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Abstract
Objective Since the COVID-19 pandemic began in early 2020, SARS-CoV2 has claimed more than six million lives world-
wide, with over 510 million cases to date. To reduce healthcare burden, we must investigate how to prevent non-acute disease 
from progressing to severe infection requiring hospitalization.
Methods To achieve this goal, we investigated metabolic signatures of both non-acute (out-patient) and severe (requiring 
hospitalization) COVID-19 samples by profiling the associated plasma metabolomes of 84 COVID-19 positive University of 
Virginia hospital patients. We utilized supervised and unsupervised machine learning and metabolic modeling approaches 
to identify key metabolic drivers that are predictive of COVID-19 disease severity. Using metabolic pathway enrichment 
analysis, we explored potential metabolic mechanisms that link these markers to disease progression.
Results Enriched metabolites associated with tryptophan in non-acute COVID-19 samples suggest mitigated innate immune 
system inflammatory response and immunopathology related lung damage prevention. Increased prevalence of histidine- and 
ketone-related metabolism in severe COVID-19 samples offers potential mechanistic insight to musculoskeletal degener-
ation-induced muscular weakness and host metabolism that has been hijacked by SARS-CoV2 infection to increase viral 
replication and invasion.
Conclusions Our findings highlight the metabolic transition from an innate immune response coupled with inflammatory 
pathway inhibition in non-acute infection to rampant inflammation and associated metabolic systemic dysfunction in severe 
COVID-19.

Keywords COVID-19 · Genome-scale metabolic modeling · Machine learning · Metabolomics

1 Introduction

Since the COVID-19 pandemic began in early 2020, SARS-
CoV2 has claimed more than six million lives world-wide, 
with over 510 million cases to date (World Health Organi-
zation, 2021). SARS-CoV2 infection can result in a range 
of symptoms from a cough, fatigue, nausea, and diarrhea, 
to more serious symptoms such as difficulty breathing, 
which can result in the need for oxygen supplementation 
or ventilation (CDC, 2022a). Long term side effects of 
SARS-CoV2 infection include chronic joint pain, continued 
difficulty breathing, depression, and in some cases perma-
nent organ damage to the lungs, heart, and kidneys (CDC, 
2022b). Because SARS-CoV2 is heavily glycosylated it is 
well equipped for immune evasion (Walls et al., 2016, 2020; 
Watanabe et al., 2020). Understanding how the host immune 
system responds differently between patients could provide 
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an immune-directed treatment plan, as compared to many of 
the currently available treatments which focus on breaking 
the invasion-replication cycle.

Metabolism and the immune system are tightly linked, 
and by understanding the metabolic patient-to-patient differ-
ences in the context of SARS-CoV2 infection we can gain 
a better understanding of immune response (Alwarawrah 
et al., 2018). Therefore, to identify these potential therapeu-
tic strategies, it is important to investigate how viral infec-
tion impacts host metabolism. Previous COVID-19 metabo-
lomics research has focused on the impact of infection on 
host metabolism, as well as metabolic shifts associated with 
disease severity (Caterino et al., 2021; Páez-Franco et al., 
2021; Sindelar et al., 2021; Stukalov et al., 2021; Thomas 
et al., 2020). As the pandemic continues, in order to reduce 
burden on the healthcare system we must not only investi-
gate the physiological impact of infection on the body, but 
also elucidate the underlying functional metabolism that is 
causing these plasma-level differences in different patient 
responses in order to prevent hospitalization. Our work 
builds on previous investigations of metabolic shifts associ-
ated with COVID-19 disease severity (Hasan et al., 2021; 
Krishnan et al., 2021; Shen et al., 2020; Song et al., 2020; 
Su et al., 2020;Thomas et al., 2020).

To achieve this goal, we investigated metabolic signatures 
of both non-acute and severe COVID-19 samples by profil-
ing the associated patient plasma metabolomes and building 
both severe and non-acute genome-scale metabolic models. 
By characterizing what functional metabolic pathways are 
upregulated in non-acute COVID-19 patients we hoped to 
identify protective metabolic pathways that assist in fighting 
infection, reducing immunopathology, and preventing dis-
ease progression. By identifying protective metabolic path-
ways and their associated pathways, this information can be 
leveraged as novel preventative therapeutic avenues. Fur-
thermore, a better understanding of metabolic upregulation 
predictive of severe COVID-19 status can elucidate potential 
metabolic pathways whose inhibition could mitigate disease 
progression. Additionally, a deeper mechanistic understand-
ing of SARS-CoV2 infection allows already available and 
approved treatment plans to be used more efficaciously.

We utilized both supervised and unsupervised machine 
learning approaches to identify key metabolic drivers that 
are predictive of COVID-19 disease severity and explored 
potential metabolic mechanisms that link these markers to 
disease progression. To more directly account for immune 
system response in disease progression, we have also ana-
lyzed the Interleukin 13 (IL-13) levels in the same patient 
cohort. IL-13 is a profibrotic cytokine that is involved in 
airway inflammation, and has recently been identified as a 
driver of COVID-19 severity (Donlan et al., 2021; Mohn-
ing et al., 2019). Our findings characterize the metabolic 
transition from an innate to adaptive immune response, the 

signatures of inhibited inflammatory pathways in non-acute 
COVID-19, and the metabolic byproducts of severe COVID-
19 symptoms.

2  Materials and methods

2.1  Patients

Blood samples were collected in EDTA tubes from 84 adult 
patients who tested positive by PCR for SARS-CoV2 at the 
University of Virginia hospital between April and June 2020. 
Plasma prepared from the blood was stored at − 70 °C. A 
total of 48 of the samples were from out-patients and cat-
egorized as non-acute COVID-19, while 36 samples were 
categorized as severe COVID-19 based on the need for hos-
pitalization and in some cases ICU and ventilator require-
ments (four and 25, respectively). All collected samples and 
subsequent data analysis had previous IRB approval.

2.2  Patient plasma preparation

Clinical information for the patients was obtained from the 
electronic medical records, and each patient was assigned 
a unique identifier for de-identification purposes. The pro-
tocol for collection of blood samples and de-identified 
patient information was approved by the University of Vir-
ginia Institutional Review Board (IRB-HSR #22,231 and 
#200,110). Metabolite profiling experiments were performed 
at Biomolecular Analysis Facility, University of Virginia 
School of Medicine. Briefly, plasma samples were thawed 
on ice and 50 µL of plasma was retained for the metabo-
lome analysis. 200 µL of − 20 °C methanol was added to 
the plasma sample and shaken vigorously to inactivate any 
potential viruses. The samples were stored in − 80 °C imme-
diately until extraction for metabolomics experiments. For 
extraction, 200 µL of − 20 °C methanol was added to each 
tube, vortexed and shaken vigorously for 30 min at 4 °C in 
a temperature controlled thermal shaker. Further 200 µL of 
chloroform and 400 µL of water were added, shaken vigor-
ously and the top aqueous phase was recovered as a metabo-
lite mixture of diverse chemical nature. Two aliquots of 350 
µL each were created, one for the experiment and one as a 
backup for additional experiments. Each metabolite extract 
was dried overnight in speedVac and reconstituted in 60 µL 
of 0.1% formic acid in water. Prior to running the samples, 
the instrument was calibrated using Pierce FlexMix solu-
tion. Before running the actual experiment, LC–MS sys-
tem was stabilized by running 3–4 wash runs followed by 
4 blank runs to ensure stable background signal, and lastly 
a commercial amino acid mixture (Amino Acid Mixtures, 
2022) was ran as a part of system stability analysis to ensure 
the column chromatograph was in good condition. Ten 
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microliters from each tube were removed to create a pooled 
QC sample that was injected at the beginning and end of the 
MS sequence run and additional QC samples were injected 
after every 10 sample injections for continued assessment 
of chromatography quality.

2.3  Mass spectrometry preparation and analysis

For data acquisition, we employed a fully automated, 
AcquireX Intelligent Data Acquisition Workflow, specifi-
cally the deep scan workflow. First, an exclusion list is gen-
erated from a blank run. Then, an injection of the pooled QC 
sample followed by feature detection and component assem-
bly populates the inclusion list with compounds detected in 
the samples. A series of iterative DDA injections follow. 
Each injection is informed from the previous one, minimiz-
ing redundant fragmentation spectra and maximizing rel-
evant spectra and metabolite annotations.

Samples were analyzed in untargeted fashion by LC-
HRMS. Samples were injected in randomized fashion via 
a Thermo Vanquish UHPLC and separation of the polar 
metabolites was achieved using Thermo Accucore C18 col-
umn (Thermo Scientific; 2.1 × 100 mm; 1.5 µm) maintained 
at 30 °C. The injection volume was 10 µL. For the 15-min 
gradient, the standard mobile phase for RPLC was A = 0.1% 
formic acid in water and B = 0.1% formic acid in methanol. 
The linear elution gradient was as follows: 0–8.0 min at 50% 
B, 8.0–13.0 min held at 98% B, 13.1 to 15.0 min revert to 
0% B to re-equilibration for next injection at a flow rate of 
0.25 mL/min. Spectra was acquired on Thermo IDX™ Tri-
brid MS, using both positive and negative mode. A heated 
electrospray ionization (HESI) source was operated at 
3.5 kV and 2.5 kV for positive and negative modes, respec-
tively. Ion source sheath gas was set at 35 and auxiliary gas 
at 7. Ion transfer tube temperature was maintained at 275 °C 
while vaporizer temperature was maintained at 320 °C. The 
instrument was set to acquire over the m/z range 67–1000, 
in full MS mode (1 µscan) at a resolution of 60,000 at a 
normalized AGC Target of 25% and 50 ms of maximum 
injection time was allowed. RF lens amplitude was set at 
35%. Tandem MS/MS performed by applying quadrupole 
isolation with an isolation window of 1.6 m/z. Activation 
type was set at HCD and masses were fragmented with HCD 
Assisted Collision Energy (%) of 15,35,50. Fragment masses 
were detected by Orbitrap at a resolution of 15,000. A total 
of 140 × 2 sample runs (negative and positive mode), 30 QC 
runs (15 × 2 negative and positive mode), 8 ddMS2 runs 
(2 × 4) and 4 blanks (negative and positive) were collected.

LC–MS/MS data was processed using Compound Dis-
coverer 3.1 (Thermo Fisher Scientific Inc, San Jose, USA) 
with the following settings. For precursor selection, MS(n-
1) precursors were selected, and S/N Threshold was set at 
1.5. Retention time alignment was performed using adaptive 

curve algorithm with maximum shift allowed for 2 min at 
a mass tolerance of 5 ppm. Compounds were detected at a 
mass tolerance of 5 ppm and minimum peak intensity thresh-
old was set at 500,000. Preferred ions were set at either 
[M + H] + 1 or [M-H]-1, respectively, for positive or nega-
tive mode. Compounds were grouped at a mass tolerance 
of 5 ppm and RT tolerance of 0.2 min was allowed. A QC-
based area correction was applied using a linear regression 
model with minimum allowable QC coverage of 50% and 
maximum QC area RSD allowed was 30%. Peak areas were 
normalized using constant median. Blank samples were used 
for detection and identification of background compounds 
and removed subsequently.

Compound annotations were performed by searching 
the ddMS2 masses in mzCloud. All metabolite identifica-
tions met MSI Level 2 requirements (Sumner et al., 2007). 
All spectra were matched with confidence using the HCD 
library from mzCloud using accurate matching of precursor 
ion and MS/MS spectra. Second search with either formula 
or exact mass was performed in ChemSpider, KEGG data-
base and in-house database of IROA Mass Spectrometry 
Metabolite Library of Standards (MSMLS) (approximately, 
standards 550 compounds detected in both positive and neg-
ative mode under similar chromatographic setting). Statisti-
cal differential metabolite discovery was performed using 
healthy patients as a reference group and log2FC, p-value 
and adjusted p-value were computed after log10 transforma-
tion of the normalized peak areas using Compound Discov-
erer V3.1(Thermo Fisher Scientific, n.d.). If a metabolite 
was detected in both positive and negative modes, the posi-
tive mode was kept and the negative mode was discarded. 
Metabolites are considered changed if the p-value ≤ 0.05 and 
log2FC = 1 using. A total of 680 distinct metabolites was 
measured in each sample.

2.4  Biomarker identification

All metabolomics data were cleaned using median metabo-
lite value filter followed by log transformation and autoscal-
ing to normalize within and between samples. The Mann 
Whitney U test from the scipy python package was utilized 
to identify metabolites significantly enriched in either the 
non-acute or severe COVID-19 disease state (Nachar, 2008). 
Benjamini–Hochberg correction was used as the multiple 
test correction method from the statsmodel python pack-
age, in order to mitigate false discovery rate to less than 5% 
(Benjamini et al., 1995). From this metabolite list, 124 well-
documented pharmaceutical or non-endogenous metabolites 
were removed to identify non-treatment based metabolic 
shifts. We used bootstrapping to account for the disbalance 
in groups. Using the supervised learning approach ran-
dom forest, we assessed accuracy of the identified endog-
enous metabolites to discern between severe vs non-acute 
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COVID-19 status using the holdout validation method 
(Breiman, 2001). Model accuracy was also assessed using 
receiver operating characteristic curve (ROC) and recall 
calculation.

Using the unsupervised learning approach Nonmet-
ric Multidimensional Scaling (NMDS) and associated 
Euclidean distance, the previously identified endogenous 
metabolites were analyzed for significant COVID-19 status 
clustering using the vegan R package. A Permutational Mul-
tivariate Analysis of Variance (PERMANOVA) was utilized 
to identify if clustering of the severe vs. non-acute groups 
was significant again conducted using the vegan R package 
(Anderson, 2017).

In order to analyze IL-13 level correlation with COVID-
19 disease severity, we subset the aforementioned endog-
enous differential metabolomics data to include the 25 
patients with the highest IL-13 levels, as well as the 25 
patients with the lowest IL-13 levels. An unpaired, one-
tailed t-test was run in Excel on the select metabolites to 
assess significant differences based on IL-13 levels.

2.5  Pathway analysis

Pathway analysis was conducted to identify metabolic shifts 
significantly associated with disease state, as well as novel 
metabolic mechanisms underlying COVID-19 disease pro-
gression. The MetaboAnalyst version 5.0 toolbox via the 
pathway analysis module was utilized to run pathway enrich-
ment analysis on the previously selected endogenous metab-
olites, enriched in either the severe or non-acute COVID-19 
disease state (Xia et al., 2009). The platform utilizes the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) to 
run over-representation analysis (ORA) to identify enriched 
metabolic pathways via a calculated enrichment ratio based 
on the actual versus predicted metabolite hits (Kanehisa and 
Goto, 2000). The significance of these calculated enrichment 
ratios is determined by an assigned p-value derived from a 
hypergeometric test using a binomial distribution.

2.6  Genome‑scale metabolic modeling

To identify potential functional metabolic shifts that can-
not be inferred from metabolomics alone, contextualized 
genome-scale metabolic models (GEMs) of a severe and 
non-acute COVID-19 disease state were constructed and 
analyzed using flux balance analysis (Edwards et al., 2002). 
The previously published whole-body GEM Recon3D was 
used as a base model for constructing a severe and non-acute 
COVID-19 disease model (Brunk et al., 2018). Recon3D is 
not cell-type specific, as the collected metabolomics data is 
from patient plasma samples and therefore represents non-
cell-type specific metabolism. Recon3D's objective function 

is formulated to represent biomass maintenance, equivalent 
to homeostasis.

Prior to model pruning, the identified differential endog-
enous metabolites were manually matched to respective 
model metabolites. Metabolites not present within the model 
were not included. Exchange bounds of associated metabo-
lites were adjusted to simulate open metabolic exchange 
(− 1000 lower bound, 1000 upper bound) for the respective 
disease state's differential metabolites.

Each newly contextualized Recon3D model was pruned 
using RIPTiDe. RIPTiDe prunes model reactions to only 
those required for a parsimonious flux solution. After prun-
ing, FBA was run 500 times using Gapsplit to collect 500 
flux samples from each pruned model because there is not 
a singular solution for satisfying the homeostasis objective 
function (Keaty et al., 2020). By taking 500 flux samples we 
are able to more accurately explore potential solution spaces. 
We compared conserved reaction flux values across the three 
models, using NMDS followed by a PERMANOVA, to 
determine if the three model's flux values were significantly 
separated. We then identified the top conserved reactions 
with predictive flux values capable of differentiating the 
severe versus non-acute models using random forest.

3  Results

3.1  Biomarker identification

An initial heatmap of the metabolomics data was constructed 
to compare severe vs. non-acute COVID-19 samples (Fig. 1). 
These results illustrate differential metabolic profiles associ-
ated with disease severity (Fig. 1). A total of 226 metabolites 
were identified as significantly differential after analyzing all 
metabolite values using the Mann–Whitney U-test to com-
pare severe COVID-19 samples to non-acute COVID-19 
samples. Once non-endogenous metabolites were removed, 
80 metabolites were identified as significantly elevated in 
non-acute COVID-19 samples and 21 metabolites were iden-
tified as significantly elevated in severe COVID-19 samples. 
The remaining 101 metabolites were input into a random for-
est analysis and the resultant model was capable of predict-
ing COVID-19 disease severity with 7.14% out-of-bag error 
rate. Compared to 14.19% out-of-bag error rate when all 680 
metabolites were included, the removal of non-endogenous 
metabolites improved model classifier capabilities. NMDS 
and associated PERMANOVA showed significant group-
ing  (R2 = 0.09, p-value < 0.001) of non-acute COVID-19 
samples vs. severe COVID-19 samples, based on measured 
endogenous metabolite levels (Fig. 2) (Table 1).  

To assess the interplay between IL-13 levels, COVID-19 
disease severity, and functional metabolism, we did a high-
level integration of IL-13 level data with the aforementioned 
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Fig. 1  Heatmap of top 50 endogenous and non-endogenous differential metabolites for non-acute and severe COVID-19 patient plasma sample 
data

Fig. 2  a Top 20 endogenous differential features identified by random 
forest as most important for predicting COVID-19 disease severity. 
b Receiver operating curve for random forest generated COVID-19 
status model predictability c) Non-metric Multi-dimensional Scal-

ing (NMDS) based on all endogenous metabolites identified as sig-
nificantly different between patient categories. (PERMANOVA: 
R2 = 0.09, p-value < 0.001)
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metabolomics analysis. After sub-setting the metabolomics 
data based on the top 25 (average IL-13 pg/ml = 36.32) 
and bottom 25 (average IL-13 pg/ml = 5.26) IL-13 levels, 
unpaired one-tailed t-test analysis identified 14 significantly 
different metabolite levels from the 101 previously identi-
fied differential metabolites. From the 21 metabolites signifi-
cantly elevated in severe COVID-19 samples, two metabo-
lites were identified as significantly different when grouping 
by IL-13 levels, both of which are elevated in IL-13-high 
patients (Table 2). From the 80 metabolites identified as 
significantly elevated in non-acute COVID-19 samples, 11 
metabolite levels were significantly altered when comparing 
high vs. low IL-13 levels (Table 2). All of these metabolites 
were significantly higher in low IL-13 level patients, except 
L-homocysteic acid, which was reduced in low IL-13 level 
patients.

3.2  Pathway analysis

After analyzing the differentially enriched metabolites asso-
ciated with non-acute or severe COVID-19 using the KEGG 
database, several metabolic pathways appeared to be char-
acteristic of the COVID-19 disease state. From the list of 80 
metabolites that were differentially enriched in non-acute 
COVID-19 samples, higher levels of L-tryptophan, mela-
tonin, 5-hydroxy-L-tryptophan, 3-hydroxyanthranilic acid, 
indoleacetaldehyde, and anthranilate are significantly asso-
ciated with tryptophan metabolism (FDR = 0.07) (Fig. 3a).

From the list of 20 metabolites that were differentially 
enriched in severe COVID-19, there is significant associa-
tion between 4-imidazolone-5-propionic acid, imidazole-
pyruvate, and methylimidazoleacetic acid with the histidine 
metabolism (FDR = 0.28) (Fig. 3b). Additional metabolites 
of interest were identified from the list of differential endog-
enous metabolites. Specifically, three acylcarnitines (hex-
anoylcarnitine, 3-methylglutarylcarnitine, and 9,12-hexa-
decadienoylcarnitine), L-gamma-glutamyl-L-leucine and 
D-galactonate in severe COVID-19 samples were identi-
fied as significantly higher compared to non-acute samples, 
whereas 5’-methylthioadenosine was identified as signifi-
cantly higher in non-acute COVID-19 samples compared to 
severe cases (Fig. 4c).

3.3  Genome‑scale metabolic modeling

Genome-scale metabolic modeling provides scaffolding 
to investigate the intracellular metabolism that translates 
to extracellular metabolic byproducts which then result in 
physiological changes and disease progression. By curating 
a whole-body genome-scale metabolic model in the context 
of SARS-CoV-2 infection, using metabolomic data integra-
tion, we can better understand the functional metabolism 
and differential metabolic pathways that define severe and 

non-acute disease states. By accounting for metabolic inputs 
and byproducts using metabolomics data, we were able to 
construct a metabolic network that allows for insight to the 
functional and metabolic pathway shifts that differentiate 
disease state, resulting in changes to identified metabolite 
levels. Through this mechanistic understanding we gathered 
a snapshot of the disease's intracellular mechanisms, not just 
a picture of the physiological byproduct created from the 
metabolomics data. These two approaches working in tan-
dem, metabolic modeling and metabolomics, create a more 
complete portrait of COVID-19's impact on the body from 
both an intracellular and extracellular perspective.

Of the original 21 metabolites identified has sig-
nificantly higher in severe samples, ten of the metabo-
lites were matched to annotated metabolites within the 
Recon3D model. Of the original 80 metabolites identified 
as significantly higher in the non-acute samples, 37 of the 
metabolites matched to annotated metabolites within the 
Recon3D model. After adjusting exchange bounds and 
pruning each model–severe COVID-19 and non-acute 
COVID-19–Recon3D's initial 10,650 reactions were 
reduced to 1119 reactions and 1066 reactions respectively 
for each contextualized model. The models share 878 reac-
tions, with 241 reactions unique to the severe model, and 
188 reactions unique to the non-acute model (Fig. 5a). 
NMDS and associated PERMANOVA showed significant 
model separation based on conserved reaction flux values 
 (R2 = 0.22, p-value < 0.001) (Fig. 5b). Based on random 
forest, the top ten reactions for accurately classifying 
the severe versus non-acute models are: 5'-nucleotidase 
(IMP), sodium/ammonium proton antiporter, nucleoside-
diphosphate kinase, 5'-nucleotidase (dAMP), transport 
of phenylalanine, asparagine, and methionine, adenosine 
facilitated transport in cytosol, fumarate:thiosulfate anti-
port (mitochondrial), and 5,10-Methylenetetrahydrofolate 
transport (cytosol to mitochondria), valine transaminase, 
transport of isoleucine, tyrosine, and tryptophan (Fig. 5c)..

These findings work concurrently with previous 
research showing positive correlation between IL-13 levels 
and fatty acid metabolism, as well as IL-13 level mediated 
COVID-19 disease severity (Knudsen et al., 2020; Zhu. 
et al., 2015). Within the analyzed patient cohort, increased 
IL-13 levels were positively associated with need for 
mechanical ventilation. Additionally, within COVID-19 
mouse models, IL-13 neutralization increased survival rate 
and improved disease trajectory (Donlan et al., 2021).

4  Discussion

Metabolism plays an important role in COVID-19. While 
previous work has focused on using plasma metabolomics 
to identify the metabolic impact of COVID-19 on patient 
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metabolism, as well as investigate disease progression, here 
we use plasma metabolomics data in conjunction with a 
genome-scale metabolic model to better analyze functional 
metabolic shifts associated with disease progression. Based 
on metabolomic analysis and computational metabolic mod-
eling, we discovered that in non-acute COVID-19 patients' 
tryptophan, glutathione, pyrimidine and D-glutamine, 
D-glutamate metabolism are significantly enriched. These 
metabolic highlights may have physiological implications 
in regards to mitigated inflammatory response, decreased 
fibroblast accumulation, increased Vitamin-D levels, and 
cellular damage prevention. Conversely, in the case of severe 
COVID-19 patient data we discovered a significant enrich-
ment in histidine (Fig. 4d). Physiologically these findings 
have been previously shown to correlate with increased viral 
titer and increased fatty acid oxidation(Doğan et al., 2021; 
Kimhofer et al., 2020; López-Hernández et al., 2021; Over-
myer et al., 2021; Roberts et al., 2022; Thomas et al., 2020).

4.1  Non‑acute COVID‑19 metabolism

Differential enrichment of L-tryptophan, melatonin, 
5-hydroxy-L-tryptophan, 3-hydroxyanthranilic acid, 
indoleacetaldehyde, and anthranilate in non-acute COVID-
19 samples is significantly associated with tryptophan 
metabolism. Additionally, Trp-Phe is significantly enriched 
in both non-acute COVID-19 samples, as well as patients 
with low IL-13 levels. Tryptophan plays a role in neuro-
transmitter synthesis, anti-inflammatory pathways, as well 
as improved immune response via the gut microbiome 
(Gao et al., 2018; Krause et al., 2011; Wang et al., 2002). 
Increased tryptophan metabolism in non-acute COVID-19 
patients presents a potential inhibitory mechanism for respir-
atory inflammation, a symptom associated with the cytokine 
cascade involved in SARS-Cov-2 infection (Dehhaghi et al., 
2019). Notably, L-homocysteic acid is elevated in both 

non-acute COVID-19 samples, as well as IL-13-high sam-
ples. L-homocysteic acid is an endogenous neurotransmitter 
ligand of N-Methyl-D-aspartic acid, commonly known as 
NMDA. In regards to SARS-Cov2 infection, NMDA plays 
an integral role in neural plasticity, which could account 
for its high levels in the seemingly discordant categories 
of non-acute COVID-19 and high IL-13 levels (Jewett & 
Thapa, 2020). A potential mechanism is immune-mediated 
neural adaptation to disease pathology in order to avoid neu-
rological symptoms that are sometimes reported in those 
infected with SARS-Cov2 (Marshall, 2020; Yirmiya & Gos-
hen, 2011). In summary, increased tryptophan metabolism 
in non-acute COVID-19 could be directly upregulating anti-
inflammatory pathways (Blasco et al., 2020).

Differential enrichment of 5′-methylthioadenosine (MTA) 
in non-acute COVID-19 samples could be a direct result of 
the body mitigating innate immune system inflammatory 
response. Mechanistically, MTA inhibits the pro-inflam-
matory cytokine TNF-α and increasing production of anti-
inflammatory IL-10 (Hevia et al., 2004; Veal et al., 2004).

After investigating functional metabolic changes using 
a contextualized non-acute COVID-19 metabolic model 
three reactions stood out as carrying significantly higher 
flux compared to the severe COVID-19 metabolic model: 
nucleoside-diphosphate kinase, 5'-nucleotidase (IMP), 
and adenosine facilitated transport in cytosol. Nucleo-
side-diphosphate kinases (DNPK) plays an integral role in 
maintaining genomic stability, as they maintain the avail-
able pool of ribonucleotides and deoxyribonucleotides in 
the cell (Kapoor & Varshney, 2020). Previous research 
has shown that DNPK's can provide a protective effect 
in the case of cancer metastasis, a disease that also heav-
ily relies on cellular replication (Lacombe et al., 2021). 
5'-nucleotidase (IMP) dephosphorylates IMP and helps 
to maintain intracellular purine compound pools (Ipata & 
Tozzi, 2006; Pesi et al., 2021). Increased de novo purine 

Table 2  Metabolites 
significantly different 
(p-value < 0.05) when 
comparing high vs. low IL-13 
patient metabolomics

COVID-19 Status IL-13 Level Enriched Metabolite

Severe High 4-imidazolone-5-propanoate
3-methylglutarylcarnitine

Non-Acute High L-homocysteic acid
Low (24R,24'R)-fucosterol epoxide alanyl-

poly(glycerolphosphate)
Erucamide
L-Ascorbate 6-phosphate
N2-acetyl-L-lysine
11-Nitro-1-undecane
β –leucine
n-ribosylhistidine
Trp-Phe
trimethylsilyl N,O-bis(trimethylsilyl)serinate
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synthesis has been linked to increased inflammatory 
response in COVID-19 patients. 5'nucleotidase catalyzes 
cytosolic purine degradation (Pieters & Veerman, 1988). 
Increased activity in 5'nucleotidase could be reducing 
cytosolic purine levels and thus reducing the cytokine 
response to infection (Xiao et  al., 2021; Zhang et  al., 
2021). Lastly, adenosine is a signaling molecule which 
is present in higher concentrations during airway inflam-
mation (Singh Patidar et al., 2018). Increased adenosine 
facilitated transport suggests that those who experience 
non-acute infection are removing excess adenosine and 
therefore reducing the subsequent inflammatory response 
to infection.

4.2  Severe COVID‑19 metabolism

Significantly higher levels of imidazole-pyruvate, 4-Imi-
dazolone-5-propanoate (also elevated in high IL-13 level 
samples), and methylimidazoleacetic acid in severe COVID-
19 samples is associated with histidine metabolism, spe-
cifically histidine degradation (Fig.  4e). Additionally, 

4-Imidazolone-5-propanoate is also elevated in high IL-13 
level samples, indicating a potential immune system media-
tion of this metabolite. Histidine plays a key role in enzyme 
activation, specifically the activation of serine protease 
(Radisky et al., 2006). Host serine proteases have been 
shown to assist in viral entry into host cells, as well as viral 
spread of SARS-CoV2 (Seth et al., 2020). The serine pro-
tease alters the host S protein allowing for subsequent ACE2 
receptor host-viral membrane fusion (Matsuyama et al., 
2010). Increased histidine metabolism in severe COVID-19 
samples could exemplify viral hijacking of host metabolism, 
as SARS-CoV2 continues to spread and uses host machinery 
against itself (Delattre et al., 2021).

Severe COVID-19 samples have significantly higher 
acetoacetate metabolite concentrations, which is associ-
ated with ketone body biosynthesis (Fig. 4d). When there 
is an increase in fatty acid oxidation there is a subsequent 
increase in ketone bodies produced by the liver (Botham 
Kathleen and Mayes, 2015). In addition, three acylcarni-
tines (hexanoylcarnitine, 3-methylglutarylcarnitine and 
9,12-hexadecadienoylcarnitine) are significantly elevated 

Fig. 3  a Patient plasma levels of metabolites involved in trypto-
phan metabolism and melatonin synthesis (FDR = 0.07) b Patient 
plasma levels of the metabolite 5’-methylthioadenosine c Patient 
plasma levels of metabolites involved in ketone body biosynthesis d 

Patient plasma levels of metabolites involved in histidine degradation 
(FDR = 0.28) e Patient plasma levels of metabolites associated with 
shift in energy source
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in severe COVID-19 samples. 3-methylglutarylcarnitine is 
also elevated in high IL-13 level samples, connecting this 
metabolite to a potential inflammatory response pathway. 
Previous research has shown a positive correlation between 
increased IL-13 levels and increased fatty acid oxidation 
(NH et al., 2020). Acylcarnitines assist in the transport of 
fatty acids across the inner mitochondrial membrane for 
beta-oxidation. These two considerations in conjunction 
suggest an increase in fatty acid oxidation under severe 
COVID-19 conditions. Additionally, previous research has 
shown higher levels of fatty acids in SARS-CoV2 infected 
cells (Yan et al., 2019). However, it is important to note that 
increased levels of circulating acylcarnitines could be con-
founded by the significantly higher collective BMI of severe 
COVID-19 patients, as well as increased prevalence of heart 
disease (Kang et al., 2018; Mihalik et al., 2010; Ruiz et al., 
2017; Smith et al., 2020).

Both L-gamma-glutamyl-L-leucine and D-galactonate are 
enriched in severe COVID-19 samples (Fig. 4f). L-gamma-
glutamyl-L-leucine is associated with incomplete protein 
breakdown, and is excreted from the body via urine(Human 
Metabolome Database, n.d.; Jandke & Spiteller, 1986). 
D-galactonate is a metabolic byproduct of galactose break-
down, an energy-rich nutrient. An increase in galactose 
catabolism indicates a body that is in need of extra energy, 
while L-gamma-glutamyl-L-leucine’s association with 
incomplete protein breakdown could be a result of utilizing 
muscle for emergency energy. When considered in conjunc-
tion, these two metabolites suggest a metabolic energy shift 

in the severe disease state. Conversely, severe COVID-19 is 
associated with muscular atrophy, which could account for 
increased levels of L-gamma-glutamyl-L-leucine (Sagarra-
Romero & Viñas-Barros, 2020). Additionally, at chronic 
high levels D-galactonate functions as a metabotoxin result-
ing in adverse health effects (Schlueter et al., 2018).

Our severe COVID-19 genome-scale metabolic model 
was able to capture functional metabolic shifts that were 
not identified from the metabolomics data alone. Specifi-
cally three reactions were highlighted via random forest: 
fumarate:thiosulfate antiport (mitochondrial), transport of 
phenylalanine, asparagine, and methionine, and transport of 
isoleucine, tryptophan, and tyrosine. High plasma levels of 
phenylalanine and tyrosine has been previously identified 
as biomarkers of increased disease severity in COVID-19 
(Luporini et al., 2021; Shi et al., 2021). These findings indi-
cate that our metabolic model is recapitulating previously 
identified markers of severe disease. Additionally, fumarate 
can function as a terminal electron acceptor in the electron 
transport chain when oxygen is not present (Spinelli et al., 
2021). Increased fumarate:thiosulfate antiport in the mito-
chondria indicates reduced access to oxygen, which coin-
cides with increased disease severity.

Fig. 4  Metabolic pathway p-values are assigned based on how sig-
nificantly the identified metabolites indicate pathway enrichment. a 
Metabolic pathways associated with non-severe COVID-19 metabo-

lite predictors. Tryptophan metabolism and melatonin synthesis 
(FDR = 0.07). b Metabolic pathways associated with severe COVID-
19 metabolite predictors. 19 disease sev (FD R = 0.28)
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5  Conclusion

Enriched metabolites associated with tryptophan metabo-
lism in non-acute COVID-19 samples, paint a metabolic 
picture of mitigated innate immune system inflammatory 
response, immunopathology-related lung damage prevention 
(Fig. 4a, b). Increased prevalence of histidine- and ketone-
related metabolism in severe COVID-19 samples offers a 
potential mechanistic insight to musculoskeletal degenera-
tion-induced muscular weakness, and host metabolism that 
has been hijacked by SARS-CoV2 infection to increase viral 
replication and invasion. Non-acute COVID-19 samples 
appear to have a reduced inflammatory response and a met-
abolic safety net to inhibit immunopathology-related lung 
damage, as opposed to severe COVID-19 samples whose 
metabolomes indicate take-over by the virus, resulting in a 
metabolic environment that is conducive to increased dis-
ease severity. These metabolic analyses and findings can be 
leveraged to improve and advance COVID-19 disease treat-
ment, as well as lead to further investigation into metabolic 
predictors of disease advancement.

Funding Funding was provided by National Institute of General Medi-
cal Sciences (Grant No. 5T32GM136615-02) and Ben and Catherine 
Ivy Foundation.
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