment has been challenged and their reported

results have been difficult to reproduce (Bennett, 1996; Gentry,

Brown, & Kaplan, 1947; Grieves & Dudchenko, 2013), we neverthe-

less wanted to see whether the navigation abilities claimed of the rats

in this study were realizable within the framework of our navigation

model.

To let our agent avoid the incorrect arms in the sunburst maze, we

tune the motor cells in the boundary deflection mechanism to have a

F IGURE 4 Comparing purely
topological and combined
vector–place navigation
strategies. (a) Results from a
densely explored environment.
Upper panel shows 64 trials using
a purely topological strategy,
while lower panel shows 64 trials
using the combined vector–place
strategy. (b) As in (a), but now
with only sparse exploration of
the environment. (c) As in (b), but
now with novel shortcuts
introduced between the training
and test phases. (d) Median
return lengths for each set of
trials shown in (a)–(c) [Color
figure can be viewed at
wileyonlinelibrary.com]
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narrower width of their tuning curves. This causes the agent to abort

its vector navigation-driven goal approach whenever the current goal

vector is misaligned with the angle of the current corridor, that is,

whenever following the vector would make the agent run into corri-

dor walls. The agent will then turn around to perform a period of ran-

dom exploration, followed by another attempt to vector navigate

toward the goal. Eventually, the agent might find itself in a favorable

starting location where it has a clear path toward the goal location—

the vector navigation process can then succeed in guiding the agent

down the correct corridor without getting interrupted by the obstacle

avoidance mechanism. This process of alternating between random

exploration and vector navigation is visible in an example of a success-

ful trial in Figure 5a (note that the rats in Tolman et al. (1946) on aver-

age used around three and a half minutes to select an arm).

Superimposed results from the full set of 64 trials are shown in

Figure 5b. Trials were terminated after a timeout of 100 simulated

seconds or when the agents ventured a certain distance down a corri-

dor (approximately corresponding to the length of the short arms;

Tolman et al. (1946) also allowed rats to explore the initial segments

of the arms). The majority of trials ended with the agent choosing the

correct corridor (Figure 5c).

While the sunburst maze lends itself to a vector navigation-based

solution, an environment that might instead favor topological naviga-

tion is the detour maze (Alvernhe, Save, & Poucet, 2011; Tolman &

Honzik, 1930). This maze consists of a direct corridor between the

start location and the goal location, as well as two detour corridors

that branch off near the starting location—a short detour and a long

detour. The direct corridor can be blocked in one of two locations, so

that either both detours can reach the goal, or only the long detour

can reach the goal. A cognitive map should enable the animal to

choose the shortest possible detour, depending on the location at

which the novel obstacle is encountered. Simulations are shown in

F IGURE 5 (a) A single
example trial from a set of
64 trials in the sunburst maze,
showing alternation between
vector navigation attempts and
random exploration that
ultimately succeeds in finding the
correct corridor.
(b) Superimposed trajectories
from the full set of trials in the
sunburst maze. (c) Sunburst maze
trials accumulated by outcome.
(d) A single example trial from a
set of 32 trials in the detour
maze with the short corridor as
the correct choice.
(e) Superimposed trajectories
from the full set of trials in the
short version of the detour maze.
(f) A single example trial from a
set of 32 trials in the detour
maze with the long corridor as
the correct choice.
(g) Superimposed trajectories
from the full set of trials in the

long version of the detour maze
[Color figure can be viewed at
wileyonlinelibrary.com]
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Figure 5d–g. When the agent encounters the novel obstacle, the place

cell connection across the obstacle is severed and the chain of place

cells linking the current location and the goal location down the main

corridor is thus interrupted. The new shortest path in the place graph,

along which the next replay event will propagate, then guides the

agent toward the correct corridor in both the short detour scenario

(Figure 5e) and the long detour scenario (Figure 5g). See Video S4 for

animated examples of trials performed as in Figure 5.

4 | DISCUSSION

We have presented a hippocampal navigation model that is able to

navigate in cluttered environments by utilizing a combination of grid

cell-driven vector navigation, place cell-driven topological navigation,

and border cell-driven local obstacle avoidance. The proposed archi-

tecture, which maps well onto known anatomy and electrophysiology

of the hippocampal formation, can support a diverse range of naviga-

tional strategies by allowing external modulation of network compo-

nents to produce different navigational behaviors. The agent initially

performs vector navigation, primarily driven by grid cells and aided by

border cells for obstacle deflection. If progress is blocked by obstacles,

the agent initiates hippocampal replay that introduces aspects of

topological navigation into the agent's overall behavior, allowing the

agent to switch between different subgoals in order to successfully

navigate complex environments. Our results demonstrate that grid cell

decoders (Bush et al., 2015; Edvardsen, 2015; Stemmler et al., 2015)

can be the primary driver of navigational processes even beyond the

open-field environment, because such vector navigation mechanisms

can indeed work in cluttered environments when aided by place cells

and border cells to negotiate obstacles.

Such a combined navigational strategy can be particularly useful in

large, under-explored environments (which applies to most natural,

open environments), where the agent would otherwise have to resort

to a topological strategy of navigating by retracing its original steps

back to the origin. The grid cell-based vector navigation process can

instead guide the agent across novel territory, eventually resorting to

a place cell-driven topological navigation process should vector navi-

gation turn out to be impossible. Besides potentially enabling more

efficient navigation in underexplored scenarios, the combined strategy

is useful for discovering preexisting or novel shortcuts in the environ-

ment (Figure 4). The agent is a “pragmatist,” trying out the fastest

route first (a straight line). The hybrid aspect of the model (interacting

with place cells for subgoal selection via replay events) is only

engaged when it gets stuck. In experimental environments, animals

often bias their exploration trajectories differently (Kubie & Fenton,

2009), for example, spending more time near walls, which could affect

navigational performance, for example, restricting the availability of

subgoals. However, to the best of our knowledge the tendency of

experimental animals to spend more time near the walls is likely due

to perceived safety and not navigational considerations. In larger,

open, and underexplored environments, the pragmatic approach pro-

posed here may be a simple, nondemanding, yet effective strategy for

shortcut discovery and quick return to the nest. Future work should

systematically investigate simplicity (i.e., pragmatism) versus optimal-

ity trade-offs, which, however, will depend heavily on the structure of

the environments used to assess optimality.

The flexibility of our proposed architecture is demonstrated by

the model's performance in two examples of experimental maze envi-

ronments from the animal navigation literature, namely the sunburst

maze and the detour maze. Interestingly, we found that—while both

types of maze might be cited as examples of animals expressing cogni-

tive map-based navigation capabilities—these two environments pri-

marily exercised complementary parts of our navigation model. That

is, the nature of these mazes is such that mostly only the vector navi-

gation capacity or the topological navigation capacity of the model is

utilized. Specifically, for the sunburst maze, only vector navigation

with obstacle avoidance and random exploration was needed—the

topological map was not used. On the other hand, in the detour maze,

vector navigation would not strictly be necessary—the maze layout is

fully known by the animal in advance, so navigating only according to

the topological map should be sufficient (Martinet, Sheynikhovich,

Benchenane, & Arleo, 2011). If the cognitive map is considered to

consist of both the topological aspects of place cells and the metric

aspects of grid cells, then experimental environments should ideally

be designed to engage the aspects of the navigational circuit intended

to be probed by the experimenter.

Besides this more general conclusion about navigational strategies

and experimental environments, the model also makes certain predic-

tions about the nature of hippocampal replay events. Replay has been

suggested to be involved in both planning and consolidation (Carr,

Jadhav, & Frank, 2011; Diba & Buzsáki, 2007; Foster & Wilson, 2006;

Girardeau, Benchenane, Wiener, Buzsáki, & Zugaro, 2009; Karlsson &

Frank, 2009; Wilson & McNaughton, 1994). Here we considered a

potential role for replay in the planning of a trajectory (Pfeiffer & Fos-

ter, 2013). These events are triggered in the model whenever the

agent gets stuck during the vector navigation process—we hence pre-

dict a higher propensity for replays to occur when the agent encoun-

ters obstacles. Replays should be coherent between place cells and

grid cells (Ólafsdóttir et al., 2016). Whenever the agent diverts its

course, the new destination should be in the vicinity of a recent

replay, and there should be a goal vector representation (Sarel,

Finkelstein, Las, & Ulanovsky, 2017) for this subgoal. The agent might

follow different bearings across the same open field, depending on

whether it encountered any obstacles earlier in the trial that caused it

to change subgoals. In general, the model suggests that the analysis of

behavioral and neurophysiological data might benefit from taking into

account the location of obstacles and likely subgoals as relevant vari-

ables, not just the animal's own location and its ultimate destination.

However, there seems to be a diversity of different forward/reverse

replay/preplay phenomena (for review, see Ólafsdóttir et al., 2018),

and the model proposed here only considers one type of replay.

The integration of grid cells and place cells in the same architec-

ture for navigational purposes has been proposed before. Erdem and

Hasselmo (2012, 2014) present a model for grid cell-based vector

navigation that depends on place cells as a critical component of the
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system. The model relies on the grid cells “simulating” hypothetical

forward trajectories in different directions in order to trigger the acti-

vation of the target place cell and thus to have detected the correct

goal direction. That is, it exploits projections from grid cells onto place

cells to determine the goal direction, whereas the grid cell decoder in

our model produces its goal vector through direct readout of the grid

cell population (Bush et al., 2015; Edvardsen, 2015; Stemmler et al.,

2015). Whereas Erdem and Hasselmo (2012, 2014) perform subgoal

selection by diffusing a reward signal throughout the topological

graph of place cells and navigating in the direction of the place cell

most strongly activated by a simulated forward trajectory, we propose

that hippocampal replay events might interact with a grid cell decoder

for the same purpose.

In reinforcement learning parlance, both aspects of the current

model fall into the category of model-based approaches to navigation. A

full model of rodent navigation should, in addition, contain interactions

with (e.g., striatal) reinforcement learning mechanisms (Chavarriaga,

Strösslin, Sheynikhovich, & Gerstner, 2005; Chersi & Burgess, 2015;

Dollé, Sheynikhovich, Girard, Chavarriaga, & Guillot, 2010), and/or possi-

bly a mechanism akin to the successor representation (Dayan, 1993;

Gershman, 2018; Stachenfeld et al., 2017). A successor representation is

comparable to the topological place cell representation used in the cur-

rent model, and replay events could similarly propagate through it,

selecting new subgoals. The recent theoretical framework where grid

cells form a low-dimensional state representation (obtained via an eigen-

vector decomposition of place cells; Dordek et al., 2016; Stachenfeld

et al., 2017) can in principle identify bottleneck states in environments

(e.g., doorways), though it is currently unclear how this computation

would be carried at the level of neurons. Such states could also consti-

tute interesting subgoals, but the eigenvector decomposition requires a

thorough exploration of the environment, contrary to the present model.

With regard to spatial navigation, other strategies such as taxis and

landmark-based navigation (Trullier et al., 1997) are also known to guide

an animal's behavior, and should be incorporated for a more complete

navigation model. Finally, look-ahead and mental navigation could also

interact with the combined vector–place strategy proposed here

(Bicanski & Burgess, 2018; Erdem & Hasselmo, 2012, 2014). In mental

navigation, simulated motion (potentially driven by mock motor

efference and conveyed by grid cells; Bellmund, Deuker, Schröder, &

Doeller, 2016; Horner, Bisby, Zotow, Bush, & Burgess, 2016) can be

thought of as accompanied by a reinstatement of sensory representa-

tions bound to locations (via place cells) along the imagined trajectory

(Bicanski & Burgess, 2018), and would hence be particularly useful if

planning involves particular sensory aspects along the route.

In conclusion, we have shown that grid cells can potentially be

used to drive navigation and shortcut discovery even in cluttered

environments, if aided by place cells and border cells. Realistic naviga-

tional strategies in cluttered, large, and underexplored environments

will likely utilize combinations of both vector navigation and topologi-

cal navigation. Environments commonly used in animal navigation

research may not exercise both of these systems at the same time.

Designing experiments with underexplored parts of the environment

could shed more light on the interplay between vector and topological

strategies in animal behavior and lead to new insights in the role of

grid cells and place cells in navigation. A flexible navigation system

with a plausible neural implementation might also be of interest to the

field of biologically inspired robotics, to enable robots to navigate

according to biologically inspired principles in cluttered, under-

explored environments.
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