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Simple Summary: Brain metastasis occurs in primary cancers, such as breast cancer, and is correlated
with mortality. There are limited options available for treatment, but Clostridium perfringens Entero-
toxin (CPE) and its interaction with Claudin-4, a possible diagnostic biomarker for breast cancer, can
provide a molecular pathway basis for the development of treatment options for metastatic brain
cancer. Analysis of the literature reveals that Claudin-4 plays an important role as a receptor for CPE,
allowing for the disruption of cell membrane permeability, an influx of calcium ions, and subsequent
cell death. The negligible presence of Claudin-4 in normal brain cancer cells and the high abundance
of Claudin-4 in breast cancer cells metastasized to the brain, allow for the targeted binding of CPE to
tumor cells in the brain. We show that the C-terminal of CPE conjugated to nanoparticles that cross
the blood–brain barrier could serve as a drug delivery tool to treat metastatic cells in the brain.

Abstract: Claudin-4 is part of the Claudin family of transmembrane tight junction (TJ) proteins found
in almost all tissues and, together with adherens junctions and desmosomes, forms epithelial and
endothelial junctional complexes. Although the distribution of Claudin-4 occurs in many cell types,
the level of expression is cell-specific. Claudin proteins regulate cell proliferation and differentiation
by binding cell-signaling ligands, and its expression is upregulated in several cancers. As a result,
alterations in Claudin expression patterns or distribution are vital in the pathology of cancer. Profiling
the genetic expression of Claudin-4 showed that Claudin-4 is also a receptor for the clostridium
perfringens enterotoxin (CPE) and that Claudin-4 has a high sequence similarity with CPE’s high-
affinity receptor. CPE is cytolytic due to its ability to form pores in cellular membranes, and CPE
treatment in breast cancer cells have shown promising results due to the high expression of Claudin-4.
The C-terminal fragment of CPE (c-CPE) provides a less toxic alternative for drug delivery into breast
cancer cells, particularly metastatic tumors in the brain, especially as Claudin-4 expression in the
central nervous system (CNS) is low. Therefore, c-CPE provides a unique avenue for the treatment of
breast–brain metastatic tumors.

Keywords: Claudin-4; clostridium perfringens enterotoxin (CPE); cancer; metastasis; brain cancer

1. Introduction

Clostridium perfringens (C. perfringens) is a spore-forming gram-positive bacterium
that naturally exists in the environment in soil, sewage, and the guts of humans and an-
imals [1]. C. perfringens is known for its role as a common disease-causing agent of food
poisoning, diarrhea, and other gastrointestinal illnesses [2]. Clostridium perfringens type-A
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bacteria produce several toxins, prominent among these is Clostridium perfringens entero-
toxin (CPE) which is the causative agent in antibiotic-associated diarrhea and symptoms
linked to common gastrointestinal food-borne illnesses [3]. CPE creates pores in intestinal
and colonic epithelial cells, rendering them permeable to an influx of Ca2+ and consequent
cellular damage [4].

Functionally, CPE consists of two main domains: the pore-forming NH2-terminal
region and the Claudin-binding c-CPE. By forming pores in the cytoplasmic membrane
of mammalian host cells, the N-terminal region of CPE disrupts osmotic equilibrium
and mediates a cytotoxic effect [5]. CPE and Claudin-4 have aromatic and hydrophobic
interactions rather than hydrogen bonding, and Tyr306 is crucial to this binding [6]. CPE
binds initially to the receptor proteins, creating a small (90 kDa) precursor complex which
forms a larger SDS-resistant complex (155 kDa) that induces altered permeability in the
cell membranes of sensitive mammalian cells [7]. The resulting modifications in cellular
membrane permeability generate a calcium influx, triggering rapid apoptosis or oncosis.
A hexameric prepore on the cell membrane is assembled first and then beta-hairpin loops
generate a beta-barrel that infixes into the membrane, intensifying calcium influx through
the active pore. Subsequent cell death causes fluid and electrolyte loss and damage to
the intestines [8].

2. Molecular Targets of CPE in the Human Body

Claudins are important components of tight junctions (TJs), which help in maintaining
the integrity of cell membranes and preserving the polarity across cellular sheets (Figure 1A).
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Figure 1. (A) Claudin receptors are a major component of tight junctions, preventing the entrance of
molecules into the cells and maintaining cellular permeability and osmotic potential. (B) Structural
domains of Claudin-4.

TJs establish a fence that hinders lateral diffusion of membrane proteins and lipids,
thereby sustaining the differential composition of basolateral and apical regions, providing
a means through which regulatory signals can be traduced to and from cells via the actin
cytoskeleton. Claudins localize to endothelial and epithelial cell sheets along with occludin,
zonal occludens -1 (ZO-1), and junctional adhesion molecules (JAMs) [9]. Proteins in the
Claudin family are small (20–27 kDa) transmembrane proteins found in many organisms,
ranging from nematodes to humans, and share a significant identity [10]. They have
four transmembrane regions, two of which are extracellular loops (Figure 1B) [11]. The
tubular arrangement of tumor epithelial cells is associated with Claudins because Claudin
deletion mutants lead to tumors with decreased tubular arrangement [12]. Claudins thus
alter cellular proliferation [12,13]. Due to the important roles Claudins play in hindering
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the metastasis and proliferation of cancer cells, Claudins are plausible targets for therapeu-
tic intervention.

Claudin-4 TJ proteins are high-affinity receptors for CPE that create pores in intestinal
and colonic epithelial cells, rendering them permeable to an influx of Ca2+ and consequent
cellular damage (Figure 2) [5].
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Figure 2. (1) Drug–CPE complex interacts with Claudin-4 receptors in brain metastatic tumor cells
and forms a hexameric pore causing increases in influx of Ca2+, osmotic dysregulation, and membrane
disruption (2), which leads to apoptosis or oncosis (3,4). Unbound drugs are delivered into tumor
cells and further mediate cell destruction upon binding by exerting antitumor effects on cancer cells
while (5,6) the modulation of growth factor signaling and nfKB increase cell death by decreasing cell
proliferation and increasing expression of inflammatory cytokines and immune cells (7).

The implications of these interactions have led CPE to be considered as a suitable
and effective therapeutic option for cancer. CPE structurally comprises three domains:
C-terminal domain I, which binds to receptors, domain II, which oligomerizes and inserts
into the cytoplasmic membrane, and domain III, which modifies CPE morphology after
binding and membrane insertion [14]. The CPE polypeptide binds via its COOH-terminal
region (c-CPE) to the second extracellular loop (ECL-2) in Claudin-4, its high-affinity
receptor, and other Claudins as well [15].

3. Application of CPE and Claudin-4 Interactions in Treatment of Brain Metastasis
from Breast Cancer
3.1. Brain Metastasis Treatment Options

Brain metastasis (BM) is the most commonly occurring form of intracranial tumors and
is a typical complication of other primary malignancies such as melanoma, breast, and lung
cancer [16]. BM is associated with cancer mortalities: approximately 10% to 26% of deaths
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in cancer patients are correlated with the development of BM [17]. There are approximately
98,000 to 170,000 new annual diagnoses of brain metastases in the United States, and few of
these cases can be cured using currently available therapies [18]. Current therapies include
the use of corticosteroids, whole-brain radiation therapy (WBRT), surgical procedures
with or without WBRT, radiotherapy to the surgical bed, and stereotactic radiosurgery
(SRS) [19]. The survival rates of WBRT are dismal (2–4 months) and are typically used in
recursive partitioning analysis (RPA III) for patients with serious complications, including
but not limited to encephalopathy and cerebral edema [18]. The use of corticosteroids
also presents complications, such as myopathy, immune suppression, mood alterations,
and severe psychiatric disturbances [18,19]. Surgical resection in RPA I/RPA II patients
who had single lesions and minimal or controlled systemic disease has proved successful,
with less than 1% of surgeries resulting in complications. However, only about 15% of
patients are eligible as BM may not be localized to a particular region of the brain [18].
SRS targets single/multiple lesions with high beam radiations and can be used to treat
deep-seated tumors. SRS is contraindicated in excessively large target lesions or too many
lesions for practical use, and seizures have been reported as a complication in 40% of BM
treatments [18,20]. Considering these facts, more options are needed for BM treatment.

Drug delivery is a crucial aspect of drug development. Many drugs are incapable of
crossing the cell membrane or passing from one cell to another. A drug’s ability to traverse
epithelial and/or endothelial cell membranes through either transcellular or paracellular
routes is vital to its pharmacokinetics and biodistribution, especially across the blood–brain
barrier [21]. Transcellular drug delivery occurs via simple diffusion or by active transport
via a receptor or transporter on cytoplasmic membranes [22]. The existence of variability in
gene expression profiles of transporters among tissues introduces difficulty in delivering
drugs to a target tissue using a specific transporter. The paracellular delivery of drugs
occurs by disrupting the TJ barrier by loosening the tight junctions’ scaffold [23]. This
process naturally occurs in the intestines to absorb more nutrients after a meal. Absorption
enhancers that dilate TJs, letting drugs permeate the intercellular spaces of epithelial cell
membranes, such as chelators and surfactants, can be useful for the delivery of various
molecules [24]. However, they have low tissue specificity and provoke severe side effects,
including desquamating the intestinal epithelium which permanently alters its barrier
capacities, and thus they have limited use [24]. Claudin-4 is an important tight junction
functional protein, normally localized in the cell membrane where, through binding, it
regulates the paracellular transport of solutes. Claudin-4 expression is typical in epithelial
tumors and is elevated in epithelial malignancies and metastasis [24].

3.2. Claudin-4 Expression Patterns

Claudin expression levels vary with tumor types, tumor aggression, and invasion
potential [13] (Figure 3). Deletion mutations of Claudins are crucial in the progression
and invasive potential of tumors as Claudins regulate the permeability of the epithelial
membrane to the flux of ions and small molecules in order to maintain epithelial polar-
ity and homeostasis [12,25]. Claudins are also highly involved in cell–cell signaling via
actin linkage, cellular differentiation, cell proliferation, and the transcription of genes [10].
As Claudin expression levels increase in cells, these highlighted processes also increase,
including cell migration, drug resistance, and cell-cycle progression, dependent on the
presence of anchorage [26]. Hence, Claudin dysfunction contributes significantly to the
impairment of cell adhesion, remodeling of the cytoskeleton, morphogenesis, detachment
of tumor cells, and distant metastasis. Moreover, reduced border regulation and increased
paracellular permeability increase the progression, proliferation, viability, migration, and
invasion of tumor cells by allowing the passage of necessary growth factors and nutrients.
Claudin expression patterns can also indicate tumor type as the distinct fashion in which the
Claudin proteins aggregate in cells depends on the cell type and location [27–44] (Figure 3).
Claudin-4 is a marker of cellular differentiation and an indicator for phenotypic expression
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of the epithelia and thus a plausible target for therapeutic intervention for several cancers
and their precursors.
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In colon epithelia, Ca2+ levels, electrophysiological reports of Ca2+ uptake, and
calcium-detection microscopy have confirmed that CPE interaction with Claudin-4 in TJs
determines the extent to which CPE can disrupt TJs and mediate cytotoxicity [45]. Through
pore formation in plasma membranes upon binding to Claudin-4 and the subsequent influx
of Ca2+, CPE causes fluid and electrolyte loss, apoptosis, and oncosis via the activation of
calmodulin and calpain [46]. In breast cancer, CPE treatment has also shown Claudin-4
dependence [47]. The tumorigenesis, progression, and pathology of breast cancer have
been linked to different expressions of Claudins, and Claudin-4 has proved very powerful
in predicting survival [28–30]. An evaluation of lymph node metastases has shown that
Claudin-4 overexpression is a predictor of poorer outcomes in breast cancers [28]. The
brain has little or no Claudin-4 expression in contrast to brain tumors where Claudin-4 is
overexpressed. Only cells of epithelial origin express Claudin-4, whereas brain cells are of
mesenchymal origin. Therefore, it is mainly metastatic brain tumors that express Claudin-4.
This helps to successfully target a brain tumor and not normal CNS tissue [48].
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4. Use of C-Terminal CPE as a Therapeutic Agent in Brain Metastasis from
Breast Cancer
4.1. Claudin-4 and C-CPE Interactions in Cancer Cells

CPE toxin is lethal for cells high in Claudin-4 expression. CPE gene transfer in vitro
and in vivo, using the bacterial wild-type CPE cDNA (wtCPE) or optCPE cDNA, selec-
tively killed tumor cells overexpressing Claudin-4. The expression of optCPE was more
efficient and demonstrated quick cytotoxic activity, heightened by the bystander effect of
CPE release. Up to 100% cytotoxicity in tumor lines expressing Claudin-4 specifically was
reported 72 h following the transfer of CPE genes [49]. In vitro CPE treatment of breast
cancer cell lines (MDA-MB-468, MCF-7, NT2.5-Luc) and normal human astrocytes led to
a dose-dependent and accelerated cytolysis solely in breast cancer cells. The extent of cytol-
ysis was limited by Claudin-4 expression [48]. Furthermore, the intracranial administration
of CPE into breast metastatic cancer cells in the brain—using the murine model with brain
tumors from the human breast cancer cell line MDA-MB-468 and the murine breast cancer
cell line NT2.5-Luc. —improved survival significantly in comparison to mice treated with
PBS [48]. Hence, CPE in its native form can be advantageous in treating various cancers
with overexpressed Claudin CPE receptors, notwithstanding that immunogenicity and
bystander toxicity pose a problem. Moreover, CPE impairment of tight junctions has now
been shown to result in stemness, epithelial–mesenchymal transition (EMT), activation
of the Yes-associated protein (YAP), a transcriptional coactivator in oral squamous cell
carcinoma, and intracellular displacement of Claudin-4 to the cytoplasmic membrane [49].
These results imply that CPE might heighten the malignant transformation of cells via
YAP activation.

Alternatively, the Claudin-binding C-terminal domain of CPE (c-CPE) can be em-
ployed to reversibly regulate TJs and enhance permeability in order to permit the delivery
of solutes and chemotherapeutic agents across epithelial cell sheets [50]. In the absence of
the toxic pore-forming N-terminal of CPE, c-CPE protein complexes are effective and a bet-
ter candidate than native CPE for cancer therapy. C-CPE peptide comprises amino acids
184 to 319 and contains the receptor-binding region at amino acids 290 to 319. The superim-
position of a homology model of the human Claudin-4 apo form on the Claudin-4•c-CPE
fusion protein structure revealed substantial changes in conformation when c-CPE bound
with Claudin-4 in both the ECL1 and ECL2 domains [51]. c-CPE binds to and removes
Claudin-4 from TJs without redistributing the unbound Claudins and damaging the plasma
membrane, allowing for drug entry and absorption to occur (Figure 4) [52].

This mechanism is much slower and more reversible because it is dependent on the
c-CPE concentration [34]. Consequently, c-CPE can act as a Claudin modulator to open
TJs for improved delivery of drugs across tissue membranes by disrupting TJs to increase
paracellular permeability without destroying the plasma membrane integrity and incurring
cytotoxicity [53,54]. For example, Polysialic acid nanoparticles conjugated to CPE peptides
(C-SNPs) were recently developed for targeted therapy against pancreatic cancer. C-SNPs
with loadings of doxorubicin (DOX-C-SNPs) collocate and target Claudin-4 in pancre-
atic cancer cells, disrupting TJs while being significantly reduced in normal pancreatic
cells [55]. Similarly, nanoparticles made of the biocompatible and biodegradable polymer,
Poly(lactic-co-glycolic-acid) (PLGA-NPs), altered with c-CPE (c-CPE-NPs) and transferred
intraperitoneally, significantly inhibited tumor growth in ovarian cancer cells without
much activity in normal ovarian cells [56]. Moreover, c-CPE mutants have shown exclusive
binding capabilities to Claudin-4. For instance, c-CPE 194 is a c-CPE mutant that binds only
to Claudin-4 and enhances the effectiveness of anticancer agents. In well-differentiated
HPAC (a pancreatic cancer cell line) duct epithelial cells, c-CPE 194 interrupted barrier
functions without changing Claudin-4 expression while increasing MAPK phosphorylation.
c-CPE 194 also augmented the cytotoxicity of gemcitabine and S-1 (two anticancer drugs),
reduced the expression of Claudin-4, and improved MAPK activity in a poorly differenti-
ated pancreatic cancer cell line, PANC-1. In normal human pancreatic duct epithelial cells,
c-CPE 194 diminished Claudin-4 expressions and improved the MAPK activity without
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impacting the cytotoxicity of the anticancer drugs [57]. In breast cancer cells, c-CPE fused
to protein synthesis inhibitory factor (PSIF) showed cytotoxicity leading to dose-dependent
cell death in MCF-7 human breast cancer cells but not in mouse fibroblast L cells due
to the presence of Claudin-4 in the breast cancer cells and the absence in mouse fibrob-
last L cells [58]. c-CPE also shows Claudin-4 dependence in mediating its cytotoxicity in
breast cancer cells [58]. c-CPE binding, which correlated with the expression of Claudin-4,
aids the cytotoxic actions of carboplatin and paclitaxel by sensitizing epithelial ovarian
cancer cells. c-CPE significantly increased tumor suppression through the inhibition of
tumor cell proliferation and acceleration of tumor apoptosis when added to carboplatin
and paclitaxel compared to when the anticancer agents were used independently [54].
Modulation of Claudins by c-CPE increases drug absorption by 400-fold when compared to
sodium caprate, an absorption enhancer utilized in the clinic [59]. Additionally, Claudin-4
positive human ovarian carcinoma cells experienced a 6.7-fold elevation in toxicity when
treated with a fusion of recombinant c-CPE and tumor necrosis factor (TNF) than with
TNF alone [60]. Recombinant c-CPE-proteins can thus be developed as TJ modulators for
enhanced delivery of drugs into breast cancer and brain metastatic cells overexpressing
Claudin-4. The treatment of breast cancer cells and brain metastasis with c-CPE in its
various forms is effective because Claudin-4 is steadily expressed in those cancers. Fur-
thermore, Claudin-4 expression in normal areas of the central nervous system (CNS) is
negligible, which restricts apoptosis exclusively to brain tumor cells and hinders tumor
growth [48]. c-CPE thus has theranostic value.
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4.2. Crossing the Blood–Brain Barrier

The blood–brain barrier (BBB) hinders the passage of neurotoxic substances and drugs
into the brain. c-CPE has been modified in studies to transiently open and cross the BBB by
binding to Claudin-5 (Cldn-5) in the endothelial TJs that form the paracellular barrier in
BBB [61–63]. Recently, several different approaches have been undertaken to enhance the
uptake of chemotherapeutic agents into malignant tumors, including conjugating drugs to
micelles, liposomes, dendrimers, and nanoparticles—which may be proteinaceous, poly-
meric, or inorganic—that can cross the BBB [64]. The uniqueness of each drug delivery
system lies within its bioavailability, hydrophilicity, biocompatibility, membrane perme-
ability, and biodegradability [65]. Notably, nontoxicity and the capacity for localization
to tumor sites are important when considering the suitability of drug delivery techniques
in cancer treatment. Preferably, an ideal drug delivery vehicle would be nontoxic, able
to solubilize in the body, permeable to the tissue barriers, biodegradable, and capable of
providing direct, targeted, and sustained effects against tumor cells [66]. Using Claudin-4 as
a target for fluorescent molecules, c-CPE bound to NP (c-CPE NP) can be further localized
and administered intraperitoneally (IP) in breast cancer cells to significantly lessen systemic
toxicity than with the same dose administered intravenously. Further, CPE-expressing
vectors can be utilized to transfer genes intratumorally for selective suicide gene therapy
of chemotherapy-resistant cells in tumors expressing Claudin-4. For instance, in ovarian
cancer resistant to IP chemotherapy, fluorescent FITC conjugated to CPE accumulated
predominantly in the ovarian tumor and not the normal ovarian cells [39]. Furthermore,
c-CPE-NPs were used to deliver Diphtheria Toxin Subunit-A (DT-A), a therapeutic agent, via
the p16 promoter highly expressed in ovarian tumors. The p16 DT-A vector enclosed in CPE-
NPs (p16 DT-A c-CPE-NPs) led to cell death in ovarian cancer in vitro. IP injections of p16
DT-A c-CPE-NPs inhibited tumor growth significantly more than using control NPs in mice
harboring chemotherapy-resistant tumors (p = 0.041) [56]. Nanoparticles conjugated with
c-CPE thus depict a nontoxic binal-targeting approach for treating chemotherapy-resistant
cancer cells via selective gene therapy and for drug delivery to non-chemo-resistant brain
metastatic cancer cells. To date, there is not extensive research that shows the interaction
between c-CPE conjugated to drugs in breast cancer metastasis in the brain. However,
several drugs have been shown to concentrate in breast cancer metastasis in the brain,
crossing the impaired BBB caused by tumorigenesis [67]. Such drugs include trastuzumab,
Zr trastuzumab, C-paclitaxel, C-doxorubicin, and C-lapatinib [68–71]. As stated, c-CPE-
NPs conjugated to drugs like doxorubicin and paclitaxel have shown efficacy in other
cancer cell types, such as ovarian and pancreatic cell lines. Thus, c-CPE mutants that bind
to Cldn-5, a major TJ protein in the BBB, and are conjugated with drug-NPs can potentially
serve as a novel technique to direct cancer therapy to breast cancer metastasis in the brain.

5. Concluding Remarks

Claudins are important proteins in embryonic development and contribute to normal
cellular physiology, playing significant roles in maintaining intestinal homeostasis, cell
signaling and proliferation, tumorigenesis, and tumor inhibition. The dysregulation of
Claudin transmembrane proteins is hence associated with many cancers of epithelial
origin as the loosening of cellular adhesion compromises the structural integrity and
functional efficacy of TJ complexes in cells of both the endothelium and epithelium during
tumorigenesis. These observations suggest that these proteins are potentially useful as
biomarkers for cancer diagnosis and can serve as targets for therapy. Various Claudin
levels are changed in the development of tumors and most of the Claudin levels are
elevated. Of the 27 Claudins, Claudin-4 shows a significant change in tumors and is
overexpressed in primary breast cancers. Elevated levels of Claudin-4 were seen in invasive
and metastatic breast tumor types. Claudin-4 is a high-affinity receptor for CPE and
strongly binds the COOH-terminal of the CPE protein. Once bound, Claudin-4 changes
the permeability of the membrane and causes cellular apoptosis. As a result, CPE has
the potential for treating various tumors, such as breast tumors, and CPE therapy is
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suitable for diverse brain metastases without causing toxicity in the CNS. Since many
tumor cells show elevated levels of Claudin-4 and Claudin-4 has a significant binding
efficiency to CPE, CPE is applicable for drug delivery. The toxicity of CPE, however, makes
c-CPE a better candidate for cancer therapy and is useful for improving reversible and
concentration-dependent drug absorption due to its lessened toxicity and its fewer antigenic
determinants. c-CPE conjugated to nanoparticles and delivered intraperitoneally is by
far the most successful method shown to localize c-CPE to tumor cells highly expressing
Claudin-4 and to further reduce cytotoxicity. To further aid in crossing the blood–brain
barrier (BBB), c-CPE mutants that transiently bind to Claudin-5, the most predominant tight
junction protein in the paracellular seal, can aid drug delivery. Increased knowledge of the
Claudin-4•c-CPE structure and the conformation changes induced from c-CPE binding
to Claudin-4 can also provide insights to help design relevant c-CPE mutants as Claudin
modulators. Claudin-4•c-CPE interactions can also aid the creation of technologies that
modify TJs containing Claudins for improved metastatic brain cancer treatment from
primary cancers such as breast cancers that overexpress Claudin-4.
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